• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computer-Based Modelling of Network Functions for Linear Dynamic Circuits Using Modified Nodal Approach

    2017-03-19 11:26:21AliBekirYILDIZ

    Ali Bekir YILDIZ

    1 Introduction

    Network functions are used as an effective tool in the analysis and design of dynamic circuits. Many circuit characteristics such as voltage/current gains, input/output impedances, poles/zeros of circuits can be computed from network functions. Therefore,network functions can be a powerful tool for computer-based modelling and designing of analog integrated circuits. Several approaches to obtaining network functions are given in symbolic or numerical format. Some symbolic methods [Aguirre and Carlosena (2000),Djordjevic, and Petkovic (2004), Pierzchala and Rodanski (2001), Ruzhang et al. (1995),Shi and Tan (2001), Topa and Simon (1996), Yu and Sechen (1996), Wambacq (1996)]about network function generation are proposed. Nedelea et al. (2003) gives computeraided network function approximation for analog low and high pass filters. Yuan investigates the periodicity of network functions of linear periodically time-varying systems. Applications about the realization of transfer functions, one of the main components of network functions, are given by Sagbas et al. (2010), Psychalinos (2007),Raut (2006).

    In this paper, the algebraic method for computer-based systematic obtaining the network functions of linear or linearized time-invariant dynamic circuits is proposed. For setting up the circuit equations, the modified nodal approach (MNA), the one of the most popular methods of circuit analysis, is used. The state variables method, the other popular method and based on the graph theoretical approach, was developed before the modified nodal analysis. It involves intensive mathematical process and has major limitations in the formulation of circuit equations. Some of these limitations arise because the state variables are capacitor voltages and inductor currents. Every circuit element cannot be easily included into the state equations. Because of the drawbacks of state variables analysis, the modified nodal analysis was first introduced by Ho et al. (1975) and has been developed more by including many circuit elements (transformer, semiconductor devices, short circuit, etc.) into system equations so far [Vlach and Singhal (1983),Thomas and Rosa (2006)]. In this method, the system equations can be also obtained by inspection. It allows circuit equations to be easily and systematically obtained without any limitation. This method is used for circuit synthesis of passive descriptor systems by Reis (2010) and for computing the smallest, the largest and a given subset of the largest eigenvalues associated with linear time-invariant circuits by A.G. Exposito et al. (2009)Modified nodal analysis-based determination of transfer functions for multi-inputs multioutputs linear circuits is given by Yildiz (2010). Recently, Network Function Virtualization(NFV) has been getting the attention for reason of operational efficiency, cost savings and service scalability. The NFV can be described as integrating an independent software on the general purposed hardware such as server and switch in order to replace the legacy hardware-based network device. Therefore, NFV can help ensure that carriers can quickly respond to the change of communication environment by shortening lots of cost and time to introduce new network service. Some design and implementation processes regarding NFV are considered by Yoon et al. (2016), Li et al. (2016), and Karina et al.(2016).

    In this paper, it is shown how to use the advantages of modified nodal approach in obtaining the network functions of linear dynamic circuits. The main contribution of the paper is that it gives a computer-based systematic formulation method in terms of variables of MNA. The network functions can be obtained as both symbolic and numeric process with the proposed method.

    The rest of the paper is organized as follows: In Section 2, the structure of the modified nodal approach and the mathematical background regarding system equations are explained. Section 3 gives the expressions related to the network functions such as transfer functions, input impedance and frequency domain analysis. In Section 4, two illustrative examples of the approach are given. Section 5 is the conclusion.

    2 System equations

    The modified nodal equations and the output equations of any dynamic circuit are given in t-domain, Eq. (1) and Eq. (2) and in s-domain, Eq. (3) and Eq. (4). In this method, the equations are first obtained in s-domain. Later, for analysis, they are transformed into tdomain or frequency domain. Since the network functions are expressed in s-domain, the system equations will be examined in s-domain. The nodal and output equations together are called the system model (Fig.1).

