王新偉,張 穎,戎玉密
1)深圳信息職業(yè)技術(shù)學院機電工程學院,廣東深圳518172;2)哈爾濱工業(yè)大學深圳研究生院,廣東深圳518055
【電子與信息科學 / Electronics and Information Science】
改進Lyapunov泛函下變時滯系統(tǒng)穩(wěn)定性分析
王新偉1,張 穎2,戎玉密2
1)深圳信息職業(yè)技術(shù)學院機電工程學院,廣東深圳518172;2)哈爾濱工業(yè)大學深圳研究生院,廣東深圳518055
針對具有區(qū)間變時滯的線性系統(tǒng),提出一種新的穩(wěn)定性判據(jù).基于改進Lyapunov泛函,采用Jensen積分不等式和倒數(shù)凸組合技術(shù),對Lyapunov泛函導數(shù)中的積分項進行界定,獲得更緊的時滯上界,從而得到保守性更低的穩(wěn)定性判據(jù).通過數(shù)值實例驗證所提出的穩(wěn)定性判據(jù)有效.
區(qū)間變時滯;倒數(shù)凸組合;線性矩陣不等式;穩(wěn)定性判據(jù);改進Lyapunov泛函;Jensen積分
時滯現(xiàn)象廣泛存在于各種實際工業(yè)控制系統(tǒng)中,如化工系統(tǒng)、過程控制系統(tǒng)和網(wǎng)絡控制系統(tǒng)等.系統(tǒng)中存在的時滯往往是未知或時變的,時滯會導致系統(tǒng)性能變差甚至不穩(wěn)定.與此同時也使系統(tǒng)分析及控制難度進一步加大,因此,對該類系統(tǒng)進行學習研究具有重要理論意義和應用價值.
近年來,針對時滯系統(tǒng)的研究越來越多,且取得了一些成果.對于區(qū)間時變時滯系統(tǒng),可通過保留在Lyapunov泛函的導數(shù)中被忽略的信息,充分利用時滯上下界的信息,得到相應的時滯相關(guān)穩(wěn)定性判據(jù)[1].或者將時滯區(qū)間重新劃分為兩個區(qū)間[2],在兩個區(qū)間分別估計Lyapunov泛函的導數(shù),得到系統(tǒng)穩(wěn)定性判據(jù).文獻[3]通過引入新的Lyapunov泛函,且采用積分不等式和自由權(quán)矩陣結(jié)合的方法來估計Lyapunov泛函的導數(shù),進一步降低了穩(wěn)定性判據(jù)的保守性.另外,Jensen不等式引理[4]為有效估計積分交叉項提供了很好的工具.文獻[5-6]關(guān)注的是區(qū)間變時滯連續(xù)系統(tǒng)的時滯相關(guān)穩(wěn)定性問題,在文獻[5]中直接使用Jensen不等式引理去估計積分交叉項,從理論上證明了該方法可有效降低系統(tǒng)判據(jù)的保守性;文獻[6]則借鑒時滯分解方法的思想,先將積分交叉項進行拆分,然后運用凸組合和Jensen積分不等式的方法估計Lyapunov泛函的導數(shù),得到了保守性較小的區(qū)間變時滯系統(tǒng)穩(wěn)定性判據(jù).同時,改進的Jensen積分不等式[7]可以有效估計積分交叉項.文獻[8]首次引入了含有三重積分項的增廣Lyapunov泛函,并將Jensen不等式引理擴展到三重積分的情況,得到了保守性較小的穩(wěn)定性判據(jù).針對區(qū)間時變時滯系統(tǒng),文獻[9]提出了倒數(shù)凸組合方法,在估計Lyapunov泛函的導數(shù)時,能夠得到Lyapunov泛函的導數(shù)更緊的上界,從而降低了判據(jù)的保守性. 通過選取合適的Lyapunov泛函,采用積分不等式與自由權(quán)矩陣相結(jié)合的方法估計Lyapunov泛函導數(shù),得到了更緊的上界[10],從而得到了有效的穩(wěn)定性判據(jù).文獻[11-12]基于新的時滯分割方法,針對不同的分割區(qū)間構(gòu)造包含三重積分項和增廣項的Lyapunov泛函,得到了相應的穩(wěn)定性判據(jù)[11-12].
本研究基于改進Lyapunov泛函,利用倒數(shù)凸組合技術(shù),充分考慮時滯上下界信息,獲得了保守性更小的穩(wěn)定性判據(jù).
