霍天龍,楊碩,陳雷,康鈺,陳塵
北京大學(xué)人民醫(yī)院 放射科,北京100044
蘇木素作為外源性波譜標(biāo)志物進(jìn)行腫瘤MRS分子成像的初步研究
霍天龍,楊碩,陳雷,康鈺,陳塵
北京大學(xué)人民醫(yī)院 放射科,北京100044
目的探討蘇木素作為外源性波譜標(biāo)志物進(jìn)行腫瘤MRS分子成像的相關(guān) 基礎(chǔ)問題。方法用高場(chǎng)MR檢測(cè)不同濃度蘇木素溶液,分別用點(diǎn)解析波普法(Point Resolved Spectroscopy,PRESS)和激勵(lì)回波獲取法(Stimulated Echo Acquisition Mode,STEAM)法進(jìn)行MRS成像,分析不同掃描方法和濃度蘇木素MRS信號(hào)特點(diǎn)。結(jié)果無(wú)論P(yáng)RESS和STEAM,蘇木素均可檢出特征性波譜譜線,峰位固定,但峰高和峰面積和濃度相關(guān),濃度越高,譜線越清晰。結(jié)論蘇木素有特征性MRS 信號(hào),有可能為腫瘤分子成像提供合適的外源性靶標(biāo)物質(zhì)。
分子成像;核磁共振波譜成像;外源性波譜標(biāo)志物;蘇木素;點(diǎn)解析波譜成像;激勵(lì)回波采集模式
MR波譜(MR Spectroscopy,MRS)是目前唯一能夠無(wú)創(chuàng)性檢測(cè)活體組織物質(zhì)代謝、生化改變及化合物定量分析的一種方法。在疾病的發(fā)生和發(fā)展過(guò)程中,代謝改變往往早于形態(tài)學(xué)改變,因此 MRS 提供的代謝信息有助于疾病的早期診斷。MRS從分子水平了解人體生理和病理變化,從而有助于對(duì)疾病進(jìn)行早期診斷、鑒別定性、療效觀察及預(yù)后評(píng)估。由于氫核在人體最豐富,因此1HMRS波譜成像穩(wěn)定可靠,因此不僅臨床應(yīng)用最廣泛,而且基礎(chǔ)研究方面也非常熱門和前沿。但目前研究局限在內(nèi)源性波譜標(biāo)志物,最常見如膽堿類化合物,但內(nèi)源性物質(zhì)受臟器和疾病所限,不是每個(gè)臟器和疾病都有合適的內(nèi)源性標(biāo)志物來(lái)進(jìn)行代謝或分子成像,因此本研究嘗試引入能與腫瘤結(jié)合的外源性物質(zhì)作為波譜標(biāo)志物進(jìn)行腫瘤代謝或分子成像。鑒于蘇木素是一種常見的親核性染料,因此本研究嘗試對(duì)蘇木素進(jìn)行MRS成像,進(jìn)行信號(hào)采集和峰位解讀,探討蘇木素作為外源性波譜標(biāo)志物成像的可能性。
1.1 材料
臨床用蘇木素溶液,濃度2%(g/100 mL),摩爾濃度67 mmol/L,含有醋酸和高碘酸及無(wú)機(jī)金屬離子,分別取混合原液和10倍(6.7 mmol/L)及100倍稀釋液(0.67 mmol/L)進(jìn)行MRS信號(hào)檢測(cè);再取單純蘇木素原液(濃度 2%)按照同樣方法稀釋后進(jìn)行MRS測(cè)量;再分別測(cè)量醋酸及高碘酸MRS信號(hào);最后再將醋酸和高碘酸同純蘇木素溶液混合后進(jìn)行測(cè)量,觀察信號(hào)特點(diǎn),著重觀察峰位和峰高,對(duì)比分析資料。
1.2 掃描設(shè)備和序列
掃描設(shè)備為MR750w(GE 公司),采用點(diǎn)解析波譜成像(Point Resolved Spectroscopy,PRESS)和激勵(lì)回波采集模式(Stimulated Echo Acquisition Mode,STEAM)序列進(jìn)行MRS檢測(cè),PRESS序列TE采用35 ms和144 ms,STEAM序列只用35 ms,每個(gè)樣本各掃描3次,取效果最好者進(jìn)行分析。
2.1 蘇木素混合液1HMRS波譜成像結(jié)果
