• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Adaptive Load Stepping Algorithm for Path-Dependent Problems Based on Estimated Convergence Rates

    2017-03-19 11:26:32ArajoFernandesCardosoandMansur

    M.T.C. Araújo Fernandes, C.O. Cardoso and W.J. Mansur

    1 Introduction

    In nonlinear finite element modelling, the use of robust and efficient solution algorithms is a fundamental step for the success of a reliable analysis. The main purpose of these algorithms is to solve a set of nonlinear algebraic equations. The solution algorithms are efficient when besides being reliable, the computational cost and the analyst effort are relatively low. In order to improve these two characteristics, robust adaptive solution algorithms are continuously presented in the literature [Bathe and Dvorkin (1983)].

    Nonlinear structural problems solved by numerical algorithms may have multiple solutions (analyses with snap-through or snap-back buckling) or be path-dependent(analyses with material nonlinearities) [Bergan et al (1978)].

    Different load incrementation strategies and parameters to define the increment size have been continuously developed to solve the aforementioned problems. Some of these strategies are: the current stiffness parameter [Bergan et al (1978)], the length of the equilibrium path [Riks (1979)], arc-length techniques [Crisfield (1981)], incremental schemes with error control [Abbo and Sloan (1996)] and scalar homotopy methods[Elgohary et al (2014)]. Other algorithms can be found in references [Schweizerhof and Wriggers (1986); Geers (1999); Sheng, Sloan and Yu (2000); Sheng and Sloan (2003);Ritto-Corrêa and Camotim (2008); Stull, Earls and Aquino (2008); Sheng, Nazem and Carter (2009); Lindgaard and Lund (2010); Labeas and Belesis (2011); Koohestani(2013); Hardyniec and Chraney (2015)].

    However, in order to ensure robustness, the traditional arc-length method and its variations have complex implementations that include the monitoring of the eigenvalues of the Jacobian matrices and the use of additional constraint equations [Abbo and Sloan(1996); Elgohary et al (2014)]. For these reasons, the development of robust and simple to implement algorithms to solve nonlinear structural problems is still in progress.

    In this paper, the path-dependent problems are treated in some detail. Fig.1, which shows a typical load displacement curve where it can be seen a drastic reduction on stiffness for the limit load, illustrates the degree of difficulty one may face when solving these kinds of problem.

    Figure 1: Limit load analysis considering material nonlinearity.

    In this case, usual procedures to obtain the limit load, require the total external load to be divided into increments and the accuracy of the finite element solution is dependent of the size of each increment.

    Additionally, in plasticity theory, infinitesimal deformations are considered and depending on the size of the chosen load increments, the calculation of displacements,strains and stresses can have significant errors. Therefore, one may be tempted to choose excessively small load increments, and pay the price: the analysis becomes too expensive,in some cases impossible to deal with when one has deadlines, or else one must abandon a desktop working station and use supercomputers. Thus, one must be aware when designing adaptive load stepping algorithms to analyze nonlinear problems that the size of the load increments can vary substantially during the analysis without accuracy loss.

    Taking into account the above considerations, a new adaptive load stepping algorithm based on the estimated convergence rate of the nonlinear iterative process is presented.The algorithm is used together with the full Newton-Raphson method to solve the nonlinear finite element equations.

    The convergence rate was considered as the control variable of the adaptive process due to its mathematical definition, which guarantees the robustness of the algorithm and was calculated based on a force norm during the incremental load process.

    The new adaptive load stepping algorithm, the RCA (Rate of Convergence Algorithm)algorithm has been firstly applied to solve nonlinear elastoplastic problems. The RCA algorithm has been implemented in the in-house 2D and 3D finite element program AMG(Mechanical and Geomechanical Analysis) [Costa (1984); Cardoso (2005)]. Static and dynamic analyses with material and geometric nonlinearities can be performed by AMG.In the next section a brief discussion about the convergence rate of nonlinear iterative processes is presented. An estimation of the convergence rate for computational implementation is also discussed [Gustafsson and Soderlind (1997)]. The RCA algorithm is presented in Section 3. The solutions obtained with AMG/RCA are discussed in Section 4 and compared with the FEA commercial software ABAQUS? [Abaqus (2012)]. Finally, in Section 5, concluding remarks are drawn.

    2 Rate of convergence of iterative processes

    Firstly, the formal definition of the convergence rate of a general iterative process is given.

    exists, and asymptotically the following equality is true:

    At this point the following remarks are due:

    1) In the full Newton-Raphson method, which is adopted in this paper, the quadratic order of convergence is not usually achieved in elasto-plastic problems. This occurs because the Jacobian matrix is not continuously differentiable when an element quadrature point changes its state from elastic to plastic or from plastic to elastic [Belytschko, Liu and Moran(2000)];

    2) Commonly, iterative processes have three phases: nonlinear transient, linear transient and finally asymptotic [Gustafsson and Soderlind (1997)];3) In an iterative process, the rate of convergencewill only be representative if a considerable number of iterations have been performed, i.e., the asymptotic phase has been achieved.