    Figure 1: System model

    Where G, C, B, T are coefficient matrices. All conductances and frequency-independent values arising in the MNA formulation are stored in matrix G, capacitor and inductor values which are frequency-dependent in matrix C. U(s) represents the input (voltage or current source), Y(s) represents the output variable (voltage/current). The unknown vector X(s) contains both voltage and current variables. MNA can handle all types of active and passive elements regarding a dynamic system. It is a very important property of MNA.

    Taking into account the types of variables, the unknown vector is partitioned as follows.

    Here, X1(s) represents nodal voltage variables, X2(s) represents current variables related to independent and controlled voltage sources, inductors, short circuit elements, etc. If there are n nodes and m current variables in a dynamic circuit, X1(s) vector contains n-1 nodal voltage variables except a reference node (ground) and X2(s) vector contains m current variables. Thus, the unknown vector X(s) contains k=n-1+m variables.

    From Eq. (3), X(s) is obtained as follows.

    Eq. (9) are also expressed separately as follows.

    The elements of X(s) vector in Eq. (9) or Eq. (10) are expressed in terms of the elements of W(s) vector and the input.

    In the two ports circuit representation of Fig.2, the nodes of input port are 1, n and the nodes of output port are n-1, n-2. Node n is always taken as a reference node (ground,Un= 0)). Sometimes, the input and the output ports are connected to a common reference node, as in the illustrative examples. The voltage source (Ui(s)) in Fig.2 is a symbolic source to be used in obtaining the network functions.

    In Fig.2, Ui(s)=U1(s) and Uo(s)=Un-2(s)-Un-1(s). That is, the input voltage of circuit (Ui) is always equal to the first nodal voltage (the first variable of system) in X1(s) vector, the output voltage of circuit (Uo) is always equal to the difference between the last two nodal voltages (the (n-2)th and (n-1)th variables of system) in X1(s) vector. In Eq. (9) or Eq.(10), W1(s)=1 because of U(s)=Ui(s) = U1(s). The input current (Ii(s)) is the source current.It is located in the last row of X2(s) or X(s) vector. That is, Ii(s)= Im(s). For the output current (Io(s)), the output port in Fig.2 must be terminated with any circuit element. For instance, the circuit in Fig.2 is terminated with a resistor.

    Figure 2: Two port circuit

    In order to obtain the system equations, as a input, a symbolic current source (Ji(s)) can be also used. In this case, the structure of equations is similar to Eq. (9) or Eq. (10). Of course, the elements of W(s) vector will be different for every input (Ui(s) or Ji(s)).

    The above expressions are given for the circuit having one input and one output in Fig.2.For the case of p inputs and q outputs, as in the circuit of Fig.3, the expressions can be generalized. In this case, the W(s) vector is of orderIn this paper, for one-input and one-output circuits, as in Fig.2, the network functions are expressed. For multi-input and multi-output circuits, similar expressions are valid.

    Figure 3: Circuit with p inputs and q outputs

    3 Network functions

    Using Eq. (9) or Eq. (10), network functions and various domain responses related to any dynamic circuit can be expressed systematically in terms of the elements of W(s) vector.

    3.1 Transfer functions

    The transfer function (H(s)) is defined as the ratio of the output response to the input. It can be obtained by using Eq. (3) and Eq. (4).

    From Eq. (3),

    The output equation,

    From Eq. (13), the transfer function is expressed in terms of the matrices of MNA system.

    Eq. (14) is the general statement of transfer functions. There are four kinds of transfer functions regarding to input and output variables.

    Voltage transfer function:

    Current transfer function:

    Transfer impedance function:

    Transfer admittance function:

    For obtaining the transfer functions, the voltage and current variables related to input and output ports are expressed in terms of the elements of created vector, W(s), and the source, according to Fig. 2 and Eq. (10). For the current transfer function (Eq.15.b) and transfer admittance function (Eq.15.d), the output port in Fig.2 must be terminated with any circuit element. Here, the expressions are given for the case terminated with a resistor,as in Fig. 2. But, the method is general and can be applied for any circuit element.

    Voltage transfer function:

    Current transfer function:

    Transfer impedance function:

    Transfer admittance function:

    3.2 Input Impedance

    The input impedance or driving-point impedance, Z(s), is expressed according to Fig.2.

