• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Biosynthesis Pathway Analysis and Metabolic Flux Analysis for Optimization of Fermentation of α-Amylase Inhibitor

    2017-03-27 06:50:36ZHANGHongzhiXUQingyangCAOHuajieBAIFangCHENNingBAIGang
    食品科學 2017年4期
    關鍵詞:中流谷氨酸鈉淀粉酶

    ZHANG Hongzhi, XU Qingyang, CAO Huajie, BAI Fang, CHEN Ning, BAI Gang,*

    (1. China National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; 2. College of Pharmacy, Nankai University, Tianjin 300071, China)

    Application of Biosynthesis Pathway Analysis and Metabolic Flux Analysis for Optimization of Fermentation of α-Amylase Inhibitor

    ZHANG Hongzhi1, XU Qingyang1, CAO Huajie1, BAI Fang2, CHEN Ning1, BAI Gang2,*

    (1. China National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; 2. College of Pharmacy, Nankai University, Tianjin 300071, China)

    This study aimed to improve the yield of α-amylase inhibitor and the eff i ciency of carbohydrate utilization during the fermentation of Streptomyces coelicoflavus (S. coelicoflavus). The metabolic network leading to the biosynthesis of α-amylase inhibitor was analyzed to fi nd out the key nodes which inf l uenced the production of α-amylase inhibitor. The effects of sodium glutamate on the metabolic fl ux distributions during the middle and late periods of fermentation were studied, and metabolic flux analysis for α-amylase inhibitor production at pseudo-steady state was also conducted. The results showed that the metabolic fl ux channeled to the α-amylase inhibitor biosynthesis pathway was 1.84 in batchwise fermentation without the addition of sodium glutamate, while, with the addition of sodium glutamate (the concentration was maintain at 4.0 g/L), the metabolic fl ux was 3.18, suggesting that the addition of sodium glutamate could change the metabolic fl ux distributions of the key nodes (glucose-6-phosphate, sedoheptulose-7-phosphate, and glutamate) and enhance the biosynthesis of α-amylase inhibitor.

    α-amylase inhibitor; metabolic fl ux analysis; sodium glutamate

    The α-amylase inhibitor has been used in the therapy of type Ⅱ diabetes in many countries, in order to enable patients to better control blood sugar contents while living with starchcontaining diets. The α-amylase inhibitor is one of the latest successful products of bacterial secondary metabolism to be introduced into the pharmaceutical market in the world[1-5]. The structure of α-amylase inhibitor is complex, and chemical synthetic steps are relatively cumbersome and costly. To date, α-amylase inhibitor is produced almost through microbial fermentation[6]. However, as a typical second metabolism, fermentation process of α-amylase inhibitor usually leads to low level of production of α-amylase inhibitor. How to improve the fermentation yield of α-amylase inhibitor is an important task at present.

    In the recent years, the metabolic engineering method has successfully changed the metabolic flux distribution in the cell, which makes the product to be more accumulated. Pathway analysis and metabolic flux analysis method is the theoretical basis to guide the genetic manipulation in metabolic engineering and is a basic method of metabolic network analysis[7-8]. With these methods, the biggest advantage is that there is no need to know the dynamic characteristics of various enzymes in the metabolic pathway and a lot of important information about the microbial metabolism[7]. In this paper, by applying pathway analysis, we determined the established α-amylase inhibitor biosynthesis metabolic flux distribution, and optimized the α-amylase inhibitor synthesis pathway, its metabolic fl ux distribution and the maximum theoretical yield. In order to provide a theoretical basis for the optimal fermentation conditions for producing α-amylase inhibitor, the metabolic fl ux distributions of α-amylase inhibitor in the middle and later fermentation periods were studied, and the metabolic fl ux before and after adding sodium glutamate was also studied as well.

    1 Materials and Methods

    1.1 Materials

    1.1.1 Microorganisms

    S. coelicof l avus strain ZG0656 collected from the soil at the Nankai University campus in 2005 was identif i ed by the Department of Microbiology, Nankai University. A voucher specimen (CGMCC 2097) was deposited in China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences.

    1.1.2 Medium

    The seed medium contained the components as follows: 10 g/L glucose, 10 g/L starch soluble, 5 g/L yeast extract, 1.5 g/L K2HPO4, 0.5 g/L MgSO4, 0.001 g/L FeSO4and 0.25 g/L (NH4)2SO4.

    The fermentation medium for producing α-amylase inhibitor contained the components as follows: 20 g/L glucose, 60 of maltose, 40 g/L corn steep liquor, 3 g/L K2HPO4, 0.5 g/L NaCl, 0.6 g/L MgSO4·7H2O, and 0.01 g/L FeSO4·7H2O.

    The pH of both seed and fermentation media was adjusted to 7.0 with 4 mol/L NaOH solution.

    1.2 Instruments and equipments

    5 L Jar fermentor was purchased from Biotech-2002 Bioprocess controller (Baoxing, Shanghai, China). High performance liquid chromatography (HPLC) (1200 series) was obtained from Agilent Technologies, (Lexington, MA, USA).

    1.3 Methods

    1.3.1 Process of fermentation

    A single colony of S. coelicoflavus strain ZG0656 was inoculated in to a 1 L baff l ed fl ask containing 0.1 L of seed medium and cultivated at 28 ℃ with shaking at 150 r/min for 48 h.

    Fed-batch glutamate fermentation was performed in 5 L jar fermentor containing 3 L of production medium with 15% inoculum size. During the process of α-amylase inhibitor fermentation, pH was maintained at 7.0 with 25% ammonia. The temperature of growth phase was maintained at 28 ℃. The dissolved oxygen (DO) level of growth phase and production phase were maintained at approximately 40% and 30% saturation by adjusting the agitation and aeration rate, respectively.

    1.3.2 Analytical methods

    Biomass was represented by dry cell weight (DCW), which was measured as follows. Aliquots of culture broth (10 mL) were centrifuged at 13 000 r/min for 20 min. The pellets were washed twice with distilled water and dried to constant weight at 80 ℃.

    Organic acids were quantif i ed by HPLC equipped with a Zorbax SB-Aq column (4.6 mm×250 mm), and 20 mmol/L KH2PO4(pH 2.2) was used as a mobile phase with a fl ux rate at 1.0 mL/min. UV absorption was performed at 210 nm, and the column temperature was maintained at 35 ℃.

