張仁慶 孫靜 馬月 楊曉東 呂燕 徐小峰 陳志寶 董小平 肖莉杰 陳操
163000 大慶,黑龍江八一農(nóng)墾大學(xué)生命科學(xué)技術(shù)學(xué)院(張仁慶、陳志寶、肖莉杰);102206 北京,中國疾病預(yù)防控制中心病毒病預(yù)防控制所,傳染病預(yù)防控制國家重點(diǎn)實(shí)驗(yàn)室(張仁慶、孫靜、馬月、楊曉東、呂燕、徐小峰、董小平、陳操)
·論著·
羊瘙癢因子139A感染小鼠腦組織中CaM信號(hào)通路變化的研究
張仁慶 孫靜 馬月 楊曉東 呂燕 徐小峰 陳志寶 董小平 肖莉杰 陳操
163000 大慶,黑龍江八一農(nóng)墾大學(xué)生命科學(xué)技術(shù)學(xué)院(張仁慶、陳志寶、肖莉杰);102206 北京,中國疾病預(yù)防控制中心病毒病預(yù)防控制所,傳染病預(yù)防控制國家重點(diǎn)實(shí)驗(yàn)室(張仁慶、孫靜、馬月、楊曉東、呂燕、徐小峰、董小平、陳操)
目的 分析CaM及其下游信號(hào)分子在羊瘙癢因子感染小鼠模型腦組織中的變化特點(diǎn)。方法 利用Western blot及免疫組織化學(xué)方法檢測(cè)羊瘙癢因子感染小鼠腦組織中CaM表達(dá)變化、分布特點(diǎn)及下游相關(guān)激酶及調(diào)控蛋白的表達(dá)變化。結(jié)果 在羊瘙癢因子139A感染小鼠終末期腦組織中CaM的表達(dá)較正常對(duì)照小鼠明顯上調(diào)且主要分布于139A感染小鼠的皮層、丘腦和小腦區(qū)域。在羊瘙癢因子139A感染小鼠終末期腦組織中下游激酶CaMKII、磷酸化的CaMKII(p-CaMKII)及p-CaMKIV表達(dá)水平增加。CaMKs的下游調(diào)控蛋白cAMP調(diào)控元件結(jié)合蛋白(cAMP response element binding protein,CREB)及其磷酸化形式(p-CREB)均呈上調(diào)趨勢(shì),而其下游調(diào)控蛋白腦源性神經(jīng)營養(yǎng)因子(Brain derived neurotrophic factor,BDNF)表達(dá)則明顯下調(diào)。結(jié)論 神經(jīng)元內(nèi)朊病毒的復(fù)制可能影響了BDNF的合成,從而使其降低了對(duì)神經(jīng)元的保護(hù)作用。
Fund programs: National Natural Science Foundation of China (81401670, 81630062); Young Scholar Scientific Research Foundation of China CDC (2016A101); SKLID Development Grant (2012SKLID102, 2016SKLID603); Graduate Research and Innovation Projects of Heilongjiang Bayi Agricultural University(YJSCX2016-Y48)
朊病毒病(Prion disease),又稱可傳播性海綿狀腦病(Transmissible spongiform encephalopathies, TSE),是一類侵襲人和動(dòng)物中樞神經(jīng)系統(tǒng)致死性疾病,潛伏期長,致死率100%[1]。目前的研究認(rèn)為朊病毒病的感染因子是一種不含核酸,能自我復(fù)制具有感染性的蛋白質(zhì)—朊病毒,可將存在于細(xì)胞表面、對(duì)蛋白酶敏感的細(xì)胞型朊蛋白(Cellular prionprotein,PrPC)轉(zhuǎn)變?yōu)楫惓5摹?duì)蛋白酶具有部分抵抗作用的羊瘙癢因子樣朊蛋白(Scrapie-like prion protein,PrPSc)。在轉(zhuǎn)變?yōu)镻rPSc后,PrPC本身具有的生理作用如免疫調(diào)節(jié)、信號(hào)轉(zhuǎn)導(dǎo)、銅離子結(jié)合等將會(huì)受到破壞。