不同序列和TE時(shí)間均可以看到蘇木素混合液(含醋酸)原液(2%)有明顯的3組波譜峰,盡管峰型和峰高略有不同,但峰位是一致的,分別大約位于1.0、1.9和3.5 ppm處,說(shuō)明有這種物質(zhì)或這組物質(zhì)有3組共振峰,見圖1。
圖1 不同序列和 TE 時(shí)間蘇木素混合液(含醋酸)原液(2%)1HMRS 波譜圖像
2.2 不同濃度蘇木素混合液溶液1HMRS結(jié)果
不同濃度的蘇木素混合液(含醋酸)用PRESS序列(TE=35 ms)采集信號(hào),得到結(jié)果,見圖2??梢钥吹?,原液和1:10稀釋液信號(hào)差別不大,都可以看到固定峰位的共振信號(hào),但是隨診濃度繼續(xù)下降,基線噪音增大,峰高減低,但峰位維持不變,說(shuō)明特定的物質(zhì)具有特定的波譜峰位,而峰高和峰下面積則隨物質(zhì)濃度下降而下降。
圖2 不同濃度蘇木素混合液(含醋酸)溶液1HMRS圖(PRESS35TE)
2.3 純醋酸(CH3COO-)溶液1HMRS結(jié)果
通過(guò)對(duì)純醋酸的掃描結(jié)果,見圖3。可以看出,不論何種序列、TE時(shí)間長(zhǎng)短,盡管峰高有差別,但總是在固定的峰位(約1.9 ppm)出現(xiàn)強(qiáng)的共振峰,即醋酸甲基3個(gè)氫原子的共振峰。
圖3 純醋酸(CH3COO-)溶液1HMRS圖
圖4 純高碘酸-溶液1HMRS圖
2.5 純蘇木素溶液1HMRS結(jié)果
純蘇木素溶液的1HMRS結(jié)果,見圖5。從圖5可以看出,純蘇木素(2%,67 mmol/L)(無(wú)醋酸)不論哪個(gè)序列和TE長(zhǎng)短,均在特定位置出現(xiàn)共振峰(大約在1.0 ppm和3.5 ppm)。與混合液相比,少了醋酸峰。
圖5 純蘇木素(無(wú)醋酸)溶液(2%,67 mmol/L)1HMRS圖
2.6 蘇木素混合液和純蘇木素溶液IHMRS對(duì)比結(jié)果
重新將醋酸和高碘酸與純蘇木素溶液混合(2%)后再檢測(cè)波譜,結(jié)果發(fā)現(xiàn),得到了和一開始蘇木素混合液一樣的波譜圖像。下圖是混合3種物質(zhì)的蘇木素混合液(上列)和純蘇木素溶液(下列)對(duì)比圖,見圖6??梢钥吹?,就像是3種物質(zhì)的混合,圖像也相應(yīng)地混合。這再次說(shuō)明,波譜成像具有相當(dāng)大的優(yōu)勢(shì),即各種物質(zhì)互相影響很少,物質(zhì)混合后波譜圖像也相應(yīng)地成為各種獨(dú)立物質(zhì)的波譜疊加。換句話說(shuō),溶液中,各種物質(zhì)的波譜信號(hào)保持自己的特征,這就是蘇木素可能成為外源性波譜標(biāo)志物的先決條件。。
圖6 蘇木素混合液(混合醋酸和高碘酸)和純蘇木素溶液1HMRS對(duì)比圖
MRS主要通過(guò)化學(xué)位移現(xiàn)象進(jìn)行成像。不同化學(xué)環(huán)境中的相同原子核在外磁場(chǎng)作用下表現(xiàn)出稍有不同的共振頻率的現(xiàn)象,稱為化學(xué)位移。由于不同化合物中原子核的化學(xué)位移不同,可根據(jù)MR波譜中其共振峰的位置不同而加以鑒別?;瘜W(xué)位移的大小以磁共振頻率的百萬(wàn)分之一表示(ppm),MR波譜中以橫坐標(biāo)來(lái)表示,縱坐標(biāo)代表代謝產(chǎn)物的信號(hào)強(qiáng)度。共振頻率即共振峰的位置,峰高及波峰積分面積與共振原子核的數(shù)目成正比,代表化合物的濃度,可進(jìn)一步進(jìn)行定量分析;共振峰的形狀反映了化合物的分子結(jié)構(gòu)。
對(duì)于特定代謝物而言,不論是組織提取液,還是離體完整組織,譜線形狀均與活體組織波譜相似,而峰位相同,不同的是活體波譜峰較寬、較鈍,分辨率稍差,能分辨的化合物較少[1];不同種屬之間,如人和狗的腦組織波譜圖譜中,只有譜線形態(tài)有很小的差別[2]。這表明,每一種化合物都有自己特有的特征峰的頻率位置,并且這種特征峰主要取決于分子內(nèi)部結(jié)構(gòu),這就方便了在體外配制標(biāo)準(zhǔn)濃度的已知物質(zhì),進(jìn)行MRS檢測(cè),從而簡(jiǎn)化了研究設(shè)計(jì)[3],使得體外研究部分可以替代體內(nèi)研究[4]。