    Amino acids were analyzed as 2,4-dinitrof l uorobenzene derivatives by using HPLC[9]. The α-amylase inhibitor was measured according to known methodologies[10].

    2 Results and Analysis

    2.1 Pathway analysis of α-amylase inhibitor

    GLC. total sugar; G6P. glucose-6-phosphate; F6P. fructose-6-phosphate; G3P. glyceradehyde-3-phosphate; 3PG. 3-phosphoglycerate; PEP. phosphoenolpyruvate; PYR. pyruvate; AcCoA. acetyl coenzyme A; CIT. citric acid; α-KG. α-ketoglutarate; SUC. succinic acid; FUM. fumaric acid; OA. oxaloacetate; RIB-5P. ribulose-5-phosphate; X5P. xylulose-5-phosphate; R5P. ribose-5-phosphate; S7P. sedoheptulose-7-phosphate; E4P. erythrose-4-phosphate; LAC. lactic acid; VAL. valine; ACE. acetic acid; GLU. glutamate; ASP. aspartate; THR: threonine; MET. methionine; LYS. lysine; TRP. tryptophan; TYR. tyrosine; HIS. histidine; DG1P. D-glucose-1-phosphate; NDP. NDP-1-epi-valiolone-7-P; dTDP. dTDP-4-amino-4,6-dideoxy-D-glucose. The same below.Fig.1 Metabolic network

    Table1 Metabolic reactions

    Continue Table 1

    The model for the biosynthetic pathway (Fig. 1) of α-amylase inhibitor from S. coelicoflavus ZG0656 was constructed based on the literature[11-25]. A total of 34 biochemical reactions describing both catabolism and anabolism of the cell were considered in this study (Table 1). 2.1.1 The establishment of metabolic fl ux balance model of α-amylase inhibitor

    Table2 Reaction rate equations of metabolic nodes

    In this work, the metabolic flux balance model was established mainly based on the assumptions or principles as follows: the biomass synthesis was not considered becausethe research was carried out in the steady growth period; the isozyme could not be distinguished and they must be treated as the same reaction; no glyoxylate cycle existed for the metabolic process of S. coelicoflavus ZG0656; no transhydrogenase existed for the inter-conversion between NADPH and NADH; the consumption energy and the maintenance energy were not equivalent because of too much futile energy in the non-growth period. Therefore, the ATP equivalent was not considered in the paper; according to the fi xed ratio of the reaction, no branching points of intermediate reaction can be simplified into one reaction equation. Reaction rate equations of metabolic nodes of the α-amylase inhibitor biosynthesis are shown in Table 2.

    The number of equations is 24, unknown number is 34, degree of freedom is 10, in order to determine the metabolic fl ux distribution in the network, 10 rate equations were measured. According to 1.3.3, α-amylase inhibitor was produced by fed-batch fermentation using a 5 L jar fermentor. Total sugar, acetic acid, lactic acid, six amino acids (aspartic acid, glutamic acid, tryptophan, histidine, tyrosine and valine) and α-amylase inhibitor were selected as the known parameters, taking these parameters into the metabolic rate balance equation, using the linear programming method to calculate the metabolic flux distribution. In addition, the distribution of the ideal metabolic fl ow can be also calculated by the linear programming method.

    2.1.2 The metabolic flow distribution of α-amylase inhibitor

    Fig.2 Time courses of fermentation parameters of S. coelicof l avus ZG0656

    The α-amylase inhibitor was produced via fed-batch fermentation of S. coelicof l avus ZG0656 in 5 L jar fermentor. The fermentation process curve was shown in Fig. 2. No obvious change in biomass was seen after 80 h. The bacterial intracellular metabolism was maintained in a quasi-steady state during the growth period. The total sugar, acetic acid, lactic acid, six amino acids (aspartic acid, glutamic acid, tryptophan, histidine, tyrosine and valine) and the metabolic rate of α-amylase inhibitor during the steady growth period was determined and the results were shown in Table 3. In this paper, the metabolic fl ow analysis during the period of 80-120 h was carried out.

    Table3 The concentrations and reaction rates of metabolites during the middle and late periods of fermentation

    Table4 Metabolic fl ux distribution for α-amylase inhibitor biosynthesis during the middle and late periods of fermentation

    The metabolic flow distribution of α-amylase inhibitor during mid-late fermentation period was obtained by the LINGO. The results were shown in Table 4.

    2.1.3 Analysis of the main metabolic flux nodes of α-amylase inhibitor during mid-late fermentation period

    2.1.3.1 Analysis of metabolic fl ux of G6P node

    Fig.3 Metabolic fl ux distribution of G6P node

    Actual and the ideal metabolic flow distribution (ideal metabolic flow is in brackets) of G6P node was shown in Fig. 3. The major metabolic pathways of carbon source are Embden–Meyerhof–Parnas (EMP), hexose monophosphate shunt (HMP or pentose phosphate pathway) and tricarboxylic acid (TCA), at the same time, G6P is the precursor of α-amylase inhibitor biosynthesis. The actual metabolic fl ow rates of entering the HMP and EMP pathways were 8.73 and 89.46, pathway metabolic flow entering the α-amylase inhibitor synthetic pathway was 1.81, this showed that EMP pathways was relatively active in synthetic pathway of α-amylase inhibitor. The ideal metabolic flow rates entering the HMP and EMP pathway were 21.18 and 73.41 at the α-amylase inhibitor in synthetic pathway, entering the α-amylase inhibitor in synthetic pathway was 5.38. This indicated that most of the carbon source was fl owed into the EMP pathway while the carbon source fl owing into α-amylase inhibitor synthesis pathway was less. In addition, the main role of the HMP pathway is to provide NADPH and precursor substances for α-amylase inhibitor biosynthesis. Therefore, improving HMP pathway metabolic flow can enhance α-amylase inhibitor biosynthesis.