考慮如下線性時滯系統(tǒng)
(1)
0≤h1≤d(t)≤h2
(2)
(3)
其中,μ是常量;初始條件?(t)是連續(xù)可微的向量函數(shù).
針對系統(tǒng)(1),本研究在時滯d(t)滿足條件(2)和(3)時,對該系統(tǒng)的穩(wěn)定性進行研究.
選取更為合適的Lyapunov泛函,充分利用時滯的上下界信息,以線性矩陣不等式(linearmatrixinequality,LMI)的形式給出系統(tǒng)(1)的時滯相關(guān)穩(wěn)定性判據(jù).
定理1 對于給定的標量0≤h1≤h2和μ, 如果存在適維矩陣P>0,Q=[Qij]2×2>0,R=[Rij]2×2>0,M=[Mij]2×2>0,N=[Nij]2×2>0,S>0,Z1>0,Z2>0,T, 且滿足線性矩陣不等式(4)和(5),那么時滯系統(tǒng)(1)是漸進穩(wěn)定的.
(4)
(5)
其中,*表示非零元素;
Φ11=PA+ATP+Q11+R11 +M11+N11-Z1
Φ22=-(1-μ)S-2Z2+T+TT
Φ33=-R22+S-Z2
Φ44=-N22-Z2
Φ55=Q22 +R22-Q11-Z1
Φ66=-Q22-R11
Φ77=M22+N22-M11
Φ88=-M22 -N11
Φ15=Q12+R12+Z1
Φ17=M12+N12
Θ=[AAd 0 0 0 0 0 0]
h12=h2-h1
【證】對于時滯系統(tǒng)(1),假設
ei(i=1,2,…,6)為分塊坐標矩陣,例如,e2=[0I0 0 0 0 0 0], 構(gòu)造如下Lyapunov泛函
(6)
V1(t)=xT(t)Px(t)
(7)
(8)
(9)
V4(t)=∫t-d(t)t-h1xT(s)Sx(s)ds
(10)
(11)
其中,P>0,Q=[Qij]2×2>0和R=[Rij]2×2>0;M=[Mij]2×2>0,N=[Nij]2×2>0,S>0,Z1>0,Z2>0, 且T和Z2 滿足式(5).
下面分別對V1(t)、V2(t)、V3(t)、V4(t)和V5(t)求導
2xT(t)PAdx(t-d(t))
(12)
(13)
(14)
xT(t-d(t))(1-μ)Sx(t-d(t) )
(15)
(16)
利用Jensen積分不等式,可得
ηT(t)(e3-e2 )T(e2-e4)Tη(t)≤0
(17)
由式(17)可知,
-ηT(t)(e3-e2)Z2 (e3-e2)Tη(t) -ηT(t)(e2-e4 )Z2 (e2-e4)Tη(t)-
-ηT(t)(e3-e2)Z2(e3-e2)Tη(t) -ηT(t)(e2-e4)Z2(e2-e4)Tη(t)-
ηT(t)(e2-e4)TT (e3-e2)Tη(t) -ηT (t)(e3-e2)T(e2-e4)Tη(t)=
(18)
因此,下面的不等式成立
(19)
綜上所述,可得
(20)
在許多情況下,時滯的導數(shù)信息并不知道,這時有必要應用時滯不相關(guān)穩(wěn)定性判據(jù).令定理1中的S=0, 即可得到時滯不相關(guān)穩(wěn)定性判據(jù).
推論1 對于給定的標量0≤h1≤h2和μ, 若存在適維矩陣P>0,Q=[Qij]2×2>0,R=[Rij]2×2>0,M=[Mij]2×2>0,N=[Nij]2×2>0,Z1>0,Z2>0和T, 使線性矩陣不等式(21)和(22)成立,則時滯系統(tǒng)(1)漸近穩(wěn)定.
(21)
(22)
其中,U、Θ、Φii(i=1,4,5,6,7,8)和h12與定理1中的定義相同.
Φ22=-2Z2+T+TT
Φ33=-R22-Z2.
在此通過兩個數(shù)值實例說明本文定理的正確性和有效性.
例1 考慮如下區(qū)間變時滯線性系統(tǒng)
當h1已知時,給定不同μ以及未知的μ能保證系統(tǒng)(1)漸近穩(wěn)定的最大時滯上界h2的值分別列于表1和表2.
在表1和表2中,通過對比文獻可見,本文提出的穩(wěn)定性結(jié)果具有更小的保守性.