    In order to present the estimated convergence rate used in this paper, it is necessary to def ine the nonlinear algebraic equations (equilibrium equations) for nonlinear structural prob lems:

    The estimated convergence ratepresented in this paper is a modification of the rate ba sed on vector norms presented in [Gustafsson and Soderlind (1997)]. Taking into account the equilibrium equations of nonlinear problems in an incremental notation, the new prop osed estimative foris given by:

    where

    Diverging increments can be detected using Eq. 5. This situation occurs when values ofare negative oris positive andIn both cases, the force norms and consequently the force residuals are not decreasing.

    Generally, large positive values ofindicate a fast convergence of the iterative process.In other words, ifwill tend to infinity.

    Similarly, small positive values ofindicate a slow convergence of the iterative proces s. In other words, ifwill tend to zero.

    The idea behind Eq. 5 is to link the history of values of the variable, with the speed of convergence of the current load increment that will be used to calculate the size of the ne xt load increment.

    3 Adaptive load stepping algorithms based on convergence rate

    In this section, the new automatic load stepping algorithm, the RCA, is presented.Initially, it is necessary to define the incremental finite element equations that describe the response of a nonlinear structure in a static analysis due to a varying load:

    The iterative process ends when the force norm (Eq. 6) and the displacement norm (Eq.9), are smaller than specified tolerances.

    After the convergence check, the current load increment will be accepted or not. In both situations, the main objective of an adaptive load stepping algorithm is to define suitable load factorsfor each load increment based on the estimated convergence rate.

    The speed of convergence of the incremental/iterative solution of Eq. 7 is related to the average values ofof each load increment. The average value is calledand is calculated at the end of each load increment.

    The speed of convergence is classified as fast, constant or slow and grouped in regions(Fig.2). The definition of these convergence regions is based on statistical analysis of the valuesperformed in different analyses.

    Fig.2 schematically shows how the different speeds of convergence are correlated with the values of.

    Figure 2: Graphical representation of the speed regions and correlation with . Full circles represent punctual values of iterations for one load increment.

    Regarding Fig. 2, the different regions are limited by thevalues. At the end of the convergence process, four different situations are considered in the algorithm:a) A load increment is classified as fast if(Eq. 14) is located in the fast region and if the maximum number allowed for iterations in the slow regionhas not been reached. In this case, the next load increment is increased by a factor

    b) A load increment is classified as constant ifis located in the constant region and if the maximum number allowed for iterations in the slow region () has not been achieved. In this case, the next load increment remains constant:

    c) A load increment is classified as slow ifis located in the slow region or if the maximum number allowed for iterations in the slow regionhas been achieved.In this case, the next load increment is decreased by a factor

    d) Finally, a load increment is classified as divergent if a certain number of iterations,defined by user, with values oflocated in the divergence region has been achievedIn this case the load step is restarted and the load increment is decreased by a factor

    Still regarding the parameters of the algorithm, if the load step is too small, the computational cost of the analysis can be very high. On the other hand, a large load step can lead either to non-convergence or to a great number of iterations to achieve equilibrium. For this reason, a maximum value formust be set to avoid a very large load increment in linear or nearly linear regions of the load path. Similarly, in order to stop the analysis and to prevent unnecessary calculations, a minimum value forshould also be defined.

    Finally, the incremental procedure ends when the entire load is applied:

    4 Applications

    The elastoplastic analyses described next were performed with fixed and automatic load step incrementation (RCA algorithm). In the analyses with the RCA algorithm, the most critical parameter isFor this reason, different values ofwere tested. The results obtained with AMG/RCA were also compared with those by the FEA commercial software ABAQUS?.

    4.1 Collapse of an end-loaded cantilever beam

    The plastic collapse of an end-load cantilever beam is studied in the first example [Souza Neto, Peric and Owen (2008)]. Fig. 3 shows the cross-section, boundary conditions and applied load. Tab. 1 presents the parameters of the model.

    Figure 3: Geometry of the end-loaded cantilever beam.

    Table 1: Parameters of the end-loaded cantilever beam model.

    The beam material is elastoplastic and represented by von Mises yield surface with isotropic hardening and plane stress state (Tab. 2).

    Table 2: Stress-strain data for isotropic hardening rule adopted.

    One hundred sixty quadrilateral elements with eight nodes were used (forty elements along the length and four along the height) employing four (2x2) Gauss quadrature points.The tolerance for displacement and force residuals was set to 10-3.

    For the analyses with fixed load steps, one hundred load increments of 0.4 kN were applied until reach the maximum collapse load.

    Tab. 3 summarizes the parameters adopted in the RCA algorithm for the end-loaded cantilever beam.

    Table 3: Parameters of the RCA algorithm.

    The initial load step of the automatic analyses (AMG/RCA and ABAQUS?) was set to 0.01.

    In the automatic analysis performed with ABAQUS?, the maximum load step was set to, associated with the default solver controls and full Newton-Raphson method.

    Tab. 4 presents the number of load increments and collapse loads for different values ofThe objective is to evaluate the performance of the AMG/RCA algorithm and to compare it with the load increment history path obtained with ABAQUS?. The variableis the maximum collapse load calculated by the algorithms.

    Table 4: Results for the end-loaded cantilever beam.

    According to Tab. 4, the total number of load increments of AMG/RCA analyses is highly dependent of theparameter. In all AMG/RCA automatic analyses, a smaller number of load increments was necessary in comparison with the AMG fixed load step analysis.