    2.1.3.2 Analysis of metabolic fl ux of S7P node

    Fig.4 The fl ux distribution of S7P node

    Actual and ideal metabolic flow distribution (ideal metabolic fl ow is in brackets) of S7P node is shown in Fig. 4. S7P is a node in the pentose phosphate pathway. The precursor substances of α-amylase inhibitor, 2-epi-5-epivaliolone, can be obtained under the action of cyclase[26]. The ideal metabolic flow rates entering the S7P and NDP pathways were 22.32 and 5.38. The actual metabolic flow entering the S7P and NDP pathway were 1.81. This showed that most of the carbon fl owed into F6P, only a minority of carbon fl owed into NDP.

    2.1.3.3 Analysis of metabolic fl ux of GLU node

    Fig.5 Metabolic fl ux distribution of GLU node

    Actual and ideal metabolic flow distribution (ideal metabolic flow is in brackets) of S7P node was shown in Fig. 5. The ideal metabolic fl ow entering the GLU and dTDP pathway was also 25.69 while the actual metabolic flows entering the GLU and dTDP pathways were 6.19 and 1.81, respectively. Thus, it can be seen that in the late stage of α-amylase inhibitor fermentation, the actual metabolic flow of GLU node is far less than that of ideal metabolic fl ow. Lee et al.[27]used isotope labeling method to explore the source of the N atom for the core structure of α-amylase inhibitor. Their experimental results showed that the core structure of N atoms was mostly derived from the α-N of glutamate, meaning that the α-N of glutamate is the direct source of N atoms in the core structure. Thus, glutamic acid can be used as a precursor directly added to the fermentation medium.

    2.2 Impacts of sodium glutamate on metabolic flux distributions of α-amylase inhibitor fermentation

    2.2.1 Impacts of sodium glutamate concentrations on byproducts

    The production of by-products during the fermentation process caused the waste of carbon source and reduced the carbon flow for α-amylase inhibitor synthesis. In order to determine the fermentation medium of monosodium glutamate concentration, the monosodium glutamate concentrations at 0, 2, 4 and 6 g/L were screened, the concentrations of byproducts, including tryptophan, histidine, acetic acid and lactic acid, were determined every 6 h of cultivation in 5 L jar fermentor.

    Fig.6 Impact of sodium glutamate concentration on by-products

    Fig.6 showed that with the increase of the concentration of sodium glutamate in the fermentation process, the accumulation of by-products of tryptophan, histidine accumulation was reduced while concentrations of acetic acid and lactic acid appeared to be increased. Without adding sodium glutamate, the accumulations of by-products of tryptophan and histidine were 2.67 and 4.03 g/L, respectively. When sodium glutamate was added to maintain concentration in different gradients, the accumulation of ammonia acid was decreased but the difference was not significant. The accumulation of by-products of histidine was graduallydeclined. When the concentration of sodium glutamate was maintained at 2, 4 and 6 g/L, accumulations of tryptophan were 2.02, 2.11 and 1.94 g/L, respectively, while the accumulations of histidine were 3.69, 3.45 and 3.08 g/L, respectively. When the concentrations of sodium glutamate were maintained at 4 g/L, accumulations of both acetic acid and lactic acid were relatively low.

    2.2.2 Impacts of sodium glutamate concentrations on α-amylase inhibitor production

    Since the N atom of α-amylase inhibitor is mainly derived from the α-N of glutamic acid[27], therefore, the concentration of glutamic acid in the fermentation can have a great inf l uence on the synthesis of α-amylase inhibitor.

    In order to find out the optimal sodium glutamate concentration, the sodium glutamate concentrations were controlled at 0, 2, 4 and 6 g/L during the α-amylase inhibitor fermentation by S. coelicoflavus ZG0656 in the 5 L jar fermentor, respectively. The DCW and the yield of α-amylase inhibitor in each case were shown in Fig. 7.

    Fig.7 Effect of sodium glutamate concentration on α-amylase inhibitor production

    As shown in Fig. 7, when the concentration of the sodium glutamate was increased, the microbial accumulation was increased. When sodium glutamate concentration was 4.0 g/L, DCW of the S. coelicof l avus ZG0656 were increased by 45.7 g/L and 5.4%, respectively as compared to those without adding glutamate. The microbial accumulation would be continually increased when the concentration of sodium glutamate was gradually increased in the fermentation process, but when no sodium glutamate was added, the biomass in the latter part of fermentation would be slowed down. When the sodium glutamate concentration was 4.0 g/L, the α-amylase inhibitor yield reached the maximum value of 6 322 mg/L, and increased by 16.3% as compared to that without adding sodium glutamate. When the sodium glutamate concentration was further increased to 6.0 g/L, the fi nal α-amylase inhibitor yield was signif i cantly decreased to 6 051 mg/L.

    2.2.3 Impacts of sodium glutamate on the metabolic fl ux of the α-amylase inhibitor

    Table5 The concentrations and reactions rates of metabolites during the middle and late periods of fermentation

    α-Amylase inhibitor fed-batch fermentation process curve in 5 L jar fermentor was shown in Fig. 7. S. coelicoflavus ZG0656 growth into the stable phase after 80 h, and the intracellular metabolism was in a quasi-steady state. The producing rates of reducing sugar, acetic acid, lactic acid, six amino acids (aspartic acid, glutamic acid, tryptophan, histidine, tyrosine and valine) and α-amylase inhibitor in the steady period of fermentation were determined and the results were shown in Table 5.

    Fig.8 Metabolic network for α-amylase inhibitor biosynthesis during the middle and late periods of fermentation

    The metabolic fl ow distributions of α-amylase inhibitor during the middle and late fermentation periods were obtained by LINGO. The results were shown in Fig. 8.

    As shown in Fig. 8, without adding sodium glutamate, the flux distributions of HMP, EMP and α-amylase inhibitor synthesis pathway were 7.49, 91.27 and 1.84, respectively. When the sodium glutamate concentration was 4.0 g/L, the fl ux distribution of HMP was 10.18, the fl ux distribution of EMP was 86.64 and the fl ux distribution of α-amylase inhibitor synthesis pathway was 3.18. Therefore, during the process of fermentation, the sodium glutamate concentration was maintained up to 4.0 g/L, which can promote carbon source fl ows into α-amylase inhibitor synthesis, thus, the metabolic fluxes of HMP and α-amylase inhibitor synthesis were increased.