    The impedance relates the voltage and the current at input terminals. Ui(s) is the driving source and Ii(s) is the source current in Fig.2. The source current: Ii(s)=Im(s).

    3.3 Frequency-domain response

    For frequency response of system, We replace s by iω in Eq. (12), Eq. (13), Eqs.(16)-(19),Eq.(21), respectively.

    4 Illustrative examples

    We give two examples to show the proposed method related to obtaining the network functions.

    Example 1: Consider the circuit in Fig. 4. The system equations, the transfer functions(Uo/Ui, Uo/Ii), and the input impedance of the circuit will be obtained. Element values are R1= R2=2Ω, C1= C2= 3F, L = 5H.

    The input and output of the circuit has a common reference node (4). The circuit has n-1=3 nonreference nodes. Thus, in the MNA system, X1(s) vector contains 3 nodal voltage variables. The current variables in X2(s) vector are IL, Ii. Thus, in the circuit,k=n-1+m=5. The representation of voltage source (Ui), as an input, is used to obtain the network functions.

    Figure 4: Circuit for Example 1

    Nodal (main) equations in s-domain:

    The overall equations constitute the MNA system (Eq.23). The output equation of system is given in Eq. (24). The system model containing both MNA equations and output equation can be given in matrix form, as in Fig.1.

    The system model, Eq. (23) and Eq. (24), can be systematically obtained by inspection because of the advantages of MNA. By transforming the system model into t-domain, the transient-state and steady-state analysis for any input can be also obtained. By using this system model, the vector W(s) is created. Thus, the desired network functions in terms of the components of W(s) are calculated systematically.

    Where,

    As seen from Eq. (26), because Ui(s) is equal to U1(s), W1(s)=1.Transfer functions:

    The desired transfer functions are obtained as follows. W3(a) Uo/Ui

    Example 2: Consider the circuit in Fig. 5. The system equations, the voltage transfer function (Uo/Ui), and the input impedance of the circuit will be obtained. Element values are R1=4Ω, R2=5Ω, R3=2Ω, C1=1F, C2=2F.

    Node p is chosen as a reference, Up=0. The voltage and current constraints of ideal Op-Amp are Ip=0, In=0, Up-Un=0. In the MNA system, X1(s) vector contains 3 nodal voltage variables (Ua, Ub, Uc). The current variable in X2(s) vector is Ii. Thus, in the circuit, k=n-1+m=4. The representation of voltage source (Ui), as an input, is used to obtain the network function and the input impedance.

    Figure 5: Circuit for Example 2

    Nodal (main) equations in s-domain:

    Additional equations:

    The overall equations constitute the MNA system (Eq.30). The output equation of system is given in Eq. (31). The system model containing both MNA equations and output equation can be given in matrix form, as in Fig.1.

    By using this system model, the vector W(s) is created. Thus, the desired network function and the input impedance are systematically calculated.

    Where,

    Voltage transfer function:

    Input impedance:

    5 Conclusions

    The paper introduces a computer-based systematic matrix-based representation for the network functions of linear or linearized time-invariant dynamic circuits. The proposed method is based on the modified nodal approach, suitable for computer-aided analysis of active and passive circuits and creating a matrix formulation. The main contribution of the paper is that it gives a computer-based systematic formulation method in terms of the components of the created vector, W(s). Transfer functions and input impedances related to the examples show the efficiency of the approach.

    The system equations and network functions can be obtained systematically by inspection.Therefore, for future work, a computer program about the network functions and frequency domain analysis of active and passive circuits can be written by using the presented method. Moreover, the noise analysis, one of the interesting applications of network analysis, can be also realized by this method.

    Aguirre, I.; Carlosena, A. (2001): A symbolic method for network function approximation w ith order reduction, Int. Journal of Circuit Theory and Applications, vol.28, no.3, pp.313-318.

    Djordjevic, S.; Petkovic, P.M. (2004): Generation of factorized symbolic network function by circuit topology reduction, IEEE 24thInt. Conf. on Microelectronics (MIEL).Serbia and Montenegro, pp.773-776.