    The ABAQUS? analysis presented a number of load increments similar to the AMG/RC A analysis with

    Fig. 4 shows the distribution of different types of iterations according to the speed regions giving a better understanding of the numerical computational effort.

    Figure 4: Distribution of the iterations according to the speed regions.

    In the analyses with reduced number of load increments,the percentage of iterations located in the constant region are the highest among all the analyses. It means that the increment size does not change unnecessarily during the analysis.

    Fig. 5 gives the variation of the load factorsplotted for different automatic analyses in order to illustrate the previous statement.

    Figure 5: Variation of the load factors for different values of .

    Figure 6: Load-displacement curves of the end-loaded cantilever beam.

    As it can be seen in Fig. 6, AMG/RCA successfully adjusted the increment size during the nonlinear stage of the analysis in a consistent way with ABAQUS?.

    Finally, Fig. 7 shows the accumulative frequency history offor different values ofused to calibrate speed regions.

    Figure 7: Histograms for the variable in different automatic analyses, showing speed regions for different values of .

    Despite some minor differences in the initial tail (λslow<0.0), the histograms showed a similar behavior for different values ofThe similar behavior of the histograms shows that the main difference between the analyses, in terms of the number of load increments, is related to the definition of the speed regions. As explained before, the analyses with reduced number of load increments have the highest proportion of constant iterations. If the constant region is not correctly defined by the values ofmore iterations are unnecessarily classified as slow or fast. In the analysis with for example, a large percentage ofvalues are in the slow regions andmore iterations are classified as slow. The load steps are successively diminished,increasing the nu mber of increments required to perform the analysis (see Fig. 5). On the other hand, forthe constant region is more adequately defined,requiring less increments to perform the analyses.

    4.2 Strip-footing collapse

    The bearing capacity of a rigid strip footing is analyzed using fixed load increments,AMG/RCA and compared with FEA commercial software ABAQUS?. Fig. 8 gives the geometry of the problem.

    Figure 8: Geometry of the rigid strip-footing.

    Table 5: Parameters of the rigid strip-footing model.

    Fig. 9 shows the adopted mesh, comprised of 3697 nodes and 1184 eight-noded quadrilaterals elements with four (2x2) Gauss quadrature points.

    Figure 9: Finite element mesh of rigid the strip-footting.

    The tolerance for displacement and force residuals was set to 10-3.

    For the analyses with fixed load step, one hundred load increments of 6.0x10-4m were applied. The average pressure p is calculated dividing the total reaction on the footing by the width B.

    The adopted parameters of the RCA algorithm are shown in Tab. 6.

    Table 6: Parameters of the RCA algorithm.

    The initial load step of the automatic analyses (AMG/RCA and ABAQUS?) was set to 0.01.In the automatic analysis performed with ABAQUS?, the maximumload step was set to 0.05 associated with the default solver controls and full Newton-Raphson method.

    Tab. 7 presents the number of load increments and collapse pressures. The variable “”is the maximum pressure calculated in the algorithm and “ ” is the limit pressure predicted by Terzaghi′s solution [Lambe and Whitman (1979)].

    Table 7: Results for the rigid strip-foundation.

    Similar to the first example, for all automatic analyses, the number of load increments showed dependence on λslowand a smaller number of load increments was necessary in comparison with the fixed load step analysis.

    The relatively small number of increments for λslow=0.8is explained by the early interruption of this analysis, as it can be seen in Tab.7 by the low value of pressure obtained.

    The analysis with AMG/RCA presented an improved performance in comparison with ABAQUS? in the analysis with λslow=0.0. For this case, the number of load increments in AMG/RCA represents 80% of the number of load increments obtained with ABAQUS? for the same collapse pressure.

    Fig. 10 gives the distribution of different types of iterations from the AMG/RCA versus the parameter λslow.

    Figure 10: Distribution of the iterations accordingly to the speed regions.

    The higher percentage of iterations classified in the region with constant speed of conver gence is associated with the reduced number of load increments, similarly to the cantileve r beam example. The small discrepancy presented in the analysis with λslow=0.8is expl ained by the early interruption of this analysis.

    The variation of load factors Δδplotted for the AMG/RCA automatic analyses (Fig. 11),also shows that the best performances in terms of number of load increments are obtained with λslow=0.0and 0.2, in these cases the load factors do not change frequently during the analysis compared with the higher values of λslowtested.

    Figure 11: Variation of the load factors for different values of λslow.

    Fig. 12 shows the pressure-displacement curves for AMG fixed step, AMG/RCA withABAQUS? with automatic step and Terzaghi’s analytical solution [Lambe and Whitman (1979)].

    Figure 12: Pressure-displacement curves of the rigid strip-footing problem.

    The AMG/RCA with λslow=0.0was able to adjust the load increment size close to the limit load with less effort than ABAQUS? (see Tab.7). The limit pressure calculated in all different numerical analyses, have a good match reaching values close to the Terzaghi’s analytical solution.

    Fig. 13 gives the accumulative frequency history offor different values of.

    Figure 13: Histograms for the variable λkin different automatic analyses.

