馬小春
俗話說“萬事開頭難,結(jié)尾也精彩”。新課程實(shí)施以來,對課堂教學(xué)提出了新目標(biāo)和新要求。除了精心的課堂教學(xué)內(nèi)容設(shè)計(jì)外,教師也不能忽視課堂結(jié)尾的設(shè)計(jì),否則課堂效果會大打折扣,也會讓學(xué)生沒有了繼續(xù)探究知識的欲望。好的課堂結(jié)尾設(shè)計(jì),僅僅依靠教師隨課程發(fā)展現(xiàn)場發(fā)揮是達(dá)不到期望的效果,而應(yīng)該精心準(zhǔn)備、特意安排課堂結(jié)尾設(shè)計(jì)。本文中,筆者就“結(jié)”無定法,升華學(xué)生數(shù)學(xué)意識分享以下幾點(diǎn)心得:系統(tǒng)歸納,建構(gòu)體系;變式訓(xùn)練,聯(lián)想拓展;設(shè)置懸念,引導(dǎo)探索。
一、系統(tǒng)歸納,建構(gòu)體系
系統(tǒng)歸納,是以讓學(xué)生就課堂所學(xué)的知識有一個(gè)系統(tǒng)的了解和掌握為目標(biāo)的,即教師通常會在課堂結(jié)束時(shí)運(yùn)用簡單的語言、圖表等形式,精煉地概括知識內(nèi)容和學(xué)習(xí)方法,來完成對于整堂課的歸納和總結(jié)。而教師應(yīng)該注意的是,在歸納知識時(shí),要能夠看到每個(gè)知識點(diǎn)的本質(zhì)和結(jié)構(gòu),從而從整體掌握整個(gè)知識點(diǎn)。
如,“直線與圓的位置關(guān)系”一課時(shí),接近課堂結(jié)尾時(shí)候,我歸納總結(jié)道:“本堂課就要結(jié)束了,這節(jié)課我們主要講的就是直線和圓的位置關(guān)系問題。下面,老師帶著大家一起梳理一下本堂課的內(nèi)容。大家準(zhǔn)備好了嗎?”學(xué)生們拿出紙筆,一切準(zhǔn)備就緒。于是我接著說道:“今天的課堂,可以先分為兩大塊內(nèi)容:一是直線與圓的三種位置關(guān)系;二是如何判斷直線與圓的位置關(guān)系。那下面找同學(xué)說下,直線與圓都有哪三種位置關(guān)系?”一個(gè)學(xué)生舉手回答道:“主要是三種:相交、相切和相離。”我接道:“說的非常對,那么如何判斷直線與圓是哪種位置關(guān)系呢?有同學(xué)可以說一下嗎?”又一個(gè)學(xué)生說道:“主要有兩種方法:幾何法和代數(shù)法。幾何法是通過求出圓的圓心到直線的距離d,然后將之與圓的半徑r進(jìn)行比較,以此來判斷位置關(guān)系;代數(shù)法是通過將直線的方程與圓的方程進(jìn)行聯(lián)立,然后解方程組以解的數(shù)量來判斷位置關(guān)系?!?/p>
總之,系統(tǒng)歸納,既是對重點(diǎn)知識的概括,也是對于方法的總結(jié)。這樣學(xué)生與教師互動(dòng)參與的歸納總結(jié),有利于學(xué)生構(gòu)建知識體系,明白重點(diǎn)與難點(diǎn),加深對知識的理解,更好掌握學(xué)習(xí)方法,鍛煉綜合能力。
二、變式訓(xùn)練,聯(lián)想拓展
學(xué)習(xí)活動(dòng)是由教師和學(xué)生共同完成的,他們作為學(xué)習(xí)活動(dòng)的組成者都發(fā)揮著獨(dú)特的作用。課堂教學(xué)的過程中,對于數(shù)學(xué)學(xué)習(xí)的興趣和熱情,是學(xué)生學(xué)習(xí)的源泉,它決定了學(xué)習(xí)的效果和效率。在課堂結(jié)尾設(shè)計(jì)中,教師應(yīng)該將著眼點(diǎn)放在通過變式訓(xùn)練,然后引導(dǎo)學(xué)生進(jìn)一步聯(lián)想和拓展方法上。學(xué)生只有多思考、多分析,才能激發(fā)探究欲、鍛煉邏輯性,將學(xué)生的積極性與教師的引導(dǎo)性相結(jié)合,才能達(dá)到最好的課堂效果。