    Exposito, A.G.; Soler, A.B.; Macias, J. (2009): Efficient dominant eigensystem comput ation using nodal equations, Int. Journal of Circuit Theory and Applications, vol.37, no.1,pp.137-158.

    Ho, C.W., et al. (1975): The modified nodal approach to network analysis, IEEE Trans.on Circuits and Systems, vol.22, no.6, pp.504-509.

    Karina, V.; Rodriguez, Q.; Guillemin, F. (2016): Performance analysis of resource pooling for network function virtualization, 17thInt. Telecommunications Network Strategy and Planning Symp., Canada, pp.158-163.

    Li, Y.; Phan, L.T.X.; Loo, B.T. (2016): Network functions virtualization with soft real-time guarantees, The 35th Annual IEEE Int. Conf. on Computer Communications, USA, pp.1-9.

    Nedelea,L.; Topa, M.; Neag, M. (2003): Computer-aided network function approximation for multi criteria filter design, IEEE Int. Symposium on Signals, Circuits and Systems (SCS),Romania, pp.81-84.

    Psychalinos, C. (2007): Realization of log-domain high-order transfer functions using first-order building blocks and complementary operators, Int. Journal of Circuit Theory and Applications, vol.35, no.1, pp.17-32.

    Pierzchala, M.; Rodanski, B. (2001): Generation of sequential symbolic network functions for large-scale networks by circuit reduction to a two-port, IEEE Transaction on Circuits and Systems-I Fundamental Theory and Applications, vol.48, no.7, pp.906-909.

    Raut, R. (2006): On the realization of current transfer function using voltage amplifiers,Int. Journal of Circuit Theory and Applications, vol.34, no.5, pp.583-589.

    Reis, T. (2010): Circuit synthesis of passive descriptor systems-A modified nodal approach, Int. Journal of Circuit Theory and Applications, vol.38, no.1, pp.44-68.

    Ruzhang, L.; Xiangdong, W.; Zhaoming, W.; Xiangfu, H. (1995): A new algorithm for generating symbolic network functions by computer, IEEE 4thInt. Conference on Solid-State and Integrated Circuit Technology, China, pp.349-351.

    Sagbas, M.; Ayten U.E.; Sedef H. (2010): Current and voltage transfer function filters using a single active device, IET Circuits, Devices & Systems, vol.4, no.1, pp.78-86.

    Shi, C.J.; Tan, X.D. (2001): Compact representation and efficient generation of sexpanded symbolic network functions for computer-aided analog circuit design, IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, vol.20, no.7,pp.813-827.

    Thomas, R.E.; Rosa, A.J. (2006): The analysis and design of linear circuits, John Wiley& Sons.

    Topa, M.D.; Simon, E. (1996): Applications of symbolic network analysis, IEEE 3rdInt.Conference on Electronics, Circuits, and Systems (ICECS), Romania, pp.108-111.

    Vlach, J.; Singhal, K. (1983): Computers methods for circuit analysis and design, Van Nostrand.

    Wambacq, P.; Gielen, G.; Sansen, W. (1996): A new reliable approximation method for expanded symbolic network functions, IEEE Int. Symposium on Circuits and Systems(ISCAS), Atlanta, pp.584-587.

    Yildiz, A.B. (2010): Modified Nodal Analysis-Based Determination of Transfer Functions for Multi-Inputs Multi-Outputs Linear Circuits, Automatika-Journal for Control, Measurement,Electronics, Computing and Communications, vol.51, no.4, pp.353-360.

    Yuan, Y. (2000): On the periodicity of network functions of periodically switched linear and nonlinear circuits, IEEE Canadian Conference on Electrical and Computer Engineering, pp.574-577.

    Yu, Q.; Sechen, C. (1996): A unified approach to the approximate symbolic analysis of large analog integrated circuits, IEEE Tran. on Circuits and Systems I: Fundamental Theory and Applications, vol.43, no.8, pp. 656-669.

    Yoon, S.; Na, T.; Yoon, H.; Ryu, H.Y. (2016): Design and implementation of virtual network function development toolkit, Int. Conf. on Information and Communication Tech. Conv.(ICTC), S. Korea, pp.892-897.