目前用于生物體檢測(cè)的原子核有1H、31P、13C、19F、23Na、39K等,其中人體內(nèi)1H、31P兩種原子核的豐度最高,并存在于一些具有重要臨床意義的化合物中,故最常用于MR波譜分析。盡管31P波譜早于1H譜(1HMRS)進(jìn)入臨床,但1H譜磁敏感性較31P波譜高,信號(hào)更強(qiáng),有更高的空間分辨率,故目前臨床應(yīng)用最廣泛。
1HMRS在中樞神經(jīng)系統(tǒng)應(yīng)用最多,對(duì)多種疾病如腫瘤、癡呆、多發(fā)性硬化、感染、外傷、發(fā)育、中風(fēng)、圍產(chǎn)期局部缺血、和先天性缺陷等的診斷和鑒別診斷中發(fā)揮重要作用[5]。1HMRS可用來(lái)觀察細(xì)胞増殖、神經(jīng)元損傷、能量代謝和腦組織或腫瘤組織的壞死改變[6],并指導(dǎo)活檢[7],可作為腫瘤預(yù)后的指標(biāo)[8],預(yù)測(cè)腫瘤的生物學(xué)行為[9-10],評(píng)價(jià)腫瘤的侵襲性[11]。根據(jù)瘤周組織MRS代謝的不同,來(lái)鑒別大腦膠質(zhì)瘤病和低分級(jí)膠質(zhì)瘤[12]。根據(jù)代謝物的不同來(lái)區(qū)別不同類型腫瘤[13],根據(jù)瘤周膽堿/肌酸比值的高低可以區(qū)分浸潤(rùn)性膠質(zhì)瘤和單發(fā)轉(zhuǎn)移瘤[14]。MRS還可以區(qū)別腦轉(zhuǎn)移瘤、放射性壞死和腦膿腫[15-16],尤其在腦膿腫的鑒別診斷中,1HMRS非常特異[17]。還可以預(yù)測(cè)腫瘤對(duì)化療的反應(yīng)[18-19]。除在中樞系統(tǒng)方面有比較成熟的應(yīng)用外[20],1HMRS還在其他多種器官和部位的腫瘤診斷和鑒別診 斷中提供有意義信息,如乳腺[21-22]、前列腺[23-26]、膽管[27]、婦科腫瘤[28]、直腸腫瘤[29]、甲狀腺腫瘤[30],甚至可以鑒別慢性局灶性胰腺炎和胰腺癌[31],并能對(duì)轉(zhuǎn)移淋巴結(jié)和 正常淋巴結(jié)進(jìn)行鑒別[32-34]。
甚至已有研究者用1HMRS檢測(cè)膽堿含量來(lái)評(píng)價(jià)組織工程中存活細(xì)胞的數(shù)目[35]。Lindskog等[36]用游離脂肪脂/膽堿比率來(lái)評(píng)價(jià)移植瘤在血管生成抑制化療藥作用下存活情況。Larson-Meyer等[37]用MRS活體人評(píng)價(jià)骨骼肌內(nèi)脂質(zhì)含量,并探討與胰島素抵抗的關(guān)系。Murphy等[38]用MRS來(lái)評(píng)價(jià)腦腫瘤對(duì)化療藥的反應(yīng),主要檢測(cè)膽堿,內(nèi)生水等內(nèi)源性物質(zhì)。
盡管上述研究中,主要通過(guò)檢測(cè)膽堿,1HMRS在其他組織和器官的病診斷中發(fā)揮了作用,然而迄今為止,在肝臟腫瘤的診斷和鑒別診斷中,1HMRS所起的作用有限。一些研究證明,肝臟惡性腫瘤和正常肝臟的膽堿化合物含量沒有顯示出有統(tǒng)計(jì)學(xué)差異[39]。這說(shuō)明在內(nèi)源性膽堿化合物等標(biāo)志代謝物產(chǎn)生不足或不明確的情況下,用MRS來(lái)對(duì)肝臟腫瘤進(jìn)行診斷和鑒別診斷是行不通的。為此,國(guó)內(nèi)外學(xué)者開始了將外源性物質(zhì)膽堿引入體內(nèi),再用1HMRS檢測(cè)的研究。