Ca2+是中樞神經(jīng)系統(tǒng)內(nèi)重要的第二信使,在細(xì)胞內(nèi)通過與鈣調(diào)蛋白(Calmodulin,CaM)結(jié)合發(fā)揮多種生理作用,如細(xì)胞增殖、凋亡及自噬等[2-5]。當(dāng)細(xì)胞受到外界的有效刺激后,細(xì)胞內(nèi)的Ca2+濃度瞬時(shí)提高,Ca2+即與CaM結(jié)合[6, 7],導(dǎo)致CaM構(gòu)象改變,生成有活性的Ca2+/CaM復(fù)合物[8]。Ca2+/CaM復(fù)合物會(huì)通過活化依賴Ca2+/CaM的蛋白激酶(CaMK),再進(jìn)一步影響如cAMP調(diào)控元件結(jié)合蛋白(cAMP response element binding protein,CREB)等靶酶的活性,從而完成諸多生理作用[9]。
本研究以羊瘙癢因子感染的小鼠為研究對(duì)象,檢測(cè)了CaM及其下游激酶和調(diào)控蛋白的表達(dá)水平,了解了朊病毒感染導(dǎo)致CaM及其下游底物含量變化特點(diǎn),為明確朊病毒病的致病機(jī)制奠定科學(xué)基礎(chǔ)。
1.1 腦組織勻漿的制備 取正常C57BL/6小鼠及羊瘙癢因子感染小鼠終末期腦組織,用裂解液(100 mmol/L NaCl, 10 mmol/L EDTA, 0.5% Nonidet P-40, 0.5% sodium deoxycholate, 10 mmol/L Tris, pH 7.5含蛋白酶抑制劑)制成10%(w/v)的腦勻漿,2 000 g離心10 min后取上清分裝,-80℃保存?zhèn)溆谩?/p>
1.2 Western blot檢測(cè) 將蛋白樣品變性處理之后上樣至12% SDS-PAGE電泳,半干轉(zhuǎn)移至NC膜,1 h封閉,一抗孵育4℃過夜,所用一抗種類及稀釋度如下,CaM多抗(1∶100稀釋)、CaMKII單抗(1∶500稀釋)、p-CaMKII(T286)多抗(1∶1 000稀釋)、CaMKIV多抗(1∶5 000稀釋)、p-CaMKIV(T196+T200)多抗(1∶1 000,稀釋)、CREB單抗(1∶5 000稀釋)、p-CREB(S133)單抗(1∶5 000稀釋)、腦源性神經(jīng)營養(yǎng)因子(Brain derived neurotrophic factor,BDNF)多抗(1∶5 000稀釋)。二抗為HRP標(biāo)記的抗鼠及抗兔IgG抗體。ECL顯色,使用Image J軟件進(jìn)行定量分析。
1.3 統(tǒng)計(jì)學(xué)方法 數(shù)據(jù)用均數(shù)加減平均標(biāo)準(zhǔn)差表示,兩組間差異用t檢驗(yàn),P<0.05為差異具有統(tǒng)計(jì)學(xué)意義,P>0.05為無意義。
2.1 羊瘙癢因子139A感染小鼠終末期腦組織中CaM的表達(dá)水平 分別取用3只羊瘙癢因子小鼠適應(yīng)株139A感染終末期小鼠腦組織勻漿和3只正常C57BL/6小鼠腦勻漿,利用Western blot方法檢測(cè)CaM的表達(dá)水平。結(jié)果顯示,與3只正常C57BL/6小鼠相比,3只感染羊瘙癢因子139A終末期的小鼠腦組織中CaM的表達(dá)水平明顯增加(圖1A)。相對(duì)灰度值分析結(jié)果顯示,139A感染小鼠終末期腦組織中CaM的表達(dá)水平明顯高于正常小鼠,差異具有顯著統(tǒng)計(jì)學(xué)意義(圖1B)。
為了探究CaM在朊病毒感染后腦組織中的分布情況,分別選取3只139A感染終末期小鼠及3只正常對(duì)照C57BL/6小鼠腦組織切片進(jìn)行CaM特異性免疫組織化學(xué)檢測(cè),結(jié)果顯示在139A感染小鼠腦組織的皮層、丘腦和小腦區(qū)域發(fā)現(xiàn)大量CaM特異性棕色斑點(diǎn)(圖2),提示在這些腦區(qū)中CaM的含量較高。