    精品久久久精品久久久| 日本爱情动作片www.在线观看| 国产国语露脸激情在线看| 香蕉丝袜av| 亚洲成人国产一区在线观看 | 亚洲精品日本国产第一区| 人人妻人人添人人爽欧美一区卜| 精品一区在线观看国产| 国产男女内射视频| 久久精品久久久久久噜噜老黄| 久久人妻熟女aⅴ| 欧美日韩综合久久久久久| 亚洲人成网站在线观看播放| 在线观看免费视频网站a站| 日本91视频免费播放| 国产在线一区二区三区精| 久久久国产欧美日韩av| 精品亚洲乱码少妇综合久久| 丁香六月天网| 国产爽快片一区二区三区| 亚洲精品一区蜜桃| 亚洲欧美色中文字幕在线| 国产成人系列免费观看| 精品视频人人做人人爽| 少妇精品久久久久久久| 久久婷婷青草| 国产成人一区二区在线| 成年人免费黄色播放视频| 看十八女毛片水多多多| 人体艺术视频欧美日本| 欧美老熟妇乱子伦牲交| 久久鲁丝午夜福利片| 免费观看人在逋| 亚洲成人av在线免费| 久久精品人人爽人人爽视色| 啦啦啦 在线观看视频| 色播在线永久视频| 在线观看免费午夜福利视频| 欧美日韩视频精品一区| 久久精品久久久久久噜噜老黄| 日韩一卡2卡3卡4卡2021年| 最新在线观看一区二区三区 | 国产一区二区激情短视频 | 久久综合国产亚洲精品| 91精品伊人久久大香线蕉| 日本欧美国产在线视频| 精品国产超薄肉色丝袜足j| 韩国精品一区二区三区| 国产在线一区二区三区精| 国产精品麻豆人妻色哟哟久久| 国产色婷婷99| 欧美激情 高清一区二区三区| 日韩,欧美,国产一区二区三区| 爱豆传媒免费全集在线观看| 午夜久久久在线观看| 久久精品久久精品一区二区三区| 王馨瑶露胸无遮挡在线观看| a 毛片基地| 亚洲精品中文字幕在线视频| 亚洲图色成人| 亚洲成人免费av在线播放| 一区二区日韩欧美中文字幕| 亚洲国产日韩一区二区| 男女免费视频国产| 亚洲色图 男人天堂 中文字幕| 国产成人免费观看mmmm| av又黄又爽大尺度在线免费看| 黑人猛操日本美女一级片| 免费观看性生交大片5| 国产免费视频播放在线视频| 日韩欧美精品免费久久| 亚洲一区中文字幕在线| 天堂俺去俺来也www色官网| 女的被弄到高潮叫床怎么办| www.自偷自拍.com| 免费黄频网站在线观看国产| 国产xxxxx性猛交| 人人妻人人爽人人添夜夜欢视频| 午夜福利在线免费观看网站| 中文字幕人妻丝袜制服| 亚洲色图 男人天堂 中文字幕| 日韩av不卡免费在线播放| 一区二区三区精品91| 免费在线观看黄色视频的| 一本—道久久a久久精品蜜桃钙片| 激情五月婷婷亚洲| 啦啦啦视频在线资源免费观看| 我要看黄色一级片免费的| 国产黄色视频一区二区在线观看| 在线亚洲精品国产二区图片欧美| 人人妻,人人澡人人爽秒播 | 欧美人与性动交α欧美软件| 一二三四在线观看免费中文在| 午夜精品国产一区二区电影| 国产乱人偷精品视频| 少妇被粗大的猛进出69影院| 国产在线视频一区二区| 国产精品.久久久| 国产有黄有色有爽视频| 亚洲精品日韩在线中文字幕| 国产精品无大码| 女人精品久久久久毛片| 搡老乐熟女国产| av不卡在线播放| 欧美国产精品一级二级三级| 久久热在线av| 丰满少妇做爰视频| 最近2019中文字幕mv第一页| 中文字幕亚洲精品专区| 精品国产一区二区三区四区第35| 欧美激情 高清一区二区三区| 国产精品av久久久久免费| 久久天躁狠狠躁夜夜2o2o | 日本av免费视频播放| 一级毛片 在线播放| 国产精品欧美亚洲77777| 卡戴珊不雅视频在线播放| 国产精品一二三区在线看| 久久狼人影院| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 国产人伦9x9x在线观看| 