    3 Conclusion

    α-Amylase inhibitor metabolic pathways were established and analyzed, and optimal metabolic pathway for α-amylase inhibitor biosynthesis was determined, and the key nodes for α-amylase inhibitor biosynthesis were analyzed. Through the optimization of the concentration of sodium glutamate in culture medium, the yield of α-amylase inhibitor was improved. During the fermentation process, the monosodium glutamate was conducive to the growth of bacteria and to the synthesis pathway of carbon flow of HMP pathway and α-amylase inhibitor. By adding sodium glutamate during the fermentation, α-amylase inhibitor concentration was 6 322 mg/L, and the flux distribution of α-amylase inhibitor synthesis pathway was 3.18.

    [1] WEHMEIER U F, PIEPERSBERG W. Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose[J]. Applied Microbiology and Biotechnology, 2004, 63(6): 613-625. DOI:10.1007/ s00253-003-1477-2.

    [2] LAUBE H. Acarbose: an update of its therapeutic use in diabetes treatment[J]. Clinical Drug Investigation, 2002, 22(3): 141-156. DOI:10.2165/00044011-200222030-00001.

    [3] BALFOUR J A, MCTAVISH D. Acarbose: an update of its pharmacology and therapeutic use in diabetes mellitus[J]. Drugs, 1993, 46(6): 1025-1054. DOI:10.2165/00003495-199346060-00007.

    [4] CHIASSON J L, JOSSE R G, GOMIS R, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomized trial[J]. The Lancet, 2002, 359: 2072-2077. DOI:10.1007/s00125-004-1409-4.

    [5] DELORME S, CHIASSON J L. Acarbose in the prevention of cardiovascular disease in subjects with impaired glucose tolerance and type 2 diabetes mellitus[J]. Current Opinion in Pharmacology, 2005, 5(2): 184-189. DOI:10.1016/j.coph.2004.11.005.

    [6] ZHANG R X, YANG F Y, ZHUO W H, et al. Research progress of acarbose[J]. Qilu Pharmaceutical Affairs, 2012, 6: 360-362.

    [7] BONARIUS H P J, SCHMID G, TRAMPER J. Flux analysis of underdetermined metabolic networks: the quest for the missing constraints[J]. Trends in Biotechnology, 1997, 15: 308-314. DOI:10.1016/S0167-7799(97)01067-6.

    [8] van GULIK W M, HEIJNEN J J. A metabolic network stoichiometry analysis of microbial growth and product formation[J]. Biotechnology and Bioengineering, 1995, 48(6): 681-698. DOI:10.1002/ bit.260480617.

    [9] CHEN N, DU J, LIU H, et al. Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis by Corynebacterium glutamicum[J]. Annals of Microbiology, 2009, 59: 317-322. DOI:10.1007/BF03178334.

    [10] JIANG W, SHENG Y T, CAI Y M, et al. Comprehensive effects of maltose concentration and medium osmotic pressure on acarbose in Actinoplanes sp. fermentation[J]. Chinese Journal of Pharmaceuticals, 2010, 41(3): 178-182.

    [11] SCHUSTER S, DANDEKAR T, FELL D A. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering[J]. Trends in Biotechnology, 1999, 172(2): 53-60. DOI:10.1016/S0167-7799(98)01290-6.

    [12] SCHUSTER S, FELL D, DANDEKA T. A general definition of metabolic pathways useful for systemic organization and analysis of complex metabolic networks[J]. Nature Biotechnology, 2000, 18: 326-332. DOI:10.1038/73786.

    [13] SCHUSTER S, KLAMT S, WECKWERTH W, et al. Use of network analysis of metabolic systems in bioengineering[J]. Bioprocess and Biosystems Engineering, 2002, 24(6): 363-372. DOI:10.1007/ s004490100253.

    [14] SEE S M, DEAN J P, DERVAKOS G. On the topological features of optimal metabolic pathway regimes[J]. Applied Biochemistry and Biotechnology, 1996, 60: 251-301. DOI:10.1007/BF02783588.

    [15] SHIIO I, SASAKI A, NAKAMORI S, et al. Production of L-isoleucine by AHV resistant mutants of Brevibacterium fl avum[J]. Agricultural and Biological Chemistry, 1973, 37: 2053-2061. DOI:10.1080/000213 69.1973.10860948.

    [16] STEPHANOPOULOS G, ARISTIDOU A A, NIELSEN J H. Metabolic engineering-principles and methodologies[M]. San Diego: Academic Press, 1998: 21-79.

    [17] STEPHANOPOULOS G, VALLINO J J. Network rigidity and metabolic engineering in metabolite overproduction[J]. Science, 1991, 252(5013): 1675-1681. DOI:10.1126/science.1904627.

    [18] VALLINO J J, STEPHANOPOULOS G. Metabolic fl ux distributions in Corynebacterium glutamicum during growth and lysine overproduction[J]. Biotechnology and Bioengineering, 1993, 41(6): 633-646. DOI:10.1002/bit.260410606.

    [19] KLAMT S, STELLING J. Two approaches for metabolic pathway analysis[J]. Trends in Biotechnology, 2003, 21(2): 64-69. DOI:10.1016/S0167-7799(02)00034-3.

    [20] GAGNEUR J, JACKSON D B, CASARI G. Hierarchical analysis of dependency in metabolic networks[J]. Bioinformatics, 2003, 19(8): 1027-1034. DOI:10.1093/bioinformatics/btg115.

    [21] DANDEKAR T, MOLDENHAUER F, BULIK S, et al. A method for classifying metabolites in topological pathway analyses based on minimization of pathway number[J]. BioSystems, 2003, 70(3): 255-270. DOI:10.1016/S0303-2647(03)00067-4.

    [22] SCHILLING C H, LETSCHER D, PALSSON B ?. Theory for the systemic def i nation of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective[J]. Journal of Theoretical Biology, 2000, 203(3): 229-248. DOI:10.1006/ jtbi.2000.1073.

    [23] SCHILLING C H, PALSSON B ?. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genomic scale pathway analysis[J]. Journal of Theoretical Biology, 2000, 203(3): 249-283. DOI:10.1006/jtbi.2000.1088.

    [24] SCHUSTER S, KLAMT S, WECKWERTH W, et al. Use of network analysis of metabolic systems in bioengineering[J]. Bioprocess and Biosystems Engineering, 2002, 24(6): 363-372. DOI:10.1007/ s004490100253.