2.2 羊瘙癢因子139A感染小鼠終末期腦組織中CaMKⅡ 和CaMKⅣ表達(dá)特點(diǎn) CaMKII 和CaMKIV是Ca2+/CaM下游兩個(gè)重要的激酶[5]。為了評(píng)估在朊病毒感染后CaM下游激酶的表達(dá)特點(diǎn),我們利用Western blot的方法檢測(cè)了139A感染終末期小鼠腦組織中CaM下游激酶CaMKII以及CaMKⅣ的表達(dá)水平。與正常小鼠對(duì)比,139A感染終末期小鼠腦組織中CaMKII的含量整體呈增加趨勢(shì)(圖3A),具體為CaMKIIα含量增加具有統(tǒng)計(jì)學(xué)意義,而盡管p-CaMKIIα(Thr286)和CaMKIIβ含量增加,但無統(tǒng)計(jì)學(xué)意義(圖3B)。而另一種鈣調(diào)蛋白激酶CaMKⅣ在139A感染小鼠終末期腦組織中的表達(dá)含量較正常小鼠明顯下調(diào),p-CaMKⅣ(Thr196,200)表達(dá)水平明顯上調(diào),具有統(tǒng)計(jì)學(xué)意義(圖3C和3D)。這些結(jié)果提示羊瘙癢因子感染終末期小鼠腦組織中CaM含量的增加很可能加速促進(jìn)了下游激酶的自身磷酸化。
A. Western blot結(jié)果;B. 灰度值量化分析結(jié)果圖1 羊瘙癢因子139A感染小鼠終末期腦組織中CaM的表達(dá)水平A, CaM-specific Western blot. B, Densitometric analysis of the average gray value of the CaM in brains of scrapie agent 139A infected mice Fig.1 Comparative analysis of the alterations of CaM levels in the brain homogenates of scrapie agent 139A infected mice collected at terminal stage
注:黑色實(shí)心箭頭標(biāo)記CaM特異性染色
2.3 羊瘙癢因子139A感染小鼠終末期腦組織中CREB 和BDNF表達(dá)水平的變化 為了進(jìn)一步探究CaM激酶活化后對(duì)后續(xù)細(xì)胞調(diào)控蛋白的影響,我們通過Western blot方法對(duì)羊瘙癢因子139A感染小鼠終末期腦組織中CaMK下游的調(diào)控蛋白CREB及其活化形式p-CREB的含量進(jìn)行了檢測(cè)。結(jié)果顯示,與正常小鼠相比,139A感染終末期小鼠腦組織中CREB及p-CREB(Ser133)的表達(dá)上調(diào),且具有統(tǒng)計(jì)學(xué)意義。但值得注意的是,受CREB調(diào)控的BDNF的表達(dá)水平在139A感染終末期小鼠腦組織中呈下調(diào)的趨勢(shì)(圖4A和4B)。
CaM是一種廣泛分布在真核細(xì)胞中的Ca2+結(jié)合蛋白,可介導(dǎo)許多信號(hào)通路[2-4]。CaM跟Ca2+結(jié)合后其自身構(gòu)象將發(fā)生變化,這有利于與下游靶蛋白的結(jié)合,所形成的Ca2+/CaM復(fù)合物在中樞神經(jīng)系統(tǒng)的學(xué)習(xí)記憶形成與維持方面扮演著重要的角色[5],同時(shí)參與了眾多生理調(diào)節(jié)過程,如細(xì)胞遷移、增值、凋亡、自噬磷酸化/去磷酸化蛋白及細(xì)胞骨架形成等。因此,疾病引起的CaM表達(dá)水平異常增高將會(huì)干擾細(xì)胞內(nèi)Ca2+穩(wěn)態(tài)以及影響許多下游生理功能。有研究報(bào)道阿爾茲海默氏病(Alzheimer’s disease,AD)患者細(xì)胞中CaM表達(dá)水平明顯升高,而且在散發(fā)和家族型AD患者細(xì)胞內(nèi)發(fā)現(xiàn)Ca2+穩(wěn)態(tài)異常[10, 11]。我們?cè)诘鞍踪|(zhì)組學(xué)研究中也發(fā)現(xiàn)散發(fā)型克-雅病(Sporadic CJD,sCJD,一種人類的朊病毒病)患者腦組織皮層區(qū)和腦脊液中CaM水平異常升高[12, 13]。這些結(jié)果在本研究的動(dòng)物模型腦組織中得到了驗(yàn)證,強(qiáng)烈提示sCJD患者腦組織中CaM的表達(dá)可能也是上調(diào)的,同時(shí)滲透至腦脊液中從而引起腦脊液中CaM的異常升高。