天天躁日日躁夜夜躁夜夜| 建设人人有责人人尽责人人享有的| 日韩视频在线欧美| 亚洲中文av在线| 最近最新中文字幕大全免费视频 | 国产精品女同一区二区软件| 免费日韩欧美在线观看| 久久久久久免费高清国产稀缺| 欧美av亚洲av综合av国产av | 久久ye,这里只有精品| 精品久久久精品久久久| 少妇人妻精品综合一区二区| 人人妻,人人澡人人爽秒播 | 国产欧美日韩一区二区三区在线| 青春草视频在线免费观看| 99国产综合亚洲精品| 成人国产麻豆网| 亚洲国产精品一区三区| 亚洲一区中文字幕在线| 老熟女久久久| 亚洲成av片中文字幕在线观看| 伊人亚洲综合成人网| 中国三级夫妇交换| 99久久综合免费| 美女视频免费永久观看网站| 亚洲欧美成人精品一区二区| 国产成人精品久久久久久| 人人妻人人澡人人看| 国产精品女同一区二区软件| 侵犯人妻中文字幕一二三四区| 国产亚洲精品第一综合不卡| 国产一区二区三区综合在线观看| 亚洲色图综合在线观看| 婷婷色综合www| 女的被弄到高潮叫床怎么办| 久久狼人影院| 国产高清不卡午夜福利| 久久精品亚洲av国产电影网| 国产精品人妻久久久影院| 日韩成人av中文字幕在线观看| 9热在线视频观看99| 精品人妻一区二区三区麻豆| 国产在线视频一区二区| 免费高清在线观看视频在线观看| 亚洲精品乱久久久久久| 91精品伊人久久大香线蕉| 一级黄片播放器| 午夜影院在线不卡| 国产午夜精品一二区理论片| 女人久久www免费人成看片| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx| 国产精品一国产av| 日韩一卡2卡3卡4卡2021年| 国产精品免费大片| 看免费av毛片| 欧美精品av麻豆av| 婷婷色综合www| 亚洲国产最新在线播放| 超碰97精品在线观看| 国产精品久久久av美女十八| 九草在线视频观看| 国产黄色免费在线视频| 狂野欧美激情性xxxx| 一区二区三区四区激情视频| 欧美精品亚洲一区二区| 搡老岳熟女国产| 天天添夜夜摸| 一区在线观看完整版| 一边亲一边摸免费视频| 青春草亚洲视频在线观看| 男女边吃奶边做爰视频| 99久久99久久久精品蜜桃| 美女视频免费永久观看网站| 精品少妇黑人巨大在线播放| 老鸭窝网址在线观看| 欧美精品一区二区免费开放| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美精品免费久久| 国产在线一区二区三区精| 欧美日本中文国产一区发布| 老鸭窝网址在线观看| 一边亲一边摸免费视频| 老司机亚洲免费影院| 十八禁高潮呻吟视频| 1024香蕉在线观看| 叶爱在线成人免费视频播放| 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 一区二区av电影网| 欧美另类一区| 国产成人a∨麻豆精品| 多毛熟女@视频| 亚洲精品国产色婷婷电影| 大片免费播放器 马上看| 国产精品久久久久久精品古装| 欧美激情 高清一区二区三区| 交换朋友夫妻互换小说| 欧美少妇被猛烈插入视频| 一区二区三区激情视频| 国产在线视频一区二区| 最黄视频免费看| 99久久99久久久精品蜜桃| 少妇精品久久久久久久| 美女脱内裤让男人舔精品视频| 日韩一卡2卡3卡4卡2021年| netflix在线观看网站| 在线 av 中文字幕| 精品视频人人做人人爽| 国产福利在线免费观看视频| 超色免费av| 在线观看国产h片| 少妇人妻精品综合一区二区| 久久亚洲国产成人精品v| 国产极品天堂在线| 久久97久久精品| 999精品在线视频| 国产午夜精品一二区理论片| 大话2 男鬼变身卡| 色婷婷av一区二区三区视频| 亚洲色图综合在线观看| 