表1 h1已知,給定不同μ時最大允許上界h2
表2 μ未知,給定不同h1時最大允許上界h2
例2 考慮如下區(qū)間變時滯線性系統(tǒng)
利用定理1,對于μ=0.3給定不同h1時,能保證系統(tǒng)(1)漸近穩(wěn)定的時滯最大上界h2的值列于表3.
表3 不同h1時最大允許上界h2(μ=0.3)
采用推論1,當μ未知時給定不同h1時,能保證系統(tǒng)(1)漸近穩(wěn)定的時滯最大上限h2的值列于表4.
表4 μ未知,給定不同h1時最大允許上界h2
表3和表4的數(shù)據(jù)顯示,本研究提出的穩(wěn)定性判據(jù)對于提高系統(tǒng)允許的最大時滯上界有明顯的作用.對比之前的文獻結(jié)果,本研究提出的變時滯連續(xù)系統(tǒng)穩(wěn)定性判據(jù)具有保守性.
針對變時滯連續(xù)系統(tǒng)的穩(wěn)定性問題,通過選取合適的增廣Lyapunov泛函,采取倒數(shù)凸組合技術(shù)和Jensen積分不等式方法估計Lyapunov泛函導數(shù),得到了系統(tǒng)穩(wěn)定性新判據(jù).理論分析和數(shù)值算例表明,新判據(jù)是有效的,具有更低的保守性.
/ References:
[1] He Yong, Wang Qingguo, Lin Chong,et al.Delay-range-dependent stability for systems with time-varying delay[J].Automatica,2007,43(2):371-376.
[2] Zhu Xunlin, Yang Guanghong.New results of stability analysis for systems with time-varying delay[J].International Journal of Robust and Nonlinear Control,2010,20(5):596-606.
[3] Meng Xiangyu, Lam J, Du Baozhu,et al.A delay-partitioning approach to the stability analysis of discrete-time varying systems[J].Automatica,2010,46(3):610-614.
[4] Gu K Q.An integral inequality in the stability problem of time-delay systems[C]//Proceedings of the 39th IEEE Conferenceon Decisionand Control.Sydney,Australia: IEEE Conference on Decision & Control, 2000:2805-2810.
[5] Shao Hanyong. Improved delay-dependent stability criteria for systems with a delay varying in a range[J]. Automatica,2008,44(12):3215-3218.
[6] Shao Hanyong. New delay-dependent stability criteria for systems with interval delay[J]. Automatica,2009,45(3):744-749.
[7] Seuret A, Gouaisbaut F. Writinger-based integral inequality: application to time-delay systems[J].Automatica,2013,49(10):2860-2866.
[8] Sun Jian, Liu G P, Chen Jie, et al. Improved delay-range dependent stability criteria for linear systems with timevarying delays[J].Automatica,2010,46(2):466-470.
[9] Park P G, Ko J W, Jeong C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica,2011,47(1):235-238.
[10] Shao Hanyong. Further improvement on delay-dependent stability of results for linear systems with time-varying delays[C]// Proceedings of the 30th Chinese Control Conference.Yantai,China: China Academic Journal Publishing House,2011:1215-1218.
[11] Ge Chao, Hua Changchun, Guan Xinping.New delay-dependent stability criteria for neutral systems with time-varying delay using delay-decomposition approach[J]. International Journal of Control, Automation and Systems,2014,12(4): 786-793.