早在1995年,Stoll等[40]在動(dòng)物實(shí)驗(yàn)的基礎(chǔ)上,對(duì)正常志愿者嘗試用口服外源性膽堿來(lái)觀察正常腦組織膽堿峰共振變化,發(fā)現(xiàn)口服后,膽堿共振信號(hào)增強(qiáng),并可被活體MRS檢出;其后Babb等[41]研究支持了這一結(jié)論。PET成像表明,腫瘤組織吸收膽堿明顯增多[42],在此基礎(chǔ)上,Chernov等[43]推測(cè),口服膽堿后,腫瘤組織應(yīng)比正常組織具有更為明顯的膽堿峰改變,然而結(jié)果證明,口服膽堿沒有對(duì)膠質(zhì)瘤和瘤周白質(zhì)膽堿峰代謝特征產(chǎn)生明顯影響。因此,依靠體內(nèi)正常存在的膽堿等物質(zhì)通過(guò)外源性給藥的方式突出腫瘤組織代謝異常,從而利用1HMRS完成腫瘤診斷和鑒別診斷是不易實(shí)現(xiàn)的。尋找能突出腫瘤組織和正常組織差別的1HMRS標(biāo)志物是解決諸如肝臟腫瘤此類無(wú)明顯內(nèi)源性標(biāo)記物(如膽堿化合物)病變?cè)\斷和鑒別診斷的方向。經(jīng)典的腫瘤理論表明,腫瘤細(xì)胞的核酸含量明顯高于正常組織,然而核酸分子量大,共振基團(tuán)眾多,共振峰位復(fù)雜,譜線不易判讀,沒有特征性峰位,因而1HMRS無(wú)法直接通過(guò)檢測(cè)核酸含量來(lái)完成診斷和鑒別診斷。這種情況下,尋找能和核酸結(jié)合的,并且具有特征性峰位的、1HMRS圖譜上易識(shí)別的小分子物質(zhì)成了解決問題的關(guān)鍵。蘇木素(Hematoxylin)是一種常用的親核酸染料,以此為基礎(chǔ)的HE染色是廣泛應(yīng)用于組織、細(xì)胞染色的技術(shù),用于研究組織細(xì)胞的生理、病理和化學(xué)結(jié)構(gòu)。其基本原理是去氧核糖核酸(DNA)兩條鏈上的磷酸基向外,帶負(fù)電荷,呈酸性,很容易與帶正電荷的蘇木精堿性染料以離子鍵結(jié)合而被染色。
蘇木素分子量302.2,分子結(jié)構(gòu)中有14個(gè)1H參與共振,有特定的共振圖譜。在前期預(yù)實(shí)驗(yàn)的基礎(chǔ)上,課題組用臨床1.5T MR機(jī)完成純蘇木素的1HMRS檢測(cè),發(fā)現(xiàn)在約1.0、1.9和3.5 ppm處各有3組峰,隨采集序列(STEAM或PRESS)不同和TE時(shí)間不同,峰向和峰值有不同,但峰位完全相同。而且最低濃度在0.67 mmol/L就可以很好顯示,與作為內(nèi)標(biāo)的肌酸的濃度相近(血液中肌酸濃度0.23~0.56 mmol/L)。預(yù)實(shí)驗(yàn)還發(fā)現(xiàn),如果用75%乙醇作為背景,可檢濃度要遠(yuǎn)遠(yuǎn)低于生理鹽水,并且1.9 ppm處峰高變低、變平(機(jī)理有待探討),1.0 ppm和3.5 ppm處峰形基本不受影響。
MRS是目前唯一能在活體狀態(tài)下檢測(cè)體內(nèi)物質(zhì)代謝的成像技術(shù),MRS有能力和潛力為腫瘤早期診斷和鑒別診斷發(fā)揮更大的作用。國(guó)內(nèi)外以往研究針對(duì)機(jī)體自身的內(nèi)源性物質(zhì)進(jìn)行成像,本研究希望開辟外源性物質(zhì)作為MRS成像目標(biāo)的初步研究,這樣就會(huì)極大拓展MRS的應(yīng)用。本研究針對(duì)病理常用的蘇木素進(jìn)行MRS研究,希望能在活體影像病理學(xué)方面進(jìn)行一些探索,為臨床利用外源性波譜標(biāo)記物檢測(cè)腫瘤病變提供新方法。
[1] Mahon MM,Cox IJ,Dina R,et al.(1)H magnetic resonance spectroscopy of preinvasive and invasive cervical cancer: in vivo-ex vivo profiles and effect of tumor load[J].J Magn Reson Imaging,2004,19(3):356-364.