激情视频va一区二区三区| 午夜免费男女啪啪视频观看| 免费观看av网站的网址| 性少妇av在线| 91精品伊人久久大香线蕉| 熟妇人妻不卡中文字幕| 久久精品人人爽人人爽视色| 极品人妻少妇av视频| 9191精品国产免费久久| 亚洲精品一区蜜桃| 国产精品一区二区在线观看99| 久久久久精品久久久久真实原创| 丁香六月欧美| 国产欧美日韩一区二区三区在线| 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| 91精品国产国语对白视频| 中文字幕亚洲精品专区| 91精品三级在线观看| 街头女战士在线观看网站| 色视频在线一区二区三区| 另类精品久久| 尾随美女入室| 亚洲色图 男人天堂 中文字幕| 久久精品久久精品一区二区三区| 亚洲av综合色区一区| 一本一本久久a久久精品综合妖精| 如日韩欧美国产精品一区二区三区| 校园人妻丝袜中文字幕| 亚洲精品中文字幕在线视频| 大香蕉久久网| 午夜日本视频在线| 2018国产大陆天天弄谢| 中文乱码字字幕精品一区二区三区| 国产日韩欧美在线精品| 1024视频免费在线观看| 亚洲色图综合在线观看| 久久精品国产a三级三级三级| 国产有黄有色有爽视频| www.精华液| 免费看av在线观看网站| 久久av网站| 黄片无遮挡物在线观看| 亚洲色图综合在线观看| 97在线人人人人妻| 人成视频在线观看免费观看| 一级毛片电影观看| 精品少妇一区二区三区视频日本电影 | 亚洲欧美中文字幕日韩二区| 日韩 欧美 亚洲 中文字幕| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 国产日韩欧美在线精品| 大香蕉久久成人网| 久久97久久精品| 国产色婷婷99| 汤姆久久久久久久影院中文字幕| 久久热在线av| 国产精品99久久99久久久不卡 | 精品久久久久久电影网| 久久韩国三级中文字幕| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人爽人人夜夜| 一级片'在线观看视频| 国产精品免费视频内射| 人妻 亚洲 视频| 欧美日韩视频精品一区| 91精品国产国语对白视频| 亚洲av在线观看美女高潮| 亚洲人成77777在线视频| 在线观看人妻少妇| 亚洲av在线观看美女高潮| 国产av码专区亚洲av| 狂野欧美激情性xxxx| 男人爽女人下面视频在线观看| av不卡在线播放| 国产片内射在线| 亚洲精品,欧美精品| 一级爰片在线观看| 制服人妻中文乱码| av.在线天堂| 国产深夜福利视频在线观看| 中文字幕精品免费在线观看视频| 国产片特级美女逼逼视频| 国产亚洲av片在线观看秒播厂| av有码第一页| 亚洲一区二区三区欧美精品| 欧美日韩视频高清一区二区三区二| 韩国精品一区二区三区| 色网站视频免费| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 免费看不卡的av| 街头女战士在线观看网站| 91精品国产国语对白视频| 欧美精品高潮呻吟av久久| 久久免费观看电影| 人人澡人人妻人| 国产欧美日韩一区二区三区在线| 精品人妻熟女毛片av久久网站| 中文欧美无线码| 国产1区2区3区精品| 精品亚洲成国产av| 老鸭窝网址在线观看| 国产精品一区二区在线不卡| 在线观看www视频免费| www.av在线官网国产| 一级毛片 在线播放| 2021少妇久久久久久久久久久| 一区二区日韩欧美中文字幕| 久久99精品国语久久久| 亚洲色图综合在线观看| 国产在线一区二区三区精| 国产成人精品久久二区二区91 | 午夜福利影视在线免费观看| 亚洲精品久久成人aⅴ小说| 超色免费av| 