    [25] BARTEK T, MAKUS P, KLEIN B, et al. Inf l uence of L-isoleucine and pantothenate auxotrophy for L-valine formation in Corynebacterium glutamicum revisited[J]. Bioprocess and Biosystems Engineering, 2008, 31(3): 217-225. DOI:10.1007/s00449-008-0202-z.

    [26] ZHANG C S, PODESCHWA M, ALTENBACH H J, et al. The acarbose-biosynthetic enzyme AcbO from Actionplanes sp. SE 50/110 is a 2-epi-5-epi-valiolone-7-phosphate 2-epimerase[J]. FEBS Letters, 2003, 540(1/2/3): 47-52. DOI:10.1016/S0014-5793(03)00221-7.

    [27] LEE S, EGELKROUT E. Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: glutamate is the primary source of the nitrogen in acarbose[J]. The Journal of Antibiotics, 1998, 51(2): 225-227. DOI:10.7164/antibiotics.51.225.

    α-淀粉酶抑制劑生物合成途徑和代謝流分析

    張洪志1,徐慶陽1,曹華杰1,白 芳2,陳 寧1,白 鋼2,*
    (1.天津科技大學生物工程學院,代謝控制發(fā)酵技術(shù)國家地方聯(lián)合工程實驗室,天津 300457;2.南開大學藥學院,天津 300071)

    為提高糖類的利用效率,加強糖類代謝向生成α-淀粉酶抑制劑的方向流動,提高α-淀粉酶抑制劑產(chǎn)量,對天藍黃鏈霉菌合成α-淀粉酶抑制劑的代謝網(wǎng)絡進行分析,找出影響α-淀粉酶抑制劑合成的代謝流量分配規(guī)律和關鍵節(jié)點,并且應用代謝流分析的方法研究了谷氨酸鈉對α-淀粉酶抑制劑發(fā)酵中后期胞內(nèi)代謝流分布的影響。結(jié)果表明:在α-淀粉酶抑制劑分批發(fā)酵過程中,未流加谷氨酸鈉時合成α-淀粉酶抑制劑的代謝流量為1.84;在發(fā)酵培養(yǎng)基中流加谷氨酸鈉使其質(zhì)量濃度維持在4.0 g/L后,α-淀粉酶抑制劑生物合成的代謝流增長至3.18。因此發(fā)酵過程中流加谷氨酸鈉能夠改變α-淀粉酶抑制劑生物合成途徑的關鍵節(jié)點6-磷酸葡萄糖、7-磷酸景天庚酮糖及谷氨酸的代謝流分布,提高α-淀粉酶抑制劑生物合成途徑的代謝流量。

    α-淀粉酶抑制劑;代謝流分析;谷氨酸鈉

    Q935

    A

    1002-6630(2017)04-0118-07

    2016-03-21

    天津市應用基礎與前沿技術(shù)研究計劃項目(14JCYBJC28500)

    張洪志(1988—),男,碩士,研究方向為生物工程。E-mail:zhanghongzhi125@sina.com

    10.7506/spkx1002-6630-201704020

    ZHANG Hongzhi, XU Qingyang, CAO Huajie, et al. Application of biosynthesis pathway analysis and metabolic flux analysis for optimization of fermentation of α-amylase inhibitor[J]. 食品科學, 2017, 38(4): 118-124.

    10.7506/ spkx1002-6630-201704020. http://www.spkx.net.cn

    ZHANG Hongzhi, XU Qingyang, CAO Huajie, et al. Application of biosynthesis pathway analysis and metabolic flux analysis for optimization of fermentation of α-amylase inhibitor[J]. Food Science, 2017, 38(4): 118-124. DOI:10.7506/ spkx1002-6630-201704020. http://www.spkx.net.cn