[2] Rosen Y,Lenkinski RE.Recent advances in magnetic resonance neurospectroscopy[J].Neurotherapeutics,2007,4(3):330-345.
[3] Cheng LL,Chang IW,Louis DN,et al.Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens[J].Cancer Res,1998,58(9):1825-1832.
[4] Tzika AA,Cheng LL,Goumnerova L.Biochemical characteri zation of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy[J].J Neurosurg,2002,96(6):1023-1031.
[5] Lin AP,Tran TT,Ross BD.Impact of evidence-based medicine on magnetic resonance spectroscopy[J].NMR Biomed,2006,19(4): 476-483.
[6] Chen J.In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histo-pathology and immunohistochemistry[J].Neuroradiology,2006, 48(5):312-318.
[7] Gajewicz W,Grzelak P,Górska-Chrzastek M,et al.The usefulness of fused MRI and SPECT images for the voxel positioning in proton magnetic resonance spectroscopy and planning the biopsy of brain tumors: presentation of the method[J].Neurol Neurochir Pol,2006,40(4):284-290.
[8] Dembowska-Bagińska B,Perek D,Perek-Polnik M,et al.Can proton magnetic resonance spectroscopy be of any value as a prognostic factor in medulloblastoma?[J].Med Wieku Rozwoj, 2003,7(2):229-239.
[9] Bezabeh T,Odlum O,Nason R,et al.Prediction of treatment response in head and neck cancer by magnetic resonance spectroscopy[J].AJNR Am J Neuroradiol,2005,26(8):2108-2113.
[10] Fayed N,Dávila J,Medrano J,et al.Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI[J].Eur J Radiol, 2008,67(3):427-433.
[11] Zhang K,Li C,Liu Y,et al.Evaluation of invasiveness of astrocy-toma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2[J].Neuroradiology,2007,49(11):913-919.
[12] Galanaud D,Chinot O,Nicoli F,et al.Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma[J].J Neurosurg,2003,98(2): 269-276.