A和C:Western blot結(jié)果;B和D:灰度值量化分析結(jié)果圖3 羊瘙癢因子139A感染小鼠終末期腦組織中CaMKs的表達(dá)水平A and C, Western blots analysis. B and D, Densitometric analysis of the average gray value of each CaMKsFig.3 Alterations of CaMKs in the brain homogenates of 139A-infected mice at the end stage of disease
A. Western blot結(jié)果;B. 灰度值量化分析結(jié)果圖4 羊瘙癢因子139A感染小鼠終末期腦組織中CaM通路相關(guān)調(diào)控蛋白CREB,p-CREB及BDNF的表達(dá)水平A, Western blots analysis. B, Densitometric analysis of the average gray value of CREB, p-CREB and BDNFFig.4 Comparative analysis of the alterations of CaMKs-related downstream substrates CREB, p-CREB and BDNF in the brain homogenates of 139A-infected mice at the end stage of disease
CaM最為重要的靶蛋白就是CaMKs,而CaMKⅡ和CaMKⅣ是其中重要的兩位成員。CaMKⅡ是一種興奮性突觸后的重要蛋白,而CaMKⅡα和CaMKⅡβ是其含量最為豐富的兩種亞基,其中CaMKⅡα對(duì)突觸可塑性和記憶形成具有重要的作用[14, 15],而CaMKⅡβ的主要作用是維持CaMKⅡ結(jié)構(gòu)的完整性[16]。CaMKⅣ是神經(jīng)元生存的重要蛋白,它主要通過磷酸化CREB來發(fā)揮生理調(diào)節(jié)功能,從而維持神經(jīng)元的生存。有研究表明過表達(dá)CaMKⅣ將會(huì)減少小腦顆粒神經(jīng)元的凋亡[17]。 本研究中我們發(fā)現(xiàn)CaMKⅡ和CaMKⅣ及其磷酸化形式整體呈現(xiàn)上調(diào)的趨勢(shì),提示升高的CaM在一定程度上發(fā)揮了自身的活性,能夠使下游的CaMKs發(fā)生自身磷酸化,從而作用于靶蛋白。但是在我們同時(shí)進(jìn)行的羊瘙癢因子263K感染倉鼠終末期腦組織的研究中則發(fā)現(xiàn)了相反的情況,即CaMKs及其下游底物呈現(xiàn)了完全被抑制的情況,這種差別是否是由于種屬或者毒株差異造成的還有待進(jìn)一步研究。
本研究發(fā)現(xiàn)CaMKs的下游底物——CREB及其活化形式p-CREB的含量明顯升高,這可能主要得力于其上游激酶的活化,即p-CaMKIV含量的增加。體內(nèi)[18]和體外[19]實(shí)驗(yàn)證明BDNF在神經(jīng)元分化和生存方面具有重要的保護(hù)作用。成年大鼠腦中受損傷區(qū)域BDNF的mRNA表達(dá)增加[20],同時(shí)在AD患者尸檢腦組織的海馬區(qū)域檢測(cè)到BDNF的mRNA表達(dá)明顯減少[21]。但本研究的結(jié)果顯示,雖然p-CREB的表達(dá)上調(diào),但其對(duì)BDNF的調(diào)控能力卻明顯減弱,我們之前的研究發(fā)現(xiàn)在朊病毒感染患者腦組織轉(zhuǎn)錄譜中BDNF的轉(zhuǎn)錄水平明顯下降[22]。提示朊病毒感染過程中可能存在其他因子抑制BDNF的轉(zhuǎn)錄,近期研究發(fā)現(xiàn)使BDNF發(fā)揮作用兩種結(jié)合蛋白TrkB/p-TrkB和p75NTR的含量在朊病毒感染終末期腦組織中含量明顯降低[23],這很可能是引起B(yǎng)DNF含量降低的另一個(gè)原因。
[1] Prusiner SB. Prions[J]. Proc NatlAcad Sci USA, 1998, 95: 13363-13383.doi: 10.1073/pnas.95.23.13363.