    The histograms presented in Fig. 13, show a similar behavior observed in the cantilever beam example for different values of λslow. The values of λslowand λfastconsidered suitable for application in the solution of a large number of nonlinear analyses with reduced number of load increments, must present a high proportion of constant iterations to optimize the automatic load incrementation process.

    5 Concluding remarks

    The objective of this paper is to show a new algorithm, called RCA, based on the estimated convergence rate of a nonlinear iterative process. The algorithm is relatively simple to implement, robust and presents a better performance when compared with fixed load step approaches. The performance of the RCA algorithm in the analysis of the rigid strip-footting presented here had also a better performance than the load incrementation algorithm of the FEA commercial software ABAQUS?.

    Through the study of the histograms of the estimated convergence rate, it was possible to calibrate a set of parameters of the algorithm to be used in different nonlinear analyses.

    Although the RCA algorithm was successfully employed in path-dependent nonlinear problems, it can also be used for different types of nonlinearities due its robustness ensured by the generality of the estimation of the convergence rate.

    Acknowledgement: The authors wish to thank Petrobras and the Brazilian research funding agencies CNPq, FAPERJ and CAPES for their support to this work.

    ABAQUS, Inc. (2012): Version 6.12-3, Providence, RI 02909–2499.

    Abbo, A. J.; Sloan, S. W. (1996): An automatic load stepping algorithm with error contr ol. International Journal for Numerical Methods in Engineering, vol. 39, pp. 1737-1759.Bathe, K. J.; Dvorkin, E. N. (1983): On the automatic solution of nonlinear finite eleme nt equations. Computers & Structures, vol. 17, pp. 871-879.

    Belytschko, T.; Liu, W. K.; Moran, B. (2000): Nonlinear finite elements for continua a nd structures. John Wiley & Sons.

    Bergan, P. G.; Horrigmoe, G.; Krekeland, B.; S?reide, H. (1978): Solution techniques for non-linear finite element problems. International Journal for Numerical Methods in Engineering, vol. 12, pp. 1677-1696.

    Cardoso, C. O. (2005): Methodology for analysis and project of high pressure/temperatu re (HPHT) pipelines by application of finite element method (in Portuguese) (DSc-Thesi s), Federal University of Rio de Janeiro.

    Costa, A. M. (1984): An application of computational methods and rock mechanics princ iples in design and analysis of underground excavations intended for the underground mi ning (in Portuguese). DSc Thesis, Federal University of Rio de Janeiro.

    Crisfield, M. A. (1981): A fast incremental/iterative solution procedure that handles “sna p-throug”. Computers & Structures, vol. 13, pp. 55-62.

    Elgohary, T. A.; Dong, L.; Junkins, J. L.; Atluri, S. N. (2014): Solution of post-buckli ng & limit load problems, without inverting the tangent stiffness matrix & without using arc-length methods. Computer Modeling in Engineering & Sciences, vol. 98, pp. 543-563.

    Geers, M. G. D. (1999): Enhanced solution control for physically and geometrically non-linear problems. Part I – The subplane control approach. International Journal for Nume rical Methods in Engineering, vol. 46, pp. 177-204.

    Gustafsson, K.; Soderlind, G. (1997): Control strategies for the iterative solutions of nonline ar equations in ODE solvers. SIAM Journal on Scientific Computing, vol. 18, pp. 23-40.

    Hardyniec, A.; Chraney, F. (2015): A new efficient method for determining the collaps e margin ratio using parallel computing. Computers & Structures, vol. 148, pp. 14-25.

    Koohestani, K. (2013): A hybrid method for efficient solution of geometrically nonlinear structures. International Journal of Solids and Structures, vol. 50, pp. 21-29.

    Labeas, G. N.; Belesis, S. D. (2011): Efficient analysis of large-scale structural problems with geometrical non-linearity. International Journal of Non-Linear Mechanics, vol. 46,pp. 1283-1292.

    Lambe, T. W.; Whitman, R. V. (1979): Soil mechanics, SI version. John Wiley & Sons.

    Lindgaard, E.; Lund, E. (2010): Nonlinear buckling optimization of composite structur es. Computer Methods in Applied Mechanics and Engineering, vol. 199, pp. 2319-2330.

    Luenberger, D. G. (1989): Linear and nonlinear programming. Addison-Wesley.

    Ortega, J. M.; Rheinboldt, W. C. (1970): Iterative solution of nonlinear equations in se veral variables. Academic press.

    Riks, E. (1979): An incremental approach to the solution of snapping and buckling probl ems. International Journal of Solids and Structures, vol. 15, pp. 529-551.

    Ritto-Corrêa, M.; Camotim, D. (2008): On the arc-length quadratic control methods: Es tablished, less known and new implementation procedures. Computers & Structures, vol.86, pp. 1353-1368.

    Schweizerhof, K. H.; Wriggers, P. (1986): Consistent linearization for path following m ethods in nonlinear FE analysis. Computer Methods in Applied Mechanics and Engineeri ng, vol. 59, pp. 261-279.

    Sheng D.; Nazem, M.; Carter, J. P. (2009): Some computational aspects for solving dee p penetration problems in geomechanics. Computational Mechanics, vol. 44, pp. 549-561.