[13] Simonetti AW,MelssenWJ,Van dGM,et al.A chemometric app-roach for brain tumor classification using magnetic resonance imaging and spectroscopy[J].Anal Chem,2003,75(20):5352-5361.
[14] Chiang IC,Kuo YT,Lu CY,et al.Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy,diffusion,and perfusion imagings[J]. Neuroradiology,2004,46(8):619-627.
[15] Hwang YF,Hwang SL,Kwan AL,et al.Differentiation among metastatic brain tumors,radiation necroses,and brain abscesses using proton magnetic resonance spectroscopy[J].Kaohsiung J Med Sci,2004,20(9):437-442.
[16] Nath K,Agarwal M,Ramola M,et al.Role of diffusion tensor imaging metrics and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of cystic intracranial mass lesions[J].Magn Reson Imaging,2009,27(2):198-206.
[17] Mishra AM,Gupta RK,Jaggi RS,et al.Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions[J].J Comput Assist Tomogr,2004,28(4):540-547.
[18] Lindskog M,Spenger C,Jarvet J,et al.Predicting resistance or response to chemotherapy by proton magnetic resonance spectroscopy in neuroblastoma[J].J Natl Cancer Inst,2004, 96(19):1457-1466.
[19] Shah N,Gibbs J,Wolverton D,et al.Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study[J].J Biomed Opt,2005,10(5):051503.
[20] Kwock L,Smith JK,Castillo M,et al.Clinical role of proton magnetic resonance spectroscopy in oncology: brain,breast,and prostate cancer[J].Lancet Oncol,2006,7(10):859-868.
[21] Bolan PJ,Nelson MT,Yee D,et al.Imaging in breast cancer: Magnetic resonance spectroscopy[J].Breast Cancer Res,2005, 7(4):149-152.
[22] Tse GM,Yeung DK,King AD,et al.In vivo proton magnetic resonance spectroscopy of breast lesions: an update[J].Breast Cancer Res Treat,2007,104(3):249-255.
[23] Shukla-Dave A,Hricak H,Kattan MW,et al.The utility of magnetic resonance imaging and spectroscopy for predicting insignificant prostate cancer: an initial analysis[J].BJU Int, 2007,99(4):786-793.
[24] Saito K,Kaminaga T,Muto S,et al.Clinical efficacy of proton magnetic resonance spectroscopy (1H-MRS) in the diagnosis of localized prostate cancer[J].Anticancer Res,2008,28(3B):1899-1904.
[25] Zakian KL,Shukla-Dave A,Ackerstaff E,et al.1H magnetic resonance spectroscopy of prostate cancer: biomarkers for tumor characterization[J].Cancer Biomark,2008,4(4-5):263-276.
[26] Umbehr M,Bachmann LM,Held U,et al.Combined magnetic resonance imaging and magnetic resonance spectroscopy imaging in the diagnosis of prostate cancer: a systematic review and meta-analysis[J].Eur Urol,2009,55(3):575-590.
[27] Albiin N,Smith IC,Arnelo U,et al.Detection of cholangio-carcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis[J].Acta Radiol,2008,49(8):855-862.
[28] Booth SJ,Pickles MD,Turnbull LW.In vivo magnetic resonance spectroscopy of gynaecological tumours at 3.0 Tesla[J]. Bjog,2009,116(2):300-303.
[29] Chan EC,Koh PK,Mal M,et al.Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning
nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS)[J].J Proteome Res,2009,8(1):352-361.
[30] Gupta N,Kakar AK,Chowdhury V,et al.Magnetic resonance spectroscopy as a diagnostic modality for carcinoma thyroid[J]. Eur J Radiol,2007,64:414-418.
[31] Cho SG,Lee DH,Lee KY,et al.Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy[J].J Comput Assist Tomogr, 2005,29(2):163-169.
[32] Lean CL,Bourne R,Thompson JF,et al.Rapid detection of metastatic melanoma in lymph nodes using proton magnetic resonance spectroscopy of fine needle aspiration biopsy specimens[J].Melanoma Res,2003,13(3):259-261.