[2] Prusiner SB, Scott MR, DeArmond SJ,et al. Prion protein biology[J]. Cell, 1998, 93(3):337-348. doi:10.1016/S0092-8674(00)81163-0.
[3] Jurado LA, Chockalingam PS, Jarrett HW. Apocalmodulin. Physiol Rev, 1999, 79(3): 661-682.
[4] Chin D, Means AR.Calmodulin: a prototypical calcium sensor[J]. Trends Cell Biol, 2000, 10(8): 322-328. doi:10.1016/S0962-8924(00)01800-6.
[5] Hoeflich KP, Ikura M.Calmodulin in action: diversity in target recognition and activation mechanisms[J]. Cell, 2002, 108(6): 739-742. doi:10.1016/S0092-8674(02)00682-7.
[6] Berchtold MW,Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer[J]. Biochim Biophys Acta, 2014, 1843(2): 398-435. doi: 10.1016/j.bbamcr.2013.10.021.
[7] Carafoli E, Santella L, Branca D, Brini M. Generation, control, and processing of cellular calcium signals[J]. Crit Rev Biochem Mol Biol, 2001, 36(2): 107-260.
[8] Permyakov SE, Permyakov EA, Uversky VN. Intrinsically disordered caldesmon binds calmodulin via the “buttons on a string” mechanism[J]. PeerJ, 2015, 3: e1265. doi: 10.7717/peerj.1265. eCollection 2015.
[9] Kern M, Wisniewski M, Cabell L, et al. Inorganic lead and calcium interact positively in activation of calmodulin[J]. Neurotoxicology, 2000, 21(3): 353-363.
[10] Lu B. BDNF and activity-dependent synaptic modulation[J]. Learn Mem, 2003, 10(2): 86-98.doi:10.1101/lm.54603.
[11] Esteras N, Alquezar C, de la Encarnacion A, et al. Calmodulin levels in blood cells as a potential biomarker of Alzheimer′s disease[J]. Alzheimers Res Ther, 2013, 5(6): 55. doi: 10.1186/alzrt21.
[12] Bartolome F, de Las Cuevas N, Munoz U, et al. Martin-Requero A Impaired apoptosis in lymphoblasts from Alzheimer′s disease patients: cross-talk of Ca2+/calmodulin and ERK1/2 signaling pathways[J]. Cell Mol Life Sci,2007,64(11):1437-1448.doi:10.1007/s00018-007-7081-3.
[13] Bezprozvanny I, Mattson MP. Neuronal calcium mishandling and the pathogenesis of Alzheimer′s disease[J]. Trends Neurosci, 2008, 31(9): 454-463. doi: 10.1016/j.tins.2008.06.005.
[14] Chen C, Xiao D, Zhou W, et al. Global Protein Differential Expression Profiling of Cerebrospinal Fluid Samples Pooled from Chinese Sporadic CJD and non-CJD Patients[J]. Mol Neurobiol, 2014, 49(1): 290-302. doi: 10.1007/s12035-013-8519-2.
[15] Shi Q, Chen LN, Zhang BY, et al. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases[J]. Mol Cell Proteomics, 2015, 14(4): 854-869. doi: 10.1074/mcp.M114.038018.
[16] Yamagata Y, Kobayashi S, Umeda T, et al. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning[J]. J Neurosci, 2009, 29(23): 7607-7618. doi: 10.1523/JNEUROSCI.0707-09.2009.
[17] Hell JW. CaMKII: claiming center stage in postsynaptic function and organization[J]. Neuron, 2014, 81(2): 249-265. doi: 10.1016/j.neuron.2013.12.024.
[18] Borgesius NZ, van Woerden GM, Buitendijk GH, et al. beta CaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting alphaCaMKII to synapses[J]. J Neurosci, 2011, 31(28): 10141-10148. doi: 10.1523/JNEUROSCI.5105-10.2011.
