• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Axisymmetric Slow Motion of a Prolate Particle in a Circular Capillary with Slip Surfaces

    2017-03-19 11:26:36HongYehHuanKeh

    Hong Y. Yeh, Huan J. Keh*

    1 Introduction

    The creeping motions of small particles in viscous fluids are of much fundamental and practical interest in many areas of science and technology. The theoretical treatment of this subject grew out of the classic work of Stokes (1851) for a no-slip spherical particlemigrating in an unbounded, incompressible, Newtonian fluid. Oberbeck (1876) extended this analysis to the migration of an ellipsoid. More recently, analytical results of low-Reynolds-number motions were obtained for a particle whose boundary conforms to a coordinate surface of one orthogonal curvilinear coordinate system in which the Stokes equations are simply separable [Payne and Pell (1960)] or semi-separable [Dassios,Hadjinicolaou, and Payatakes (1994)], for a slightly deformed sphere [Brenner (1964)],and for a slender body [Batchelor (1970)]. Additionally, the creeping motions of a particle of specific or general shape have been investigated semi-analytically by using the boundary collocation method [Gluckman, Pfeffer, and Weinbaum (1971)], boundary integral method [Youngren and Acrivos (1975)], and singularity method [Chwang and Wu (1975)].

    When one tries to solve the creeping-flow problems, no-slip boundary conditions are usually taken at the solid-fluid interfaces. Although this assumption is validated by experimental evidences at macroscopic scales, it is seldom accepted microscopically [Pit,Hervet and Leger (2000); Martini et al. (2008)]. The phenomena that the adjacent fluid slips frictionally over a solid surface occur in many cases, such as the rarefied gas flow past an aerosol particle [Ying and Peters (1991); Keh and Shiau (2000)], liquid flow next to a lyophobic surface [Churaev, Sobolev, and Somov (1984); Gogte et al. (2005)],micropolar fluid flow around a rigid particle [Sherif, Faltas, and Saad (2008)], and viscous fluid flow over the surface of a porous medium [Saffman (1971); Nir (1976)] or a small particle of molecular size [Hu and Zwanzig (1974)]. Presumably, any such slipping would be proportional to the local shear stress of the fluid adjacent to the solid surface[Felderhof (1977); Keh and Chen (1996)], known as Navier’s slip [Eqs. (4) and (5)], and the proportionality constantβ-1is termed the slip coefficient of the solid-fluid interface.The drag force acting on a migrating spherical particle of radiusb with a slip surface by an unbounded fluid of viscosityηcan be expressed as [Basset (1961); Happel and Brenner (1983)]

    The analysis of creeping motion of a no-slip particle which deforms slightly in shape from a sphere in an arbitrary direction pioneered by Brenner (1964) was extended to a slightly deformed slip sphere and closed-form expressions for the hydrodynamic drag force exerted on it were obtained to the first order [Palaniappan (1994); Senchenko and Keh (2006)] and second order [Chang and Keh (2009)] in the small parameter characterizing the deformation. On the other hand, the semi-separable general solution in the form of an infinite series expansion for the axisymmetric creeping flow in spheroidal coordinates developed by Dassios, Hadjinicolaou, and Payatakes (1994) was used to examine the slip flow past a spheroid and to derive the drag force experienced by it in explicit forms [Deo and Datta (2002); Keh and Chang (2008)]. Recently, the creeping flows caused by a general axisymmetric particle with a slip surface migrating parallel[Keh and Huang (2004); Wan and Keh (2009)] and perpendicular [Chang and Keh (2011)]to its axis of revolution have been studied semi-analytically by using a method of internal singularity distribution incorporated with a boundary collocation technique.

    In real situations of colloidal motion, particles are seldom isolated and will move in the presence of confining boundaries. Therefore, the boundary effects on creeping motion of particles with fluid slip at the solid surfaces are essential and have been investigated for various cases of a confined sphere [Reed and Morrison (1974); Chen and Keh (1995);Keh and Chang (1998); Lu and Lee (2002); Chen and Keh (2003); Chang and Keh (2006);Keh and Chang (2007); Keh and Lee (2010); Faltas and Saad (2011); Lee and Keh (2013,2014); Chiu and Keh (2016, 2017); Li and Keh (2017)]. Recently, the axisymmetric translation [Keh and Chang (2010)] and rotation [Wan and Keh (2011)] of a slip particle of revolution at an arbitrary position between two parallel plane walls have also been studied using the method of distributed internal singularities. In the current article, we adopt the same method to analyze the creeping flow caused by a general prolate particle of revolution undergoing axially symmetric migration in a circular capillary with slip surfaces.The drag forces acting on a spheroid and a Cassini oval (which has various configurations from a sphere to a partially concave body as its shape parameter takes different values) by the suspending fluid are numerically calculated with good convergence for broad ranges of the particle shape parameter, particle-to-capillary size ratio, and normalized slip coefficients.These results agree excellently with those available in the literature for the particular cases of a slip sphere, a no-slip spheroid, and a no-slip Cassini oval migrating in the capillary.

    2 Mathematical formulation of the general problem

    Consider the steady creeping motion of an axially symmetric, prolate particle along its axis of revolution which is also the centerline of a circular capillary of radiusR filled with a quiescent, incompressible, Newtonian fluid of viscosityη, as shown in Fig.1.Here(ρ,φ,z)and(r,θ,φ)are the circular cylindrical and spherical coordinate systems,respectively, with the origin at the center of the particle. The particle migrates with a velocity, whereis the unit vector in thedirection. The fluid may slip frictionally at the particle surface Spand at the capillary wallρ=R.

    Figure 1: Geometrical sketch for the migration of an axisymmetric prolate particle along its axis of revolution in a coaxial circular capillary.