    *通信作者:白剛(1968—),男,教授,博士,研究方向為藥學。E-mail:gangbai@nankai.edu.cn

    猜你喜歡
    中流谷氨酸鈉淀粉酶
    味精加熱超過100℃會致癌?
    科學大眾(2022年10期)2022-05-26 06:34:34
    一片笙歌催鬧晚,忽然鼓棹起中流。
    嶺南音樂(2021年3期)2021-07-12 09:02:38
    中流擊水——《馬祥根傳》選讀
    華人時刊(2020年21期)2021-01-14 01:33:52
    異淀粉酶法高直鏈銀杏淀粉的制備
    味精不是害人精
    特別文摘(2019年5期)2019-02-28 04:12:30
    詠江石
    沒食子酸對谷氨酸鈉誘導的肥胖小鼠的降脂作用
    中成藥(2017年6期)2017-06-13 07:30:35
    刁曉峰 中流砥礪方盡興
    北方人(2017年8期)2017-05-12 03:14:33
    奧曲肽對谷氨酸鈉誘發(fā)的Aδ和C纖維放電活性的抑制效應
    α-淀粉酶的基因改造與菌種選育研究進展
    亚洲av日韩精品久久久久久密 | av又黄又爽大尺度在线免费看| 国产成人91sexporn| 叶爱在线成人免费视频播放| 九草在线视频观看| 熟女av电影| 久久久久久免费高清国产稀缺| 午夜av观看不卡| 永久免费av网站大全| 亚洲熟女毛片儿| 女人精品久久久久毛片| cao死你这个sao货| 黑丝袜美女国产一区| 一区福利在线观看| 老熟女久久久| 精品欧美一区二区三区在线| 久久久久久久久久久久大奶| 国产亚洲精品久久久久5区| 成人亚洲精品一区在线观看| 亚洲专区国产一区二区| 激情五月婷婷亚洲| 十分钟在线观看高清视频www| 日本一区二区免费在线视频| 美女大奶头黄色视频| netflix在线观看网站| 黄色怎么调成土黄色| 自拍欧美九色日韩亚洲蝌蚪91| 成年女人毛片免费观看观看9 | 狂野欧美激情性bbbbbb| 久久国产精品大桥未久av| 宅男免费午夜| 久久精品国产a三级三级三级| 国产一级毛片在线| 国产视频一区二区在线看| 久久久久国产精品人妻一区二区| 97人妻天天添夜夜摸| 亚洲色图综合在线观看| 中文欧美无线码| 91九色精品人成在线观看| 乱人伦中国视频| 欧美 亚洲 国产 日韩一| 免费日韩欧美在线观看| 国产淫语在线视频| 亚洲九九香蕉| 在线看a的网站| 国产免费现黄频在线看| 中文字幕精品免费在线观看视频| 激情五月婷婷亚洲| 欧美日韩一级在线毛片| 免费高清在线观看日韩| 国产精品九九99| 中国美女看黄片| 又大又黄又爽视频免费| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区在线观看99| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区久久久樱花| 亚洲精品久久成人aⅴ小说| av在线老鸭窝| 免费高清在线观看日韩| 日本一区二区免费在线视频| 中文精品一卡2卡3卡4更新| 69精品国产乱码久久久| 国产真人三级小视频在线观看| 国产日韩欧美视频二区| 免费人妻精品一区二区三区视频| 欧美黑人精品巨大| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品一卡2卡三卡4卡5卡 | 日韩一卡2卡3卡4卡2021年| 啦啦啦视频在线资源免费观看| 美女视频免费永久观看网站| 视频区欧美日本亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利视频精品| 国产亚洲精品第一综合不卡| 国产女主播在线喷水免费视频网站| 大码成人一级视频| 亚洲专区国产一区二区| 黄色 视频免费看| 亚洲欧美日韩另类电影网站| svipshipincom国产片| 国产在线观看jvid| 好男人视频免费观看在线| 性少妇av在线| 欧美日韩福利视频一区二区| 国产免费一区二区三区四区乱码| 午夜福利影视在线免费观看| 丰满迷人的少妇在线观看| 亚洲精品美女久久久久99蜜臀 | 欧美精品高潮呻吟av久久| 亚洲伊人色综图| 成年人午夜在线观看视频| 国产人伦9x9x在线观看| 一级毛片女人18水好多 | 99久久精品国产亚洲精品| 亚洲情色 制服丝袜| 9色porny在线观看| 中文字幕av电影在线播放| 国产亚洲精品久久久久5区| 国产又色又爽无遮挡免| 国产1区2区3区精品| 麻豆国产av国片精品| 高清黄色对白视频在线免费看| 亚洲成av片中文字幕在线观看| 国产精品国产av在线观看| 麻豆av在线久日| 国产亚洲午夜精品一区二区久久| 青青草视频在线视频观看| 日本av手机在线免费观看| 亚洲美女黄色视频免费看| 亚洲精品在线美女| 国产精品一区二区免费欧美 | 大型av网站在线播放| 国产福利在线免费观看视频| 男女高潮啪啪啪动态图| 一级a爱视频在线免费观看| 性色av一级| 侵犯人妻中文字幕一二三四区| 精品久久久久久电影网| 色94色欧美一区二区| 亚洲精品一二三| 亚洲男人天堂网一区| 中文字幕制服av| 麻豆乱淫一区二区| 国产淫语在线视频| 叶爱在线成人免费视频播放| 黑丝袜美女国产一区| 亚洲激情五月婷婷啪啪| 最新在线观看一区二区三区 | 久久精品国产综合久久久| 亚洲专区国产一区二区| 97在线人人人人妻| 久久精品aⅴ一区二区三区四区| 在线观看www视频免费| 在线观看免费日韩欧美大片| 欧美xxⅹ黑人| 精品久久久久久久毛片微露脸 | 十八禁人妻一区二区| 亚洲美女黄色视频免费看| 久久性视频一级片| 日韩大片免费观看网站| 久久99热这里只频精品6学生| 久久久久国产精品人妻一区二区| 精品国产一区二区三区四区第35| 人人妻人人澡人人爽人人夜夜| 欧美日韩成人在线一区二区| 国产男女内射视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲av综合色区一区| 丁香六月天网| 国产免费现黄频在线看| 如日韩欧美国产精品一区二区三区| 视频区图区小说| 欧美激情 高清一区二区三区| 丁香六月天网| 亚洲精品国产av蜜桃| 国产无遮挡羞羞视频在线观看| 真人做人爱边吃奶动态| 日韩伦理黄色片| 在线观看免费日韩欧美大片| 精品福利永久在线观看| a级毛片在线看网站| 免费观看a级毛片全部| 亚洲av欧美aⅴ国产| 久久久久久久久久久久大奶| 亚洲av电影在线进入| 老熟女久久久| 看免费成人av毛片| 观看av在线不卡| 啦啦啦在线免费观看视频4| 在线亚洲精品国产二区图片欧美| 捣出白浆h1v1| 波多野结衣一区麻豆| 黑人欧美特级aaaaaa片| 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 