    Sheng, D.; Sloan, S. W.; Yu, H. S. (2000): Aspects of finite element implementation of critical state models. Computational Mechanics, vol. 26, pp. 185-196.

    Sheng, D.; Sloan, S. W. (2003): Time stepping schemes for coupled displacement and po re pressure analysis. Computational Mechanics, vol. 31, pp. 122-134.

    Souza Neto, E. A.; Peric, D.; Owen, D. R. J. (2008): Computational methods for plastic ity. John Wiley & Sons.

    Stull, J. S.; Earls, C. J.; Aquino, W. (2008): A posteriori initial imperfection identificati on in shell buckling problems. Computer Methods in Applied Mechanics and Engineering,vol. 198, pp. 260-268.

    热re99久久精品国产66热6| 国产精品偷伦视频观看了| 亚洲久久久国产精品| 黄色欧美视频在线观看| videos熟女内射| 国产精品国产三级国产专区5o| 午夜激情久久久久久久| 我的老师免费观看完整版| 日韩视频在线欧美| 狂野欧美白嫩少妇大欣赏| 在线观看国产h片| 91国产中文字幕| 免费高清在线观看日韩| 日韩一区二区视频免费看| 性色av一级| 一区二区三区免费毛片| 一本—道久久a久久精品蜜桃钙片| 制服丝袜香蕉在线| 在线播放无遮挡| 亚洲不卡免费看| 国产老妇伦熟女老妇高清| 久久午夜综合久久蜜桃| 亚洲欧洲国产日韩| 国产女主播在线喷水免费视频网站| 日日摸夜夜添夜夜添av毛片| 在线亚洲精品国产二区图片欧美 | 一边摸一边做爽爽视频免费| 久久影院123| 少妇人妻 视频| 亚洲av欧美aⅴ国产| 18在线观看网站| 成年人免费黄色播放视频| 精品亚洲成a人片在线观看| 建设人人有责人人尽责人人享有的| 少妇猛男粗大的猛烈进出视频| 黑人猛操日本美女一级片| 国产精品免费一区二区三区在线 | 亚洲国产成人一精品久久久| 久久久国产欧美日韩av| 亚洲国产看品久久| 久久精品aⅴ一区二区三区四区| 99国产极品粉嫩在线观看| 国产野战对白在线观看| av在线播放免费不卡| 国产主播在线观看一区二区| 久久精品国产亚洲av香蕉五月 | 成人av一区二区三区在线看| 黄色视频在线播放观看不卡| 啦啦啦视频在线资源免费观看| 丁香六月欧美| 亚洲欧美一区二区三区久久| 咕卡用的链子| 久久 成人 亚洲| 在线播放国产精品三级| 男人操女人黄网站| av超薄肉色丝袜交足视频| 亚洲欧美一区二区三区黑人| 国产福利在线免费观看视频| 交换朋友夫妻互换小说| 国产欧美日韩精品亚洲av| 亚洲国产欧美日韩在线播放| 又黄又粗又硬又大视频| 久久精品亚洲精品国产色婷小说| 久久青草综合色| av天堂久久9| 色视频在线一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区久久| 亚洲 欧美一区二区三区| 成人国产av品久久久| 日本wwww免费看| 大型av网站在线播放| 天天操日日干夜夜撸| 男女边摸边吃奶| 欧美成狂野欧美在线观看| 午夜福利在线观看吧| 亚洲精品美女久久av网站| 亚洲专区中文字幕在线| 99久久99久久久精品蜜桃| 精品国内亚洲2022精品成人 | 女同久久另类99精品国产91| 菩萨蛮人人尽说江南好唐韦庄| 大香蕉久久网| 精品一品国产午夜福利视频| 999久久久国产精品视频| 亚洲欧美精品综合一区二区三区| 亚洲av片天天在线观看| 成人永久免费在线观看视频 | 亚洲成人免费av在线播放| 国产日韩欧美视频二区| 午夜福利影视在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 老司机福利观看| 亚洲国产av新网站| 亚洲五月婷婷丁香| 亚洲精品中文字幕一二三四区 | 欧美大码av| 亚洲国产欧美在线一区| 亚洲人成电影免费在线| 十八禁人妻一区二区| 久久久久久久久久久久大奶| 啦啦啦 在线观看视频| 精品乱码久久久久久99久播| 一二三四社区在线视频社区8| 中文字幕人妻丝袜一区二区| 日本精品一区二区三区蜜桃| 日韩熟女老妇一区二区性免费视频| 91成年电影在线观看| 捣出白浆h1v1| 亚洲,欧美精品.