    The Reynolds number is sufficiently small so that the fluid motion is governed by the Stokes equations,

    is the viscous stress tensor,is the unit vector in thedirection,is the unit normal vector on the particle surfacepointing into the fluid,is the unit dyadic, and the constantsare the Navier slip coefficients about the particle surface and capillary wall, respectively.

    To solve Eqs. (2) - (6) for the axially symmetric motion, a set of spherical singularities satisfying Eqs. (2), (3), (5), and (6) will be distributed along the axis of revolution inside the particle. The fluid flow field is constructed by the superposition of these singularities and the boundary condition (4) over the particle surface can be satisfied by using a multipole collocation method.

    The fluid velocity components in circular cylindrical coordinates caused by a spherical singularity at the pointρ =0and z =hare [Keh and Chang (2007)]a

    A segment along the axis of revolution (ρ =0) between the points z =c1≤0and z=c2≥0within the particle is taken on which a set of spherical singularities are distributed. The general solution of the fluid velocity can be approximated by the superposition of these singularities into the integral form of Eqs. (7) and (8),

    where Bn(t)and Dn(t)are the unknown density distribution functions.

    In order to use the boundary collocation method, we apply the M-point Gauss-Legendre quadrature of integration [Hornbeck (1975)] to Eq. (10) and truncate the infinite seriesafter terms to result in

    Substituting Eqs. (11) and (12) into Eq. (4), we obtain

    In the next two sections, the above-described semi-analytical procedure will be taken to solve for the axisymmetric motions of a prolate spheroid and a prolate Cassini oval,respectively, in a circular capillary. In both cases, the streamline geometry is symmetric about z and only the terms with even nare retained in Eqs. (11) - (13). For the simple case of migration of a spherical particle (can be degenerated from either spheroid or Cassini oval) along the axis of the circular capillary with slip surfaces, only one singularity at the particle center (with h =0) is needed and the numerical results of the drag force have been obtained by Keh and Chang (2007).

    3 Motion of a prolate spheroid

    In this section, we consider the migration of a prolate spheroid along its axis of revolution in a coaxial circular capillary, where the fluid is allowed to slip at the solid surfaces.The surface of a prolate spheroid and the local components of its unit normal in Eqs. (14)and (15) are given by

    The method of combined singularity distribution and boundary collocation presented in the previous section is used to obtain the solution for the axisymmetric migration of a prolate spheroid in a circular capillary with slip surfaces. The details of the numerical scheme used for this work were given in an earlier paper [Keh and Chang (2010)], in which excellent accuracyand convergence behavior were achieved. Our solutions of thehydrodynamic dragforceexerted on the confined prolate spheroid normalized by the corresponding drag acting on an unconfined spheroid (i.e., as) are presented in Tables1 and 2 for various values of the particle aspect ratio, particle slip parameter, wall slip parameter and particle-wall spacing parameter. The results converge to at least the significant figures as given. For the difficult case ofthe number of collocation points withsufficiently large to achieve this convergence. For the special cases of andisour results are in excellent agreement with the available solutions for the axisymmetric motions of a slip sphere in a slip circular capillary [Keh and Chang(2007)] and of a no-slip spheroid in a no-slip capillary [Yeh and Keh (2013)],respectively.

    The numerical results for the normalized hydrodynamic drag force F /F0(or viscous retardation) for the axially symmetric migration of a prolate spheroid with aspect ratioin a circular capillary as functions of the spacing parameter b /Rand particle slip parameterβb/ηare plotted in Fig. 2 for the limiting cases of no-slip capillary walland perfect-slip capillary wall. Analogous to the corresponding motion of a spherical particle, Tables 1 and 2 as well as Fig. 2 show that the approach of the capillary wall can significantly enhance the hydrodynamic drag experienced by the spheroid. For a spheroid with given values ofandincreases monotonically with an increase in the ratiofrom unity atto infinity in the touching limitThe normalized wall-corrected drag force exerted on the spheroid in general decreases with decreases in(i.e., with increasing slippage at the solid surfaces), keepingandunchanged. Interestingly, when the capillary wall does not slip much (with a large value ofand the value ofis close to unity (especially asis large),first decreases with an increase inreaches a minimum at some finite value oand then increases with increasingto the limit

    Figure 2a: Plots of the normalized drag force F /F0for the axially symmetric migration of a prolate spheroid with a /b =2in a circular capillary for various values of the spacing parameter b/Rand particle slip parameterβb /η: (a) F /F0versus b/R; (b)F/F0versusβb /η. The solid and dashed curves represent the cases ofbη→ ∞and β wb /η=0, respectively.

    Figure 2b: Plots of the normalized drag force F /F0for the axially symmetric migration of a prolate spheroid with a /b=2in a circular capillary for various values of the spacing parameter b /Rand particle slip parameterβb /η: (a)F/F0versus b/R; (b) F /F0versusβb/η. The solid and dashed curves represent the cases of /η→ ∞and /η=0, respectively.

    In Fig. 3, the results of the normalized drag force F /F0for the axially symmetric migration of a prolate spheroid withβb /η→ ∞and βb/η=0in a circular capillary withare plotted versusfor various values of b /R. Tables 1 and 2 as well as Fig. 3 indicate that, for given values of b /R,βb /η, andβwb/η, the ratio F /F0in general is an increasing function of a /b, since the increase in the surface area of the spheroid for its viscous interaction with the capillary wall enhances the hydrodynamic resistance to the motion of the particle. However, whenβb/η→0and eitherdecreases with an increase in(and a minimum ofcan appear at some intermediate value ofis large), due to the slippage at the particle surface. In general,is not a very sensitive function of

    Figure 3: Plots of the normalized drag force F /F0for the axially symmetric migration of a prolate spheroid in a circular capillary with /η=0versus the reciprocal of particle aspect ratio ( a /b)-1for various values of the spacing parameterb /R. The solid and dashed curves represent the cases ofβb/η→ ∞andβb /η=0, respectively.