日本色播在线视频| 夫妻午夜视频| 美国免费a级毛片| 亚洲国产欧美日韩在线播放| 亚洲精品国产av成人精品| 亚洲中文日韩欧美视频| 热re99久久精品国产66热6| 欧美精品高潮呻吟av久久| 一区福利在线观看| 午夜福利免费观看在线| 1024视频免费在线观看| 国产精品秋霞免费鲁丝片| 国产日韩一区二区三区精品不卡| 国产免费一区二区三区四区乱码| 性色av一级| 久热这里只有精品99| 久9热在线精品视频| 天天躁日日躁夜夜躁夜夜| 日韩欧美一区视频在线观看| 操美女的视频在线观看| 超碰97精品在线观看| 最近中文字幕2019免费版| 夫妻午夜视频| 在线观看人妻少妇| 免费在线观看黄色视频的| av不卡在线播放| 男人添女人高潮全过程视频| 免费观看人在逋| 天天操日日干夜夜撸| 母亲3免费完整高清在线观看| 午夜av观看不卡| 十分钟在线观看高清视频www| 美女福利国产在线| 性色av一级| 国产精品久久久人人做人人爽| 男女之事视频高清在线观看 | 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 欧美日韩一级在线毛片| 午夜两性在线视频| 人体艺术视频欧美日本| 久久久久久久久免费视频了| 妹子高潮喷水视频| 日本黄色日本黄色录像| 只有这里有精品99| 日韩一卡2卡3卡4卡2021年| 男人操女人黄网站| 又粗又硬又长又爽又黄的视频| 精品卡一卡二卡四卡免费| 乱人伦中国视频| 欧美激情极品国产一区二区三区| 大香蕉久久成人网| 亚洲av电影在线观看一区二区三区| av天堂在线播放| 亚洲精品久久久久久婷婷小说| 高清不卡的av网站| 国产精品国产av在线观看| 日本av免费视频播放| 在线观看免费高清a一片| 久久久久久人人人人人| 久久亚洲精品不卡| 熟女av电影| 精品国产一区二区三区久久久樱花| 99久久综合免费| 久久精品久久久久久久性| 亚洲,欧美,日韩| 亚洲精品自拍成人| 日韩av免费高清视频| 9热在线视频观看99| 久久久久精品人妻al黑| 男女国产视频网站| 国产真人三级小视频在线观看| 在线观看免费午夜福利视频| 一区二区三区激情视频| 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 久久性视频一级片| 国产高清videossex| 中文乱码字字幕精品一区二区三区| 丝袜脚勾引网站| videos熟女内射| 亚洲国产精品999| 欧美日韩成人在线一区二区| 免费不卡黄色视频| 脱女人内裤的视频| 中文字幕制服av| 日韩av在线免费看完整版不卡| 欧美乱码精品一区二区三区| 亚洲人成网站在线观看播放| 免费观看a级毛片全部| 在线观看免费高清a一片| 三上悠亚av全集在线观看| av视频免费观看在线观看| 岛国毛片在线播放| 久久天躁狠狠躁夜夜2o2o | 一边摸一边做爽爽视频免费| 人人妻,人人澡人人爽秒播 | 一本—道久久a久久精品蜜桃钙片| 建设人人有责人人尽责人人享有的| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 国产在线免费精品| 久久精品亚洲av国产电影网| 自拍欧美九色日韩亚洲蝌蚪91| svipshipincom国产片| 国产在视频线精品| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人爽人人夜夜| 黄色片一级片一级黄色片| 高清不卡的av网站| 在线观看一区二区三区激情| 少妇人妻久久综合中文| 久久人人97超碰香蕉20202| 国产色视频综合| 亚洲欧美一区二区三区国产| 老鸭窝网址在线观看| 免费在线观看视频国产中文字幕亚洲 | 美女视频免费永久观看网站| 久久九九热精品免费| 水蜜桃什么品种好| 亚洲av日韩在线播放| 色播在线永久视频| 在线精品无人区一区二区三| 黄色a级毛片大全视频| 久久亚洲精品不卡| √禁漫天堂资源中文www| 国产精品麻豆人妻色哟哟久久| 黄色片一级片一级黄色片| 超碰97精品在线观看| 1024视频免费在线观看| 久久久久国产精品人妻一区二区| 久久久亚洲精品成人影院| 精品少妇内射三级| 午夜免费观看性视频| 99热国产这里只有精品6| 精品国产国语对白av| av在线老鸭窝| 欧美日本中文国产一区发布| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 国产日韩欧美亚洲二区| 天天操日日干夜夜撸| 中文字幕最新亚洲高清| 一二三四在线观看免费中文在| 午夜福利一区二区在线看| 精品久久久久久电影网| 久久精品国产a三级三级三级| 欧美人与性动交α欧美精品济南到| 精品少妇一区二区三区视频日本电影| 中国美女看黄片| a 毛片基地| 黄频高清免费视频| 高清欧美精品videossex| av有码第一页| 高清av免费在线| 天堂俺去俺来也www色官网| 欧美97在线视频| 欧美老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 国产精品亚洲av一区麻豆| 99国产精品99久久久久| 午夜免费成人在线视频| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 中文字幕最新亚洲高清| 亚洲成人国产一区在线观看 | 国产91精品成人一区二区三区 | 久久毛片免费看一区二区三区| 久久久亚洲精品成人影院| 久久久久精品国产欧美久久久 | 欧美日韩视频精品一区| 国产高清videossex| 久久久久久久国产电影| 亚洲成av片中文字幕在线观看| 又大又黄又爽视频免费| 国产黄色视频一区二区在线观看| 久久99一区二区三区| 不卡av一区二区三区| 中文字幕人妻丝袜制服| 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 久久久精品国产亚洲av高清涩受| 久久综合国产亚洲精品| 老司机亚洲免费影院| 日本五十路高清| 视频区欧美日本亚洲| 操美女的视频在线观看| 五月天丁香电影| a级片在线免费高清观看视频| 波多野结衣一区麻豆| 亚洲三区欧美一区| 少妇裸体淫交视频免费看高清 | 观看av在线不卡| 久久 成人 亚洲| 日韩欧美一区视频在线观看| 两性夫妻黄色片| 亚洲欧美一区二区三区久久| 另类亚洲欧美激情| 激情五月婷婷亚洲| 1024香蕉在线观看| 高潮久久久久久久久久久不卡| 国产成人一区二区在线| xxxhd国产人妻xxx| 欧美黄色片欧美黄色片| 亚洲精品国产一区二区精华液| 国产爽快片一区二区三区| 美女大奶头黄色视频| 久久国产精品人妻蜜桃| 国语对白做爰xxxⅹ性视频网站| 免费少妇av软件| 天天躁夜夜躁狠狠久久av| 久久综合国产亚洲精品| videos熟女内射| 