| 久久av网站| 国产精品二区激情视频| 大香蕉久久网| 久久精品国产亚洲av高清一级| 亚洲精品自拍成人| 一个人免费在线观看的高清视频| 日韩欧美一区视频在线观看| 国产深夜福利视频在线观看| 人人妻,人人澡人人爽秒播| 韩国精品一区二区三区| 精品国产国语对白av| 99国产精品一区二区三区| 黄色视频在线播放观看不卡| 另类精品久久| 狠狠精品人妻久久久久久综合| 在线观看免费视频网站a站| 999精品在线视频| 亚洲成人免费电影在线观看| 亚洲专区国产一区二区| 国产精品久久久久久精品古装| 亚洲国产成人一精品久久久| 国产真人三级小视频在线观看| 午夜福利,免费看| 国产男女超爽视频在线观看| 亚洲av日韩精品久久久久久密| 国产精品自产拍在线观看55亚洲 | 亚洲国产成人一精品久久久| 丝瓜视频免费看黄片| 亚洲国产毛片av蜜桃av| 少妇被粗大的猛进出69影院| 女人久久www免费人成看片| 性高湖久久久久久久久免费观看| 午夜福利,免费看| 精品视频人人做人人爽| 一区二区日韩欧美中文字幕| 久久av网站| 精品国产一区二区三区久久久樱花| 久久久久久久久久久久大奶| 亚洲成av片中文字幕在线观看| 两个人免费观看高清视频| 亚洲欧美色中文字幕在线| 日本五十路高清| 黑人巨大精品欧美一区二区蜜桃| 午夜视频精品福利| 久久久久久久国产电影| 丝袜喷水一区| 在线天堂中文资源库| 日韩欧美三级三区| 欧美+亚洲+日韩+国产| 91字幕亚洲| www.自偷自拍.com| 亚洲专区中文字幕在线| 亚洲国产成人一精品久久久| 亚洲国产欧美日韩在线播放| 动漫黄色视频在线观看| 精品一区二区三区视频在线观看免费 | 一夜夜www| 免费观看人在逋| 久久人妻福利社区极品人妻图片| 黄色视频,在线免费观看| av有码第一页| 亚洲av日韩精品久久久久久密| 女性生殖器流出的白浆| 国产一区二区激情短视频| 女人久久www免费人成看片| 美女高潮到喷水免费观看| 日韩熟女老妇一区二区性免费视频| 国产一区二区激情短视频| 美女高潮到喷水免费观看| 女性生殖器流出的白浆| 色94色欧美一区二区| 性高湖久久久久久久久免费观看| 美女高潮到喷水免费观看| 国产免费现黄频在线看| 成在线人永久免费视频| 国产精品一区二区在线观看99| 人成视频在线观看免费观看| 麻豆av在线久日| 欧美日韩福利视频一区二区| 日本撒尿小便嘘嘘汇集6| 久久久国产一区二区| 午夜日韩欧美国产| 在线观看66精品国产| 丝袜喷水一区| 女人久久www免费人成看片| 免费看十八禁软件| 久久久久视频综合| 2018国产大陆天天弄谢| 欧美精品av麻豆av| 啦啦啦在线免费观看视频4| 777久久人妻少妇嫩草av网站| 乱人伦中国视频| 欧美午夜高清在线| 精品乱码久久久久久99久播| 国产91精品成人一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 成人18禁高潮啪啪吃奶动态图| 99国产精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 久久av网站| 99精品欧美一区二区三区四区| 老汉色av国产亚洲站长工具| 亚洲精品成人av观看孕妇| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦理片在线播放av一区| 美女高潮到喷水免费观看| 电影成人av| 亚洲免费av在线视频| 色综合婷婷激情| 热re99久久精品国产66热6| 日本欧美视频一区| 免费黄频网站在线观看国产| 亚洲精品粉嫩美女一区| 午夜福利一区二区在线看| 黄色视频不卡| 在线永久观看黄色视频| 久久精品熟女亚洲av麻豆精品| 亚洲成av片中文字幕在线观看| 久久免费观看电影| 亚洲伊人久久精品综合| 淫妇啪啪啪对白视频| 国产在视频线精品| 欧美日韩av久久| 国产无遮挡羞羞视频在线观看| 自线自在国产av| 国产在线观看jvid| 午夜福利一区二区在线看| 国产在线视频一区二区| 国产av精品麻豆| 久久亚洲真实| 青草久久国产| 最新在线观看一区二区三区| 黑人猛操日本美女一级片| 久久久久网色| 乱人伦中国视频| 19禁男女啪啪无遮挡网站| 精品国产乱码久久久久久男人| 丝袜人妻中文字幕| 精品一区二区三区四区五区乱码| 国产亚洲欧美精品永久| 9色porny在线观看| 欧美乱码精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久人人人人人| 国产又爽黄色视频| 亚洲成av片中文字幕在线观看| 俄罗斯特黄特色一大片| 一边摸一边抽搐一进一小说 | 日韩精品免费视频一区二区三区| 国产精品免费一区二区三区在线 | 女同久久另类99精品国产91| 嫩草影视91久久| 久久精品熟女亚洲av麻豆精品| 人人妻人人爽人人添夜夜欢视频| 黑丝袜美女国产一区| 国产黄色免费在线视频| 国产成人一区二区三区免费视频网站| 亚洲第一欧美日韩一区二区三区 | 色婷婷久久久亚洲欧美| 一区二区三区激情视频| 国产精品久久久久成人av| 国产成人av激情在线播放| 亚洲第一欧美日韩一区二区三区 | 电影成人av| 黑丝袜美女国产一区| 免费在线观看完整版高清| 日韩欧美国产一区二区入口| 日韩中文字幕欧美一区二区| 国产精品一区二区精品视频观看| 亚洲欧美精品综合一区二区三区| 成年版毛片免费区| 777久久人妻少妇嫩草av网站| 久久久久网色| 在线观看免费视频日本深夜| 999久久久精品免费观看国产| 日韩免费av在线播放| 超碰97精品在线观看| 国产老妇伦熟女老妇高清| 精品国产国语对白av| 