    Table 1: The normalized drag force F /F0exerted on a prolate spheroid migrating axi-symmetrically in a circular capillary withβwb/η→∞at various values of the parameters a /b, b /R, and βb/η

    0.9 469.170 501.699 749.832 1248.51 1679.50 0.95 2806.65 3013.32 4569.68 7644.97 10264.2 0.975 16290.8 1.756E4 2.668E4 4.431E4 5.85E4

    Table 2: The normalized drag force F /F0exerted on a prolate spheroid migrating axisymmetrically in a circular capillary withβw =βat various values of the parameters a/b, b /R, and βb/η.

    4 Motion of a prolate Cassini oval

    The method of combined singularity distribution and boundary collocation is used in this section to solve for the hydrodynamic drag force experienced by a prolate Cassini oval undergoing axial symmetric migration in a circular capillary with slip surfaces. The surface of a prolate Cassini oval [Keh and Tseng (1994)] and the local components of its outward unit normal in cylindrical coordinates are expressed by

    and

    In Tables 3 and 4, numerical results of the drag forceexerted by the fluid on a prolate Cassini oval migrating axi-symmetrically in a circular capillary normalized by its valuein an unbounded fluidare presented for various values of the slip parametersparticle shape parameter(up to 0.95), and particle-wall spacing parameter(up to 0.975), whereis the larger one betweenAgain, our solutions for the limiting cases of(same as those given for the case ofin Tables 1 and 2) andagree excellently with the results for the axisymmetric motions of a slip sphere in a slip circular capillary [Keh and Chang (2007)] and of a no-slip Cassini oval in a no-slip capillary [Yeh and Keh (2013)], respectively.

    Numerical values of the normalized hydrodynamic drag forcefor the axially symmetric migration of a prolate Cassini oval with shape parametein a circular capillary as a function of the spacing parameterand particle slip parameterare plotted in Fig. 4 for the cases of no-slip capillary walland perfect-slip capillary wallSimilar to the corresponding motion of a slip prolate spheroid considered in the previous section, Tables 3 and 4 as well as Fig.4 also show that the approach of the capillary wall can substantially increase the hydrodynamic drag experienced by the slip Cassini oval. For a Cassini oval with a given shape parameteincreases monotonically with an increase in the ratio b /Rfrom unity at b /R =0to infinity in the touching limit b/R =1, and in general decreases with decreases in βb /ηandβwb/η. Again, when the capillary wall does not slip much and the value of b /Ris close to unity, F /F0first decreases with an increase inβb/ηfromβb/η=0before attaining a minimum, and then increases with a further increase inβb/η.

    0.2 1.70173 1.76840 1.89405 2.03118 2.09774 2.10648 0.4 3.70451 4.04497 4.71003 5.31421 5.29098 5.23439 0.6 11.6571 13.3944 17.1162 19.6686 17.8918 17.3608 0.8 79.9433 97.0826 141.978 155.944 125.345 120.368 0.9 507.226 637.551 1063.90 1037.97 790.890 759.547 0.95 3050.36 3919.74 7511.60 6214.28 4723.97 4522.7 0.975 17748.3 23094.7 50904.0 35308.8 27262 2.6E4

    Table 4: The normalized drag force F /F0exerted on a prolate Cassini oval migrating axi-symmetrically in a circular capillary withβw =βat various values of the parameters(c /d)2, b /R, and βb/η.

    0.95 344.508 383.401 566.270 464.278 334.720 317.3 0.975 1.05E3 1176 1954.78 1383.1 991 9.4E2

    Figure 4a: Plots of the normalized drag force F/F0for the axially symmetric migration of a prolate Cassini oval with ( c /d)2=0.8in a circular capillary for various values of the spacing parameter b /Rand particle slip parameter βb /η: (a)F/F0; (b) F /F0versus βb/η. The solid and dashed curves represent the cases of βwb/η→ ∞and =0, respectively.

    Figure 4b: Plots of the normalized drag force F /F0for the axially symmetric migration of a prolate Cassini oval with ( c /d)2=0.8in a circular capillary for various values of the spacing parameter b /Rand particle slip parameterβb /η: (a) F /F0versus b /R;(b) F /F0versusβb/η. The solid and dashed curves represent the cases of βw b /η→ ∞and /η=0, respectively.

    Figure 5: Plots of the normalized drag force 0/FF for the axially symmetric migration of a prolate Cassini oval in a circular capillary with 0/βb w =ηversus the particle shape parameter 2). The solid and dashed curves represent the cases of∞→ηβ/b( dc/for various values of the spacing parameter Rb/and 0/=ηβb , respectively.

    In Fig. 5, the results of the normalized drag force F /F0for the axially symmetric migration of a prolate Cassini oval with βb /η→ ∞and βb/η=0in a circular capillary with βwb/η=0as a function of its shape parameterfor various values of the spacing parameter b /Rare plotted. Tables 3 and 4 as well as Fig. 5 indicate that, for a given value of b /Rand a relatively large value of βb/ηor βwb /η, the ratio F /F0in general increases with an increase in ( c /d)2in the range of 0 ≤ ( c/d)2≤1/2(due to the increase in the surface area of the Cassini oval for its viscous interaction with the capillary wall), but can reach a maximum at a value of(c/d)2>1/2(this value increases with decreasing b /R) and then decrease with a further increase in ( c /d)2(because the increase in the concave portion of the Cassini oval reduces the hydrodynamic retardation effect of the capillary wall). However, when βb/η→0and eitherβwb /ηor b /Ris small, F /F0can first decrease with an increase in ( c /d)2, reach a minimum at some value of ( c /d)2, and then increase with a further increase in ( c /d)2, due to the slippage at the particle surface. For the case of large b /Rand small to moderate βb /ηand βwb /η, F /F0can encounter both a minimum and a maximum with an increase in ( c /d)2in the whole range. Also, F /F0is not a very sensitive function of ( c /d)2in the whole range, but the boundary effect on the migration of the particle is significant.