[33] Seenu V,Pavan Kumar MN,Sharma U,et al.Potential of magnetic resonance spectroscopy to detect metastasis in axillary lymph nodes in breast cancer[J].Magn Reson Imaging,2005, 23(10):1005-1010.
[34] Stretch JR,Somorjai R,Bourne R,et al.Melanoma metastases in regional lymph nodes are accurately detected by proton magnetic resonance spectroscopy of fine-needle aspirate biopsy samples[J].Ann Surg Oncol,2005,12(11):943-949.
[35] Stabler CL,Long RC,Sambanis A,et al.Noninvasive measurement of viable cell number in tissue-engineered constructs invitro,using 1H nuclear magnetic resonance spectroscopy[J].Tissue Eng,2005,11(3-4):404-414.
[36] Lindskog M,Kogner P,Ponthan F,et al.Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)[J]. Br J Cancer,2003,88(3):478-485.
[37] Larson-Meyer DE,Smith SR,Heilbronn LK,et al.Muscle-associated triglyceride measured by computed tomography and magnetic resonance spectroscopy[J].Obesity (Silver Spring), 2006,14(1):73-87.
[38] Murphy PS,Viviers L,Abson C,et al.Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy[J].Br J Cancer,2004,90(4):781-786.
[39] Fischbach F,Schirmer T,Thormann M,et al.Quantitative proton magnetic resonance spectroscopy of the normal liver and malignant hepatic lesions at 3.0 Tesla[J].Eur Radiol,2008,18(11): 2549-2558.
[40] Stoll AL,Renshaw PF,De Micheli E,et al.Choline ingestion increases the resonance of choline-containing compounds in human brain: an in vivo proton magnetic resonance study[J]. Biol Psychiatry,1995,37(3):170-174.
[41] Babb SM,Ke Y,Lange N,et al.Oral choline increases choline metabolites in human brain[J].Psychiatry Res,2004,130(1):1-9.
[42] Hara T,Kondo T,Hara T,et al.Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas[J].J Neurosurg, 2003,99(3):474-479.
[43] Chernov MF,Muragaki Y,Maruyama T,et al.Oral administration of choline does not affect metabolic characteristics of gliomas and normal-appearing white matter,as detected with single-voxel 1H-MRS at 1.5 T[J].Neuroradiology,2009,51:137-143.
Hematoxylin as an Exogenous MR Spectroscopic Biomarker in Tumor Molecular Imaging: A Pilot Study
HUO Tian-long, YANG Shuo, CHEN Lei, KANG Yu, CHEN Chen
Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
ObjectiveTo discuss the basic problems of hematoxylin as an exogenous MR spectroscopic biomarker in tumor molecular imaging.MethodsDifferent concentrations of hematoxylin solutions were performed high field MR spectroscopy with the methods of Point Resolved Spectroscopy (PRESS) and Stimulated Echo Acquisition Mode (STEAM) respectively. Then the MR spectroscopy signal features of different concentrations of hematoxylin which was performed with different scanning methods were analyzed.ResultsThe results showed that the specific MR spectroscopy signal profile of hematoxylin could be detected with both methods of PRESS and STEAM. The peak position was stable, while the peak height and peak area were related with the concentration of hematoxylin solution, the higher the concentration was, the more salient the specific MR spectroscopy signal profile was.ConclusionIt was found that the hematoxylin has specific MR spectroscopic signal, which might make it a potential exogenous MR spectroscopic biomarker in tumor molecular imaging.
molecular imaging; MR spectroscopic imaging; exogenous MR spectroscopic biomarker; hematoxylin; point resolved spectroscopy; stimulated echo acquisition mode
R445.2
A
10.3969/j.issn.1674-1633.2017.03.001
1674-1633(2017)03-0001-05
2017-01-13
北京大學(xué)人民醫(yī)院研究與發(fā)展基金(RDB2011-32);國(guó)家自然科學(xué)基金面上項(xiàng)目(81372363)。
霍天龍,副主任醫(yī)師,主要研究方向?yàn)榉肿佑跋駥W(xué)。
通訊作者郵箱:iamhuotianlong@163.com