[12] 張合新,惠俊軍,周 鑫,等.基于時滯分割法的區(qū)間變時滯不確定系統(tǒng)魯棒穩(wěn)定新判據(jù)[J].控制與決策,2014, 29(5):907-912. Zhang Hexin, Hui Junjun, Zhou Xin,et al. New robust stability criteria for uncertain systems with interval time-varying delay based on delay-partitioning approach[J].Control and Decision,2014,29(5):907-912.(in Chinese)
[13] 丁皓明.一類中立型時滯系統(tǒng)的相關(guān)穩(wěn)定性[J].西南民族大學學報自然科學版,2015, 41(5):627-633. Ding Haoming.Stability of aclass of neutral delay systems[J].Journal of Southwest University for Nationalities Natrual Science Edition,2015,41(5):627-633.(in Chinese)
[14] 惠俊軍,張合新,孔祥玉,等.混合變時滯不確定中立型系統(tǒng)魯棒穩(wěn)定性分析[J].控制與決策,2014(12):2259-2264. Hui Junjun, Zhang Hexin, Kong Xiangyu,et al.Stability analysis for uncertain neutral systems with mixed time-varying delays[J].Control and Decision,2014(12):2259-2264.(in Chinese)
[15] 張玉鳳,周榮康.含混合常時滯的中立型系統(tǒng)穩(wěn)定性[J].華僑大學學報自然科學版,2016, 37(3):386-390. Zhang Yufeng, Zhou Rongkang.Study on stability of neutral system with interval Time-Varying delay[J].Journal of Huaqiao University Natural Science,2016,37(3):386-390.(in Chinese)
[16] 李延波,薛小清.交互式凸組合法的混合時滯不確定中立系統(tǒng)的穩(wěn)定性[J].控制與決策,2016, 31(6):1105-1110. Li Yanbo, Xue Xiaoqing.Stability of uncertain neutral system with mixed time delays based on reciprocally convex combination approach[J].Control and Decision,2016,31(6):1105-1110.(in Chinese)
[17] 薛小清,李延波,黃 威.新的時變時滯不確定系統(tǒng)的穩(wěn)定性判據(jù).廣西師范學院學報自然科學版,2014(2):18-22. Xue Xiaoqing, Li Yanbo, Huang Wei. A new method of stability criterion for uncertain systems with time-varying delay[J].Journal of Guangxi Teachers Education University Natural Science Edition, 2014(2):18-22.(in Chinese)
[18] 張 濤,邵 誠,崔艷秋.區(qū)間時變時滯系統(tǒng)的時滯相關(guān)穩(wěn)定性分析[J].電光與控制,2015(1):45-47, 58. Zhang Tao, Shao Cheng, Cui Yanqiu.Research on delay-dependent stability for systems with interval time-varying delay[J].Electronics Optics & Control,2015(1):45-47, 58.(in Chinese)
[19] 張世宇,王汝涼,柴 瑤,等.一類中立型時變時滯系統(tǒng)的穩(wěn)定性分析[J].廣西師范學院學報自然科學版,2016, 33(3):25-30. Zhang Shiyu, Wang Ruliang, Chai Yao,et al.Stability analysis of a class of neutral time-varying delay systems[J].Journal of Guangxi Teachers Education University Natural Science Edition,2016,33(3):25-30.(in Chinese)
[20] 董海榮,耿志勇,黃 琳.一類混合不確定時滯系統(tǒng)的魯棒控制問題[J].北京大學學報自然科學版,2004, 40(5):760-765. Dong Hairong, Geng Zhiyong, Huang Lin.Robust control of time-delay systems with mixed uncertainties[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2004,40(5):760-765.(in Chinese)
【中文責編:晨 兮;英文責編:子 蘭】
Stability analysis of time-varying delaysystem based on an improved Lyapunov function
Wang Xinwei1, Zhang Ying2?, and Rong Yumi2
1) Department of Mechanical and Electrical Engineering, Shenzhen Institute of Information Technology, Shenzhen 518172,Guangdong Province, P.R.China 2) Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, Guangdong Province, P.R.China
We provide a new delay-range-dependent criterion for interval time-varying delay linear systems. By using Jensen inequality method and reciprocally convex combination technique,the upper bound of the derivative of our improved Lyapunov function can be estimated more tightly. And then newless conservative stability criteria are derived. Numerical examples are given to illustrate the effectiveness and the improvementof the proposed criterion.
interval time-varying delay; reciprocally convex combination; linear matrix inequality; stability criteria; Lyapunov improved functional; Jensen integration
:Wang Xinwei, Zhang Ying, Rong Yumi. Stability analysis of time-varying delaysystem based on an improved Lyapunov function[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(2): 181-187.(in Chinese)
TP 13
A
10.3724/SP.J.1249.2017.02181
國家自然科學基金資助項目(61603111);高等學校博士學科點專項科研基金資助項目(20122302120069);深圳市科技基礎研究計劃資助項目(JCYJ2012061313212389)
王新偉(1977—),男,深圳信息職業(yè)技術(shù)學院講師、博士.研究方向:控制理論與控制工程,工業(yè)自動化.E-mail:wangxw@sziit.com.cn
Received:2016-09-26;Accepted:2016-11-07
Foundation:National Natural Science Foundation of China (61603111); Special Research Fund of Doctoral Course of Higher Education (20122302120069); Shenzhen Science and Technology Basic Research Foundation (JCYJ2012061313212389)
? Corresponding author:Associate professor Zhang Ying. E-mail:13631538215@139.com
引 文:王新偉,張 穎,戎玉密. 改進Lyapunov泛函下變時滯系統(tǒng)穩(wěn)定性分析[J]. 深圳大學學報理工版,2017,34(2):181-187.