    5 Conclusions

    The creeping motion of an axisymmetric prolate particle along its axis of revolution in a coaxial circular capillary with slip-flow surfaces is examined by using the method of combined singularity distribution and boundary collocation. The convergent and accurate solutions of the normalized hydrodynamic drag force F /F0for the axially symmetric migrations of a prolate spheroid and of a prolate Cassini oval are obtained for broad ranges of the particle aspect ratio a /band shape parameter, respectively, the particle-wall separation parameterb /R, the particle slip parameter βb/η, and the wall slip parameterβwb /η. For constant values o, the normalized drag F /F0in general decreases with decreasing(increasing slippage at the solid surfaces), but there are exceptions when the values of bothare large. For given values of b/R,βb /η, andβwb/η, the normalized dragincreases with an increase in the axial-to-radial aspect ratio of the particle (or effective surfacearea for the particle-wall hydrodynamic interaction), but this trend can be reversed as is small (the particle is highly slippery). The boundary effect of the capillary wall on the migration of the particle is significant when they are close to each other.

    Appendix A: Definitions of functions in Section 2. Some functions in Section 2 are defined a s

    Basset, A. B. (1961): A treatise on hydrodynamics, vol. 2, Dover, New York.

    Batchelor, G. K. (1970): Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech., vol. 44, pp. 419-440.

    Brenner, H. (1964): The Stokes resistance of a slightly deformed sphere. Chem. Eng. Sci.,19, 519-539.

    Chang, Y. C.; Keh, H. J. (2006): Slow motion of a slip spherical particle perpendicular to two plane walls. J. Fluids Structures, vol.22, pp.647-661.

    Chang, Y. C.; Keh, H. J. (2009): Translation and rotation of slightly deformed colloidal spheres experiencing slip. J. Colloid Interface Sci., vol.330, no.1, 201-210.

    Chang, Y. C.; Keh, H. J. (2011): Theoretical study of the creeping motion of axially and fore-and-aft symmetric slip particles in an arbitrary direction. Eur. J. Mech. B Fluids,vol.30, pp.236-244.

    Chen, P. Y.; Keh, H. J. (2003): Slow motion of a slip spherical particle parallel to one or two plane walls. J. Chin. Inst. Chem. Engrs., vol.34, pp.123-133.

    Chen, S. H.; Keh, H. J. (1995): Axisymmetric motion of two spherical particles with slip surfaces. J. Colloid Interface Sci., vol.171, pp.63-72.

    Chiu, H. C.; Keh, H. J. (2016): Electrophoresis of a colloidal sphere with double layer polarization in a microtube. Microfluid. Nanofluid., vol. 20, no.64-1-13.

    Chiu, H. C.; Keh, H. J. (2017): Diffusiophoresis of a charged particle in a microtube.Electrophoresis, vol.38, pp. 2468-2478.

    Churaev, N. V.; Sobolev, V. D.; Somov, A. N. (1984): Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci., vol.97, pp.574-581.

    Chwang, A. T.; Wu, T. Y. (1975): Hydrodynamic of low-Reynolds-number flow, Part 2.Singularity method for Stokes flows. J. Fluid Mech., vol.67, pp.787-815.

    Dassios, G.; Hadjinicolaou, M.; Payatakes, A.C. (1994): Generalized eigenfunctions and complete semiseparable solutions for Stokes flow in spheroidal coordinates. Quart.Appl. Math., vol.52, pp.157-191.

    Deo, S.; Datta, S. (2002): Slip flow past a prolate spheroid. Indian J. Pure Appl. Math. ,vol.33, pp.903-909.

    Faltas, M. S.; Saad, E. I. (2011): Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math. Meth. Appl. Sci., vol.34, pp.1594-1605.

    Felderhof, B. U. (1977): Hydrodynamic interaction between two spheres. Physica,vol.89A, pp.373-384.

    Gluckman, M. J.; Pfeffer, R.; Weinbaum, S. (1971): A new technique for treating multi-particle slow viscous flow: axisymmetric flow past spheres and spheroids. J. Fluid Mech., vol.50, pp.705-740.

    Gogte, S.; Vorobieff, P.; Truesdell, R.; Mammoli, A.; van Swol, F.; Shah, P.; Brinker,C. J. (2005): Effective slip on textured superhydrophobic surfaces. Phys. Fluids, vol.17,no.051701, pp.1-4.

    Happel, J.; Brenner, H. (1983): Low Reynolds number hydrodynamics. Nijhoff, The Netherlands.

    Hornbeck, R. W. (1975): Numerical Methods. Quantum Publishers, New York.

    Hu, C. M.; Zwanzig, R. (1974): Rotational friction coefficients for spheroids with the slipping boundary condition. J. Chem. Phys., vol. 60, pp.4354-4357.

    Keh, H. J.; Chang, J. H. (1998): Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity. Chem. Eng. Sci.,vol.53, pp.2365-2377.

    Keh, H. J.; Chang, Y. C. (2007): Slow motion of a slip spherical particle in a circular cylindrical pore. Int. J. Multiphase Flow, vol.33, pp.726-741.

    Keh, H. J.; Chang, Y. C. (2008): Slow motion of a slip spheroid along its axis of revolution. Int. J. Multiphase Flow, vol.34, pp.713-722.

    Keh, H. J.; Chang, Y. C. (2010): Slow motion of a general axisymmetric slip particle along its axis of revolution and normal to one or two plane walls. CMES: Computer Modeling in Engineering & Sciences, vol. 62, pp.225-253.

    Keh, H. J.; Chen, S. H. (1996): The motion of a slip spherical particle in an arbitrary Stokes flow. Eur. J. Mech., B/Fluids, vol.15, pp.791-807.

    Keh, H. J.; Huang, C. H. (2004): Slow motion of axisymmetric slip particles along their axes of revolution. Int. J. Eng. Sci., vol.42, pp.1621-1644.