如“二元一次方程組”這節(jié)內(nèi)容時(shí),課堂結(jié)尾部分,我為大家準(zhǔn)備了這樣的小結(jié):若x,y滿足方程式x+m=4;y-5=m,則無論m取何值,x,y恒有關(guān)系式是多少?學(xué)生們看罷,紛紛動(dòng)筆做了起來,短短兩分鐘大家就都做完了。于是,我說道:“接下來,老師將方程式進(jìn)行變式,大家繼續(xù)探究一下。變式一:已知x=1和x=2都滿足關(guān)于x的方程x2+px+q=0,則p和q分別等于多少?變式二:若方程my+ny=6的兩個(gè)解分別是x=1、y=1;x=2、y=-1。則m和n分別等于多少?只要這節(jié)課你對二元一次方程組的知識掌握得足夠熟悉,這些問題都是可以解決的?!睂W(xué)生看罷,面露難色,但是立馬又動(dòng)筆算了起來。學(xué)生們陸陸續(xù)續(xù)做出了答案讓我檢查,全班學(xué)生的正確率達(dá)百分之九十??粗鴮W(xué)生們對知識掌握的如此精煉,我感到十分欣慰。
所謂變式訓(xùn)練,就是教師在教會學(xué)生解決了一些數(shù)學(xué)問題后,通過引導(dǎo),讓學(xué)生進(jìn)行聯(lián)想和拓展,對給出的變式進(jìn)行進(jìn)一步的探究,從不同的角度解決數(shù)學(xué)難題,以此熟練掌握課堂知識,精益求精。
三、設(shè)置懸念,引導(dǎo)探索
每一節(jié)課的結(jié)尾,都是新一節(jié)課的開始。尤其是邏輯性和連貫性極強(qiáng)的數(shù)學(xué)學(xué)科,更是需要系統(tǒng)性和整體性的傳授。當(dāng)一節(jié)課結(jié)束時(shí),教師可以給學(xué)生留下幾個(gè)具有引導(dǎo)性的數(shù)學(xué)問題,并且不給出答案,讓學(xué)生課后去探究和解決,這樣可以起到“余音繞梁”的效果。
如,在教授“反比例函數(shù)”一課時(shí),我對學(xué)生們總結(jié)道:“本節(jié)課主要是通過一系列方法,總結(jié)出反比例函數(shù)的性質(zhì)。學(xué)習(xí)了前面三個(gè)基本函數(shù)后,我們已經(jīng)掌握了基本的方法。通過畫圖、觀察、分析、與同學(xué)的相互討論、交流,我們也逐步形成了對反比例函數(shù)的全面認(rèn)識。我們今天學(xué)習(xí)的難點(diǎn)就是描點(diǎn)、畫圖,準(zhǔn)確的圖象可以幫助我們直觀地了解函數(shù)的性質(zhì)。另外,我們可以從解析式中進(jìn)行初步的分析,認(rèn)識到反比例函數(shù)的圖象分成兩支,以便初步認(rèn)識其圖象的大致變化趨勢。最后,學(xué)習(xí)完今天的課程,我給大家留下兩個(gè)問題供大家思考:一個(gè)是怎樣判斷函數(shù)是反比例函數(shù)?一個(gè)是反比例函數(shù)與正比例函數(shù)又有哪些區(qū)別和聯(lián)系呢?”
課堂的結(jié)束,不應(yīng)該是草率的結(jié)束語和家庭作業(yè),還應(yīng)該是將學(xué)生引入下一節(jié)課的知識和課程,引導(dǎo)學(xué)生進(jìn)行知識的拓展以及深化。教師在課堂結(jié)尾留給學(xué)生課后問題,把所學(xué)知識從課堂延續(xù)到課下,讓學(xué)生當(dāng)作課下作業(yè)繼續(xù)深入研究,以此激勵(lì)學(xué)生學(xué)習(xí)的興趣與熱情。
總之,“結(jié)”無定法,嚴(yán)謹(jǐn)?shù)恼n程安排和豐富的教材內(nèi)容為我們施展才華提供了平臺與天地,課堂結(jié)尾的精心設(shè)計(jì),不僅可以精煉準(zhǔn)確地歸納總結(jié)教學(xué)內(nèi)容和課堂活動(dòng),而且能夠拓寬、延伸課堂內(nèi)容,增強(qiáng)課堂效果,升華學(xué)生的數(shù)學(xué)意識。
(作者單位:江蘇南通市通州區(qū)四安中學(xué))