精品久久久精品久久久| 国产精品免费视频内射| av在线播放免费不卡| 电影成人av| 国产成人欧美在线观看 | 欧美日韩成人在线一区二区| 日本一区二区免费在线视频| 免费久久久久久久精品成人欧美视频| 午夜福利影视在线免费观看| 丝袜在线中文字幕| kizo精华| 成在线人永久免费视频| 波多野结衣一区麻豆| 精品午夜福利视频在线观看一区 | 免费一级毛片在线播放高清视频 | 欧美 亚洲 国产 日韩一| 中文字幕精品免费在线观看视频| 搡老岳熟女国产| 大陆偷拍与自拍| 十分钟在线观看高清视频www| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 免费观看人在逋| 久久国产精品人妻蜜桃| 国产成+人综合+亚洲专区| 久久久国产欧美日韩av| 黄色视频不卡| 日本av免费视频播放| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 99精品欧美一区二区三区四区| 中文欧美无线码| 淫妇啪啪啪对白视频| 水蜜桃什么品种好| 中文亚洲av片在线观看爽 | 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 天堂中文最新版在线下载| 亚洲国产欧美在线一区| 国产成人免费无遮挡视频| 欧美日韩黄片免| 精品视频人人做人人爽| 天天添夜夜摸| 美女主播在线视频| 正在播放国产对白刺激| 757午夜福利合集在线观看| 狠狠精品人妻久久久久久综合| a级片在线免费高清观看视频| 亚洲av第一区精品v没综合| 亚洲国产av影院在线观看| 一区二区三区国产精品乱码| www.自偷自拍.com| 国产av精品麻豆| 亚洲国产欧美在线一区| 美女国产高潮福利片在线看| 乱人伦中国视频| 欧美日本中文国产一区发布| 亚洲av欧美aⅴ国产| 一本—道久久a久久精品蜜桃钙片| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 国产有黄有色有爽视频| 黄色片一级片一级黄色片| 亚洲欧美日韩高清在线视频 | 国产免费现黄频在线看| 中文欧美无线码| 亚洲欧洲精品一区二区精品久久久| 欧美精品啪啪一区二区三区| 91成人精品电影| 久久中文字幕人妻熟女| 国产97色在线日韩免费| 成年人午夜在线观看视频| 少妇被粗大的猛进出69影院| 青草久久国产| 午夜日韩欧美国产| 午夜福利欧美成人| 欧美乱妇无乱码| 午夜91福利影院| 99久久人妻综合| 亚洲av日韩在线播放| 高潮久久久久久久久久久不卡| 久久精品国产a三级三级三级| 国产亚洲欧美在线一区二区| 成年人黄色毛片网站| 中文字幕精品免费在线观看视频| 日本精品一区二区三区蜜桃| 日韩有码中文字幕| 国产成+人综合+亚洲专区| 国产主播在线观看一区二区| 两性夫妻黄色片| 午夜日韩欧美国产| 国产在线观看jvid| 久久久久久久久久久久大奶| 国产亚洲欧美精品永久| 一区二区三区乱码不卡18| 女人高潮潮喷娇喘18禁视频| 亚洲成av片中文字幕在线观看| 视频在线观看一区二区三区| 99国产精品99久久久久| 巨乳人妻的诱惑在线观看| 又大又爽又粗| 一级毛片精品| 亚洲少妇的诱惑av| 国产有黄有色有爽视频| 久久久久久亚洲精品国产蜜桃av| 丰满少妇做爰视频| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲日产国产| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 91国产中文字幕| 黄色毛片三级朝国网站| 国产精品麻豆人妻色哟哟久久| 免费看十八禁软件| 热re99久久国产66热| 80岁老熟妇乱子伦牲交| 国产熟女午夜一区二区三区| 啦啦啦在线免费观看视频4| 丝瓜视频免费看黄片| 大型av网站在线播放| 高潮久久久久久久久久久不卡| 自线自在国产av| 狠狠婷婷综合久久久久久88av| 亚洲精品国产一区二区精华液| 日本黄色视频三级网站网址 | 一进一出好大好爽视频| 三级毛片av免费| 色婷婷久久久亚洲欧美| 国产深夜福利视频在线观看| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 亚洲欧美激情在线| 国产三级黄色录像| 自拍欧美九色日韩亚洲蝌蚪91| 成人av一区二区三区在线看| 精品免费久久久久久久清纯 | 日本vs欧美在线观看视频| 高清欧美精品videossex| 国产又色又爽无遮挡免费看| 丝袜喷水一区| 9色porny在线观看| 一边摸一边做爽爽视频免费| 日韩欧美一区视频在线观看| 夜夜爽天天搞| 大码成人一级视频| 中文字幕高清在线视频| 飞空精品影院首页| 人人妻人人爽人人添夜夜欢视频| 日韩大码丰满熟妇| 久久久精品94久久精品| 国产精品国产高清国产av | 国产精品久久久av美女十八| 最新的欧美精品一区二区| 真人做人爱边吃奶动态| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 美女福利国产在线| 国产高清激情床上av| 国产成人一区二区三区免费视频网站| 国产精品免费视频内射| 90打野战视频偷拍视频| svipshipincom国产片| 