    Keh, H. J.; Lee, T. C. (2010): Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity. Theor. Comput. Fluid Dyn., vol.24, pp.497-510.

    Keh, H. J.; Shiau, S. C. (2000): Effects of inertia on the slow motion of aerosol particles.Chem. Eng. Sci., vol.42, pp.1621-1644.

    Keh, H. J.; Tseng, C. H. (1994): Slow motion of an arbitrary axisymmetric body along its axis of revolution and normal to a plane surface. Int. J. Multiphase Flow, vol.20,pp.185-210.

    Lee, T. C.; Keh, H. J. (2013): Slow motion of a spherical particle in a spherical cavity with slip surfaces. Int. J. Eng. Sci., vol.69, pp.1-15.

    Lee, T. C.; Keh, H. J. (2014): Electrophoretic motion of a charged particle in a charged cavity. Eur. J. Mech. B/Fluids, vol.46, pp.183-192.

    Li, C. Y.; Keh, H. J. (2017): Thermophoresis of a spherical particle in a microtube. J.Aerosol Sci., vol.113, pp.71-84.

    Lu, S. Y.; Lee, C. T. (2002): Creeping motion of a spherical aerosol particle in a cylindrical pore. Chem. Eng. Sci., vol.57, pp.1479-1484.

    Martini, A.; Roxin, A.; Snurr, R. Q.; Wang, Q.; Lichter, S. (2008): Molecular mechanisms of liquid slip. J. Fluid Mech., vol.600, pp.257-269.

    Nir, A. (1976): Linear shear flow past a porous particle. Appl. Sci. Res., vol.32,pp.313-325.

    Oberbeck, A. (1876): Uber stationare Flussigkeitsbewegungen mit Berucksichtigung der inner Reibung. J. Reine Angew. Math., vol.81, pp.62-80.

    Palaniappan, D. (1994): Creeping flow about a slightly deformed sphere. Z. Angew.Math. Phys., vol.45, pp.832-838.

    Payne, L. E.; Pell, W. H. (1960): The Stokes flow problem for a class of axially symmetric bodies. J. Fluid Mech., vol.7, pp.529-549.

    Pit, R.; Hervet, H.; Leger, L. (2000): Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett., vol.85, pp.980-983.

    Reed, L. D.; Morrison, F. A. (1974): Particle interactions in viscous flow at small values of Knudsen number. J. Aerosol Sci., vol.5, pp.175-189.

    Saffman, P. G. (1971): On the boundary condition at the surface of a porous medium.Studies Appl. Math., vol.50, pp.93-101.

    Senchenko, S.; Keh, H. J. (2006): Slipping Stokes flow around a slightly deformed sphere. Phys. Fluids, vol.18, pp.088104-1-4.

    Sherif, H. H.; Faltas, M. S.; Saad, E. I. (2008): Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid. Z. Angew. Math. Phys.,vol.59, pp.293-312.

    Stokes, G. G. (1851): On the effect of the internal friction of fluid on pendulums. Trans.Cambridge Phil. Soc., vol.9, pp.8-106.

    Wan, Y. W.; Keh, H. J. (2009): Slow rotation of an axisymmetric slip particle about its axis of revolution. CMES: Computer Modeling in Engineering & Sciences, vol. 53,pp.73-93.

    Wan, Y. W.; Keh, H. J. (2011): Slow rotation of an axially symmetric particle about its axis of revolution normal to one or two plane walls. CMES: Computer Modeling in Engineering & Sciences, vol. 74, pp.109-137.

    Yeh, H. Y.; Keh, H. J. (2013): Axisymmetric creeping motion of a prolate particle in a cylindrical pore. Eur. J. Mech. B Fluids, vol.39, pp.52-58.

    Ying, R.; Peters M. H. (1991): Interparticle and particle-surface gas dynamic interactions. Aerosol Sci. Technol., vol.14, pp.418-433.

    Youngren, G. K.; Acrivos, A. (1975): Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech., vol.69, pp.377-403.