母亲3免费完整高清在线观看| 黄色a级毛片大全视频| 久久狼人影院| 国产片内射在线| 欧美老熟妇乱子伦牲交| 久久青草综合色| 啦啦啦 在线观看视频| 91精品伊人久久大香线蕉| 久久国产精品大桥未久av| 一本久久精品| 亚洲黑人精品在线| 国产精品国产三级国产专区5o| 十八禁人妻一区二区| 另类精品久久| 久久精品久久久久久噜噜老黄| 少妇粗大呻吟视频| 精品一区二区三区四区五区乱码 | 视频在线观看一区二区三区| 激情视频va一区二区三区| 两性夫妻黄色片| 中文字幕亚洲精品专区| 国产一区二区在线观看av| 无遮挡黄片免费观看| 精品欧美一区二区三区在线| h视频一区二区三区| av一本久久久久| 免费在线观看完整版高清| 久久精品久久精品一区二区三区| 天天添夜夜摸| 亚洲国产精品成人久久小说| 一区二区三区精品91| 美女视频免费永久观看网站| 日韩一卡2卡3卡4卡2021年| 国产在线观看jvid| 欧美精品av麻豆av| 免费看不卡的av| 一边亲一边摸免费视频| 精品人妻1区二区| 欧美成狂野欧美在线观看| 亚洲,一卡二卡三卡| 国产欧美日韩一区二区三 | 天堂中文最新版在线下载| 9色porny在线观看| 日韩欧美一区视频在线观看| 日韩大片免费观看网站| www.熟女人妻精品国产| 国产精品久久久av美女十八| 午夜老司机福利片| 激情视频va一区二区三区| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美 | 一边亲一边摸免费视频| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 亚洲伊人久久精品综合| 亚洲国产精品成人久久小说| 91麻豆精品激情在线观看国产 | 熟女少妇亚洲综合色aaa.| 久久久欧美国产精品| 亚洲欧美日韩高清在线视频 | 欧美av亚洲av综合av国产av| 亚洲av男天堂| 日韩制服丝袜自拍偷拍| 午夜av观看不卡| 水蜜桃什么品种好| 久久精品人人爽人人爽视色| 日韩大片免费观看网站| 精品少妇一区二区三区视频日本电影| 欧美日韩亚洲综合一区二区三区_| 久久人人爽av亚洲精品天堂| 十八禁高潮呻吟视频| 久久久亚洲精品成人影院| 欧美精品啪啪一区二区三区 | 成年美女黄网站色视频大全免费| 一二三四在线观看免费中文在| 国产精品一国产av| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 热re99久久精品国产66热6| 1024视频免费在线观看| 99国产精品99久久久久| 亚洲国产精品999| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 国产激情久久老熟女| 亚洲国产精品国产精品| 成人手机av| 亚洲欧美中文字幕日韩二区| 精品免费久久久久久久清纯 | 亚洲精品久久久久久婷婷小说| 国产欧美日韩一区二区三区在线| 精品久久蜜臀av无| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久久大奶| 久久久久久人人人人人| 中文精品一卡2卡3卡4更新| a级片在线免费高清观看视频| 91精品伊人久久大香线蕉| 在线看a的网站| 啦啦啦啦在线视频资源| 十分钟在线观看高清视频www| 少妇被粗大的猛进出69影院| 美女福利国产在线| 满18在线观看网站| 色婷婷久久久亚洲欧美| 亚洲七黄色美女视频| 中文字幕高清在线视频| 久久天堂一区二区三区四区| 爱豆传媒免费全集在线观看| 悠悠久久av| 免费高清在线观看视频在线观看| 国产老妇伦熟女老妇高清| 天天添夜夜摸| 美女福利国产在线| 午夜福利,免费看| 国产高清国产精品国产三级| 一区福利在线观看| 亚洲精品国产一区二区精华液| 日韩电影二区| 黑人猛操日本美女一级片| 国产在线免费精品| 手机成人av网站| 亚洲色图 男人天堂 中文字幕| 久久久国产欧美日韩av| 欧美久久黑人一区二区| 中文字幕另类日韩欧美亚洲嫩草| 99热全是精品| 桃花免费在线播放| 久久天堂一区二区三区四区| 99九九在线精品视频| 久久人妻福利社区极品人妻图片 | 91精品三级在线观看| 欧美日韩视频高清一区二区三区二| 黄片小视频在线播放| 久久热在线av| 欧美黄色片欧美黄色片| 国产精品欧美亚洲77777| 午夜福利视频在线观看免费| 亚洲欧洲国产日韩| 纯流量卡能插随身wifi吗| 欧美日韩一级在线毛片| 欧美成人午夜精品| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 欧美日韩综合久久久久久| 午夜91福利影院| 日本a在线网址| 一区二区三区激情视频| 亚洲成国产人片在线观看| 深夜精品福利| 热99国产精品久久久久久7| 最新的欧美精品一区二区| 性色av一级| 精品熟女少妇八av免费久了| 黑人巨大精品欧美一区二区蜜桃| 日本一区二区免费在线视频| 国产欧美日韩一区二区三区在线| 久久99精品国语久久久| 97精品久久久久久久久久精品| 欧美精品一区二区大全| 一本综合久久免费| 国产精品一区二区在线观看99| 99久久99久久久精品蜜桃| 看免费成人av毛片| 亚洲,一卡二卡三卡| 99re6热这里在线精品视频| 看免费av毛片| 国产欧美亚洲国产| 一区二区三区乱码不卡18| 汤姆久久久久久久影院中文字幕| videos熟女内射| 久久国产精品人妻蜜桃| 成年美女黄网站色视频大全免费| 黄色 视频免费看| 国产男女内射视频| 久久女婷五月综合色啪小说| 亚洲成人免费电影在线观看 | 少妇精品久久久久久久| 黄色a级毛片大全视频| 日韩,欧美,国产一区二区三区| 亚洲欧美一区二区三区久久| 免费观看av网站的网址| 亚洲欧美中文字幕日韩二区| 精品福利永久在线观看| 亚洲专区国产一区二区| 1024视频免费在线观看| 一级a爱视频在线免费观看| 免费看十八禁软件| 国产视频一区二区在线看| 成年美女黄网站色视频大全免费| 亚洲成人手机| 亚洲av电影在线进入| 男男h啪啪无遮挡| 香蕉丝袜av| 欧美日韩精品网址| 香蕉国产在线看| 午夜精品国产一区二区电影| 亚洲国产av影院在线观看| 国产亚洲精品第一综合不卡| 亚洲一区二区三区欧美精品| 国产精品99久久99久久久不卡| 国产熟女午夜一区二区三区| 乱人伦中国视频| 精品一区在线观看国产| 狠狠婷婷综合久久久久久88av| 久久久久久久大尺度免费视频| 亚洲精品国产色婷婷电影| 男女之事视频高清在线观看 | 亚洲av日韩在线播放| 中文字幕制服av| av天堂久久9| 少妇裸体淫交视频免费看高清 | 王馨瑶露胸无遮挡在线观看| 亚洲美女黄色视频免费看| h视频一区二区三区| 一本久久精品| 欧美日韩福利视频一区二区| 欧美老熟妇乱子伦牲交| 男人爽女人下面视频在线观看|