三上悠亚av全集在线观看| 国产av精品麻豆| 在线播放国产精品三级| 大型黄色视频在线免费观看| 国产成人精品久久二区二区91| 亚洲 欧美一区二区三区| 久久精品国产亚洲av香蕉五月 | 中文字幕另类日韩欧美亚洲嫩草| 国产高清videossex| 十八禁高潮呻吟视频| 1024视频免费在线观看| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区| 一个人免费在线观看的高清视频| 久久久久精品国产欧美久久久| 欧美av亚洲av综合av国产av| 青草久久国产| 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 亚洲免费av在线视频| 免费在线观看影片大全网站| 18在线观看网站| 欧美精品啪啪一区二区三区| 久久久国产精品麻豆| 国产一区二区 视频在线| 亚洲精品在线观看二区| 久久天躁狠狠躁夜夜2o2o| 美女福利国产在线| 久久毛片免费看一区二区三区| 亚洲人成伊人成综合网2020| 成人特级黄色片久久久久久久 | 色婷婷av一区二区三区视频| 不卡一级毛片| 精品福利永久在线观看| 亚洲欧美一区二区三区久久| 在线永久观看黄色视频| 国产一区二区在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 国产免费现黄频在线看| 国产精品 欧美亚洲| 日韩制服丝袜自拍偷拍| 久久精品91无色码中文字幕| 99久久99久久久精品蜜桃| 国产av一区二区精品久久| 桃花免费在线播放| 国产成人欧美| 国产成人精品久久二区二区91| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 日本wwww免费看| 成人精品一区二区免费| 欧美+亚洲+日韩+国产| 日韩熟女老妇一区二区性免费视频| 成人黄色视频免费在线看| 欧美大码av| 亚洲熟女毛片儿| 国产精品免费一区二区三区在线 | av一本久久久久| 国产精品1区2区在线观看. | av福利片在线| 国产1区2区3区精品| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 一级毛片电影观看| 另类精品久久| 一个人免费在线观看的高清视频| 久久久久视频综合| 一二三四在线观看免费中文在| 天堂动漫精品| 国产一区二区在线观看av| 下体分泌物呈黄色| 久久av网站| 操美女的视频在线观看| 曰老女人黄片| kizo精华| 午夜精品久久久久久毛片777| 久久国产精品影院| 交换朋友夫妻互换小说| 欧美人与性动交α欧美软件| 精品久久久久久久毛片微露脸| 黄色毛片三级朝国网站| 十八禁网站免费在线| 久久热在线av| 亚洲av美国av| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三| 久久久精品94久久精品| 久热这里只有精品99| 婷婷丁香在线五月| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 国产精品亚洲一级av第二区| 男女下面插进去视频免费观看| 精品少妇久久久久久888优播| 精品国产一区二区久久| 在线观看免费视频日本深夜| cao死你这个sao货| 亚洲专区字幕在线| 欧美日韩亚洲综合一区二区三区_| 99久久99久久久精品蜜桃| 国产精品一区二区在线观看99| 国产成人免费无遮挡视频| 老汉色av国产亚洲站长工具| 淫妇啪啪啪对白视频| 国产欧美日韩一区二区三| 国产成人欧美在线观看 | 亚洲欧美一区二区三区久久| 亚洲精品粉嫩美女一区| 最近最新中文字幕大全电影3 | 免费观看av网站的网址| 大片免费播放器 马上看| 国产欧美亚洲国产| 91老司机精品| 黄片小视频在线播放| 青青草视频在线视频观看| 18禁国产床啪视频网站| svipshipincom国产片| 啦啦啦免费观看视频1| 少妇的丰满在线观看| 亚洲少妇的诱惑av| 国产区一区二久久| 天天躁狠狠躁夜夜躁狠狠躁| 日韩一卡2卡3卡4卡2021年| 亚洲全国av大片| 欧美人与性动交α欧美精品济南到| 亚洲精品中文字幕在线视频| 超色免费av| 亚洲精品国产区一区二| tocl精华| 亚洲国产成人一精品久久久| 18禁黄网站禁片午夜丰满| 亚洲 国产 在线| 视频区图区小说| 纯流量卡能插随身wifi吗| 最黄视频免费看| 精品国产超薄肉色丝袜足j| 高清毛片免费观看视频网站 | 国产精品影院久久| 无人区码免费观看不卡 | 99精品久久久久人妻精品| 国产亚洲av高清不卡| 日韩人妻精品一区2区三区| 一边摸一边抽搐一进一出视频| 久久精品国产亚洲av高清一级| 久久精品亚洲熟妇少妇任你| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 久久中文字幕一级| 国产成+人综合+亚洲专区| 少妇裸体淫交视频免费看高清 | 女警被强在线播放| 亚洲 国产 在线| 精品国产一区二区久久| 国产精品影院久久| 一本色道久久久久久精品综合| 日韩成人在线观看一区二区三区| 欧美一级毛片孕妇| 久久精品国产亚洲av香蕉五月 | aaaaa片日本免费| 99国产极品粉嫩在线观看|