    少妇的逼好多水| 精华霜和精华液先用哪个| 国产在视频线在精品| 1024手机看黄色片| 欧美性感艳星| 国产精品一区二区三区四区久久| 日韩人妻高清精品专区| 又紧又爽又黄一区二区| 午夜免费男女啪啪视频观看 | 欧美潮喷喷水| 国产日本99.免费观看| 欧美黑人巨大hd| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 最后的刺客免费高清国语| 99国产综合亚洲精品| 亚洲自偷自拍三级| 国产免费av片在线观看野外av| 亚洲国产高清在线一区二区三| 99精品在免费线老司机午夜| 国产69精品久久久久777片| 亚洲精品久久国产高清桃花| 丰满乱子伦码专区| 色吧在线观看| 国产精品av视频在线免费观看| 色在线成人网| 嫩草影视91久久| 老熟妇乱子伦视频在线观看| 脱女人内裤的视频| 极品教师在线视频| 久久久国产成人免费| 日韩av在线大香蕉| 日本精品一区二区三区蜜桃| 深夜a级毛片| 国产精品1区2区在线观看.| 99精品在免费线老司机午夜| 精品无人区乱码1区二区| 国模一区二区三区四区视频| 香蕉av资源在线| 亚洲精品在线观看二区| 亚洲国产精品久久男人天堂| 精品久久国产蜜桃| 午夜a级毛片| 午夜福利18| 亚洲国产精品sss在线观看| 欧美日本亚洲视频在线播放| 三级国产精品欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| netflix在线观看网站| 国产精品野战在线观看| 99热这里只有精品一区| 午夜精品久久久久久毛片777| 观看美女的网站| 亚洲内射少妇av| 国产高清视频在线观看网站| av欧美777| 亚洲成人中文字幕在线播放| 日韩成人在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 又紧又爽又黄一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲人成网站高清观看| 中文字幕免费在线视频6| 桃色一区二区三区在线观看| x7x7x7水蜜桃| 狂野欧美白嫩少妇大欣赏| 国产真实乱freesex| 午夜精品在线福利| 欧美黑人巨大hd| 免费看美女性在线毛片视频| 久久久久久久久久黄片| www日本黄色视频网| 国产三级在线视频| 国产乱人视频| 大型黄色视频在线免费观看| av在线蜜桃| 悠悠久久av| 国产一区二区三区视频了| 一个人看视频在线观看www免费| 淫妇啪啪啪对白视频| 婷婷丁香在线五月| 99热这里只有是精品在线观看 | 欧美精品啪啪一区二区三区| 亚洲,欧美,日韩| 熟妇人妻久久中文字幕3abv| 欧美日韩国产亚洲二区| 老司机深夜福利视频在线观看| 日日夜夜操网爽| 欧美高清性xxxxhd video| 性欧美人与动物交配| 一级作爱视频免费观看| 国产精品久久久久久人妻精品电影| 国产国拍精品亚洲av在线观看| 99国产极品粉嫩在线观看| av在线观看视频网站免费| 村上凉子中文字幕在线| 他把我摸到了高潮在线观看| 久久精品久久久久久噜噜老黄 | av欧美777| 亚洲第一区二区三区不卡| 亚洲中文日韩欧美视频| 男人舔奶头视频| 亚洲色图av天堂| 麻豆国产av国片精品| 美女 人体艺术 gogo| 高清在线国产一区| 一个人看视频在线观看www免费| 国产一级毛片七仙女欲春2| 成人三级黄色视频| 综合色av麻豆| 久9热在线精品视频| 欧美最黄视频在线播放免费| 欧美三级亚洲精品| 日韩欧美国产一区二区入口| 久久久久久久久久黄片| 97热精品久久久久久| 国产精品伦人一区二区| 怎么达到女性高潮| 看十八女毛片水多多多| 成人三级黄色视频| 久久久久久大精品| 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 色综合婷婷激情| 精品国产亚洲在线| 五月伊人婷婷丁香| 精品久久国产蜜桃| 日韩 亚洲 欧美在线| av专区在线播放| 一区二区三区激情视频| 色在线成人网| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美清纯卡通| 尤物成人国产欧美一区二区三区| 成人永久免费在线观看视频| 一级黄色大片毛片| 国产野战对白在线观看| 丰满人妻一区二区三区视频av| 俄罗斯特黄特色一大片| 一本久久中文字幕| 夜夜夜夜夜久久久久| 国产又黄又爽又无遮挡在线| netflix在线观看网站| 99视频精品全部免费 在线| 久久国产乱子免费精品| 亚洲自偷自拍三级| 亚洲七黄色美女视频| 俺也久久电影网| 亚洲久久久久久中文字幕| 日本熟妇午夜| 2021天堂中文幕一二区在线观| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 色在线成人网| 两个人视频免费观看高清| 男人狂女人下面高潮的视频| 好看av亚洲va欧美ⅴa在| 国产男靠女视频免费网站| 我要看日韩黄色一级片| 成年免费大片在线观看| 在线观看舔阴道视频| av在线观看视频网站免费| 琪琪午夜伦伦电影理论片6080| 男插女下体视频免费在线播放| 丰满人妻熟妇乱又伦精品不卡| 人妻制服诱惑在线中文字幕| 波多野结衣高清无吗| 国产欧美日韩精品亚洲av| а√天堂www在线а√下载| 在线免费观看不下载黄p国产 | 日韩大尺度精品在线看网址| 啦啦啦韩国在线观看视频| 亚洲欧美日韩东京热| 午夜福利在线观看免费完整高清在 | 色综合站精品国产| 免费观看的影片在线观看| 国产v大片淫在线免费观看| 免费人成在线观看视频色| 老司机深夜福利视频在线观看| 亚洲av成人不卡在线观看播放网| 国产av不卡久久| 国产亚洲精品久久久com| 两人在一起打扑克的视频| 亚洲不卡免费看| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| 在线免费观看的www视频| 嫁个100分男人电影在线观看| 成年免费大片在线观看| 国内久久婷婷六月综合欲色啪| 搞女人的毛片| 精品一区二区三区视频在线观看免费| 国产精品久久久久久精品电影| 国产一区二区激情短视频| 欧美成狂野欧美在线观看| 日韩欧美在线二视频| 国产黄片美女视频| 欧美bdsm另类| 国产高清有码在线观看视频| 国模一区二区三区四区视频| 美女高潮的动态| 国产色婷婷99| 