[19] See V, Boutillier AL, Bito H, et al. Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons[J]. FASEB J, 2001, 15(1): 134-144. doi:10.1096/fj.00-0106.
[20] Koliatsos VE, Price DL, Gouras GK, et al. Highly selective effects of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 on intact and injured basal forebrain magnocellular neurons[J]. J Comp Neurol, 1994, 343(2): 247-262. doi:10.1002/cne.903430206.
[21] Lindsay RM, Wiegand SJ, Altar CA. DiStefano PS Neurotrophic factors: from molecule to man[J]. Trends Neurosci,1994, 17(5): 182-190.
[22] Ballarin M, Ernfors P, Lindefors N, et al. Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in the rat brain[J]. Exp Neurol,1991, 114(1): 35-43. doi:10.1016/0014-4886(91)90082-N.
[23] Murray KD, Gall CM, Jones EG, et al. Differential regulation of brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase messenger RNA expression in Alzheimer′s disease[J]. Neuroscience, 1994, 60(1): 37-48. doi:10.1016/0306-4522(94)90202-X.
[24] Tian C, Liu D, Sun QL, et al. Comparative Analysis of Gene Expression Profiles Between Cortex and Thalamus in Chinese Fatal Familial Insomnia Patients[J]. Mol Neurobiol, 2013, 48(1):36-48.doi: 10.1007/s12035-013-8426-6.
[25] Wang TT, Tian C, Sun J, et al. Down-regulation of brain-derived neurotrophic factor and its signaling components in the brain tissues of scrapie experimental animals[J]. Int J Biochem Cell Biol, 2016, 79: 318-326. doi: 10.1016/j.biocel.2016.08.033.
Alterations of CaM pathway in the brains of scrapie infected mice
ZhangRenqing,SunJing,MaYue,YangXiaodong,LyuYan,XuXiaofeng,ChenZhibao,DongXiaoping,XiaoLijie,ChenCao
CollegeofLifeScienceandTechnology,HeilongjiangBayiAgricultureUniversity,Daqing163000,China(ZhangRQ,ChenZB,XiaoLJ);NationalInstituteforViralDiseaseControlandPrevention,StateKeyLaboratoryforCommunicableDiseasePreventionandControl,ChineseCenterforDiseaseControlandPrevention,Beijing102206,China(ZhangRQ,SunJ,MaY,YangXD,LyuY,XuXF,DongXP,ChenC)
XiaoLijie,Email:xlj2061@126.com;ChenCao,Email: 4825764@sina.com
Objective To analysis the alterations of CaM and its downstream factors in the brains of scrapie infected mice. Methods Using the methods of Western blot and immunohistochemistry assay to detect the levels and distributions of CaM, as well as the expressing alterations of the downstream substrates of CaM in the brains of mice infected with scrapie. Results Compared with the normal controls, the levels of CaM are significantly increased in the brains of scrapie-infected mice and particularly distributing in the regions of cortex, thamalus and cerebellum. Remarkable high levels of CaMKII, p-CaMKII and p-CaMKIV are observed in the brain homogenates of scrapie-infected mice. The regulatory protein of cAMP response element binding protein (CREB) and p-CERB are also increased, while the levels of BDNF which is regulated by p-CREB are obeviously downregulated. Conclusions The synthesis of BDNF may be influenced by the prion replication in neuron and further attenuates its neuronal protective features.
Prion diseases;Calmodulin;Ca2+/Calmodulin-dependent binding protein
肖莉杰,Email:xlj2061@126.com;陳操,Email:4825764@sina.com
10.3760/cma.j.issn.1003-9279.2017.01.003
朊病毒?。烩}調(diào)蛋白;鈣調(diào)蛋白激酶
國家自然科學(xué)基金(81401670;81630062);中國疾病預(yù)防控制中心青年科研基金(2016A101);傳染病預(yù)防控制國家重點(diǎn)實(shí)驗(yàn)室(2012SKLID102;2016SKLID603);黑龍江八一農(nóng)墾大學(xué)研究生創(chuàng)新項(xiàng)目(YJSCX2016-Y48)
2017-01-03)