国产乱人伦免费视频| 成人av一区二区三区在线看| 少妇丰满av| 亚洲性夜色夜夜综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 丁香六月欧美| 麻豆久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 女生性感内裤真人,穿戴方法视频| 毛片一级片免费看久久久久 | 90打野战视频偷拍视频| 日韩亚洲欧美综合| 别揉我奶头 嗯啊视频| 欧美乱色亚洲激情| 神马国产精品三级电影在线观看| 亚洲综合色惰| 床上黄色一级片| 午夜免费激情av| 婷婷丁香在线五月| 搡老熟女国产l中国老女人| 12—13女人毛片做爰片一| 国内揄拍国产精品人妻在线| 噜噜噜噜噜久久久久久91| 成年人黄色毛片网站| 免费看日本二区| 精品久久久久久成人av| 亚洲欧美日韩高清在线视频| 一个人看的www免费观看视频| 午夜影院日韩av| 亚洲av成人av| 最近中文字幕高清免费大全6 | 舔av片在线| bbb黄色大片| 又黄又爽又刺激的免费视频.| 91狼人影院| 亚洲第一区二区三区不卡| www日本黄色视频网| 制服丝袜大香蕉在线| 欧美丝袜亚洲另类 | 人人妻人人看人人澡| 色在线成人网| 欧美日韩中文字幕国产精品一区二区三区| 最新在线观看一区二区三区| 亚洲国产日韩欧美精品在线观看| 成人毛片a级毛片在线播放| 久久人人爽人人爽人人片va | 啦啦啦韩国在线观看视频| 亚洲专区中文字幕在线| 我要看日韩黄色一级片| 亚洲欧美激情综合另类| 国产成人a区在线观看| 亚洲一区二区三区不卡视频| 国产精品一区二区性色av| 欧美午夜高清在线| 午夜亚洲福利在线播放| 日韩 亚洲 欧美在线| 淫妇啪啪啪对白视频| 亚洲 欧美 日韩 在线 免费| 欧美日本亚洲视频在线播放| 精品免费久久久久久久清纯| 精品日产1卡2卡| 亚洲,欧美,日韩| 精品人妻1区二区| 欧美精品国产亚洲| 午夜福利视频1000在线观看| 久久精品国产亚洲av天美| 欧美+日韩+精品| 成人av一区二区三区在线看| 精品乱码久久久久久99久播| 久久久久久久精品吃奶| 女人被狂操c到高潮| 真实男女啪啪啪动态图| 日韩精品中文字幕看吧| 日韩免费av在线播放| 香蕉av资源在线| 欧美日韩乱码在线| 99精品久久久久人妻精品| 亚洲第一欧美日韩一区二区三区| 日日摸夜夜添夜夜添小说| 人妻制服诱惑在线中文字幕| 日本免费一区二区三区高清不卡| 国产一区二区在线观看日韩| 欧美性猛交黑人性爽| 亚洲五月天丁香| 一级av片app| 18+在线观看网站| 嫩草影视91久久| 成年女人永久免费观看视频| 非洲黑人性xxxx精品又粗又长| 亚洲成av人片在线播放无| 好男人电影高清在线观看| 九色成人免费人妻av| 夜夜爽天天搞| 精品日产1卡2卡| 中文字幕av在线有码专区| 三级国产精品欧美在线观看| 国产国拍精品亚洲av在线观看| 国产麻豆成人av免费视频| 男女那种视频在线观看| 久久香蕉精品热| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 精品99又大又爽又粗少妇毛片 | 亚洲av二区三区四区| 成人特级av手机在线观看| 免费在线观看亚洲国产| 99精品在免费线老司机午夜| 成年女人看的毛片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 最新在线观看一区二区三区| 少妇熟女aⅴ在线视频| 久久这里只有精品中国| 最后的刺客免费高清国语| 成人一区二区视频在线观看| 美女大奶头视频| 欧美成人一区二区免费高清观看| 国产伦精品一区二区三区四那| 国产精品av视频在线免费观看| 久久久国产成人免费| 91狼人影院| 日韩亚洲欧美综合| 91狼人影院| 欧美区成人在线视频| 国产 一区 欧美 日韩| 91狼人影院| 最新中文字幕久久久久| 制服丝袜大香蕉在线| 成人亚洲精品av一区二区| 国产黄片美女视频| 哪里可以看免费的av片| 一卡2卡三卡四卡精品乱码亚洲| 一个人看的www免费观看视频| 少妇丰满av| 十八禁人妻一区二区| 天堂av国产一区二区熟女人妻| www日本黄色视频网| 中文字幕人成人乱码亚洲影| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 窝窝影院91人妻| 91av网一区二区| 色精品久久人妻99蜜桃| 看免费av毛片| 精品人妻视频免费看| 午夜福利在线观看吧| 亚洲一区高清亚洲精品| 少妇高潮的动态图| 久久久成人免费电影| 欧美日韩乱码在线| 禁无遮挡网站| 啦啦啦观看免费观看视频高清| av在线观看视频网站免费| www.www免费av| 免费在线观看日本一区| 亚洲 欧美 日韩 在线 免费| 久久久久久大精品| 欧美中文日本在线观看视频| 欧美激情久久久久久爽电影| www.色视频.com| 亚洲五月婷婷丁香| 国产在线男女| 日本 av在线| 99国产精品一区二区蜜桃av| 中文在线观看免费www的网站| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 无人区码免费观看不卡| 国内精品一区二区在线观看| 亚洲,欧美精品.| 欧美成人a在线观看| 观看免费一级毛片| 国内少妇人妻偷人精品xxx网站| 黄色视频,在线免费观看| 性欧美人与动物交配| 精品不卡国产一区二区三区| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 在线天堂最新版资源| 露出奶头的视频| 成年免费大片在线观看| 一本综合久久免费| 精品人妻视频免费看| 久久九九热精品免费| 国产成+人综合+亚洲专区| 久久99热这里只有精品18| 亚洲成av人片免费观看| 国产亚洲精品av在线| 男女下面进入的视频免费午夜| 桃红色精品国产亚洲av| 免费看光身美女| 欧美黑人欧美精品刺激| 国产v大片淫在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 最好的美女福利视频网| 国模一区二区三区四区视频| 国产精品亚洲美女久久久| 床上黄色一级片| 国产在视频线在精品| 午夜福利18| 99在线视频只有这里精品首页| 网址你懂的国产日韩在线| 精品久久国产蜜桃| 亚洲久久久久久中文字幕| 此物有八面人人有两片| 男人的好看免费观看在线视频| 一个人看视频在线观看www免费| 久久婷婷人人爽人人干人人爱| 三级毛片av免费| 亚洲av五月六月丁香网| 免费高清视频大片| 男人狂女人下面高潮的视频| 夜夜看夜夜爽夜夜摸| 免费看美女性在线毛片视频| 国产精品一区二区免费欧美| 久久人人精品亚洲av| 男人和女人高潮做爰伦理| 国产高清三级在线| 亚洲乱码一区二区免费版| 日韩亚洲欧美综合| 欧美乱色亚洲激情| 日韩欧美一区二区三区在线观看| 99久国产av精品| 欧美三级亚洲精品| 国产中年淑女户外野战色| 国产熟女xx| 精品午夜福利在线看| 色尼玛亚洲综合影院| av国产免费在线观看| 中文字幕精品亚洲无线码一区| 亚洲 欧美 日韩 在线 免费| 久久亚洲真实| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 中文字幕免费在线视频6| 神马国产精品三级电影在线观看| 在线观看午夜福利视频| 午夜激情欧美在线| 日韩欧美在线乱码| 男女床上黄色一级片免费看| 成熟少妇高潮喷水视频| 亚洲精品亚洲一区二区| 男人的好看免费观看在线视频| 日韩欧美在线乱码| 天堂√8在线中文| 性欧美人与动物交配| 久久热精品热| 色播亚洲综合网| 波多野结衣巨乳人妻| 亚州av有码| 欧洲精品卡2卡3卡4卡5卡区| 久久久久亚洲av毛片大全| 午夜老司机福利剧场| 欧美乱色亚洲激情| 欧美性猛交黑人性爽| 观看免费一级毛片| 男女做爰动态图高潮gif福利片| 亚洲欧美激情综合另类| 每晚都被弄得嗷嗷叫到高潮| 免费观看的影片在线观看| 老司机深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 99热这里只有是精品50| 一进一出好大好爽视频| 99热这里只有精品一区| 村上凉子中文字幕在线| 国产成人av教育| 身体一侧抽搐| 午夜福利在线观看吧| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全电影3| 成人三级黄色视频| 精品熟女少妇八av免费久了| 夜夜看夜夜爽夜夜摸| 男女之事视频高清在线观看| 欧美一级a爱片免费观看看| eeuss影院久久| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| 欧美在线一区亚洲| 久久久久久久久久成人| 国产成人福利小说| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 国产亚洲欧美98| 国产乱人视频| 国模一区二区三区四区视频| 天天一区二区日本电影三级| 俄罗斯特黄特色一大片| 成人一区二区视频在线观看| 免费电影在线观看免费观看| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 精品人妻熟女av久视频| 1000部很黄的大片| 美女cb高潮喷水在线观看| 日本成人三级电影网站| 亚洲狠狠婷婷综合久久图片| 国产在线精品亚洲第一网站| 中文字幕人成人乱码亚洲影| 精品熟女少妇八av免费久了| 在线a可以看的网站| 嫩草影院新地址| 国产熟女xx| 变态另类丝袜制服| 亚洲久久久久久中文字幕| 91字幕亚洲| 亚洲精品久久国产高清桃花| 91九色精品人成在线观看| 亚洲精品色激情综合| 老司机午夜福利在线观看视频| 1000部很黄的大片| 欧美成人一区二区免费高清观看| 成人永久免费在线观看视频| 欧美精品国产亚洲| 中文在线观看免费www的网站| 搡老岳熟女国产| 美女高潮的动态| 免费看a级黄色片| 最新在线观看一区二区三区| 午夜免费成人在线视频| 欧美色视频一区免费| 精品福利观看| 在线观看美女被高潮喷水网站 | 成年免费大片在线观看| 成人特级黄色片久久久久久久| 制服丝袜大香蕉在线| 看片在线看免费视频| 床上黄色一级片| 亚洲三级黄色毛片| 免费电影在线观看免费观看| 亚洲美女搞黄在线观看 | 亚洲欧美清纯卡通| 在线观看免费视频日本深夜| 国产精品久久视频播放| 一个人看视频在线观看www免费| 搡老妇女老女人老熟妇| 91狼人影院| 淫秽高清视频在线观看| 丁香六月欧美| 亚洲国产欧洲综合997久久,| 天堂网av新在线| 88av欧美| 精品久久久久久久久久免费视频| 国产av不卡久久| 欧美高清成人免费视频www| 在线观看美女被高潮喷水网站 | 亚洲综合色惰| 国产在线精品亚洲第一网站| 久久久久久国产a免费观看| 搡老熟女国产l中国老女人| 岛国在线免费视频观看| 国产亚洲精品综合一区在线观看| 最近视频中文字幕2019在线8| 伊人久久精品亚洲午夜| av视频在线观看入口| 激情在线观看视频在线高清| 岛国在线免费视频观看| 国产毛片a区久久久久| 日日干狠狠操夜夜爽| 久久久久国产精品人妻aⅴ院| 女人十人毛片免费观看3o分钟| 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 男人的好看免费观看在线视频| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 三级国产精品欧美在线观看| 熟女人妻精品中文字幕| 人人妻,人人澡人人爽秒播| 夜夜夜夜夜久久久久| 欧美在线黄色| 国产在视频线在精品| 九色成人免费人妻av| 日日摸夜夜添夜夜添av毛片 | 一区二区三区免费毛片| 欧美日韩综合久久久久久 | 亚洲18禁久久av| 欧美潮喷喷水| 色综合站精品国产| 中文字幕av在线有码专区| av在线天堂中文字幕| 亚洲欧美日韩东京热| 色播亚洲综合网| av天堂中文字幕网| 亚洲最大成人手机在线| 亚洲成人久久性| 99热6这里只有精品| 亚洲成人精品中文字幕电影| 老司机午夜福利在线观看视频| 久久这里只有精品中国| 日本五十路高清| 免费在线观看成人毛片| 18禁黄网站禁片免费观看直播| 精品日产1卡2卡| 丰满的人妻完整版| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 国产高清激情床上av| 久久国产精品人妻蜜桃| 有码 亚洲区| 亚洲国产日韩欧美精品在线观看| а√天堂www在线а√下载| 亚洲av二区三区四区| 午夜老司机福利剧场| 99久久久亚洲精品蜜臀av| xxxwww97欧美| 3wmmmm亚洲av在线观看| 在线播放国产精品三级|