精品卡一卡二卡四卡免费| 国产精品国产av在线观看| av免费观看日本| 免费日韩欧美在线观看| h视频一区二区三区| 视频在线观看一区二区三区| 99久久综合免费| 国产免费又黄又爽又色| 亚洲美女黄色视频免费看| 大片免费播放器 马上看| 欧美97在线视频| 男人操女人黄网站| 又黄又粗又硬又大视频| 80岁老熟妇乱子伦牲交| 日韩精品有码人妻一区| 欧美精品亚洲一区二区| 日韩熟女老妇一区二区性免费视频| 午夜激情久久久久久久| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 七月丁香在线播放| 侵犯人妻中文字幕一二三四区| 看十八女毛片水多多多| 免费久久久久久久精品成人欧美视频| 亚洲国产成人一精品久久久| 欧美精品一区二区大全| 久久精品久久精品一区二区三区| 午夜影院在线不卡| 午夜老司机福利片| 一边摸一边做爽爽视频免费| 国产熟女欧美一区二区| 中国国产av一级| 午夜福利视频在线观看免费| 亚洲精品久久久久久婷婷小说| 少妇猛男粗大的猛烈进出视频| 男女无遮挡免费网站观看| 亚洲人成电影观看| 毛片一级片免费看久久久久| 巨乳人妻的诱惑在线观看| 汤姆久久久久久久影院中文字幕| 丁香六月欧美| 久久精品熟女亚洲av麻豆精品| 欧美日韩福利视频一区二区| 99久久99久久久精品蜜桃| 午夜影院在线不卡| 香蕉国产在线看| 国产精品熟女久久久久浪| 人妻一区二区av| 亚洲av男天堂| 久久久久久免费高清国产稀缺| 亚洲人成77777在线视频| 激情五月婷婷亚洲| 韩国精品一区二区三区| a级毛片在线看网站| 午夜福利视频精品| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说| 国产在线免费精品| www.精华液| 建设人人有责人人尽责人人享有的| 午夜精品国产一区二区电影| 亚洲欧美一区二区三区国产| 国产毛片在线视频| 一级毛片 在线播放| 麻豆精品久久久久久蜜桃| 中文字幕人妻丝袜制服| 校园人妻丝袜中文字幕| 久久狼人影院| 国产国语露脸激情在线看| 欧美日韩精品网址| av有码第一页| 在线观看国产h片| 国产精品久久久av美女十八| 午夜av观看不卡| 老司机亚洲免费影院| 女人久久www免费人成看片| 成人影院久久| tube8黄色片| 久久精品久久久久久噜噜老黄| 欧美 亚洲 国产 日韩一| 黄色一级大片看看| 男女高潮啪啪啪动态图| 国产精品女同一区二区软件| 午夜福利视频在线观看免费| 亚洲精品日韩在线中文字幕| 婷婷色综合www| 黄色视频不卡| 国产成人啪精品午夜网站| 99久久人妻综合| 亚洲精品,欧美精品| 国产精品熟女久久久久浪| 国产成人精品在线电影| 黄片播放在线免费| 一区福利在线观看| e午夜精品久久久久久久| 蜜桃国产av成人99| 精品免费久久久久久久清纯 | 国产熟女欧美一区二区| 91老司机精品| 午夜福利一区二区在线看| 免费不卡黄色视频| 女人被躁到高潮嗷嗷叫费观| 18在线观看网站| 亚洲四区av| 看十八女毛片水多多多| 中国国产av一级| 日韩电影二区| bbb黄色大片| 另类精品久久| 亚洲激情五月婷婷啪啪| 免费日韩欧美在线观看| 51午夜福利影视在线观看| 人妻人人澡人人爽人人| 久久久国产精品麻豆| 青青草视频在线视频观看| 亚洲精品久久成人aⅴ小说| 国产成人91sexporn| 18禁动态无遮挡网站| 大香蕉久久成人网| 丝袜脚勾引网站| 人体艺术视频欧美日本| 精品少妇久久久久久888优播| 18禁国产床啪视频网站| 日本猛色少妇xxxxx猛交久久| 亚洲国产毛片av蜜桃av| 午夜老司机福利片| 如何舔出高潮| 亚洲精品久久久久久婷婷小说| 亚洲欧美中文字幕日韩二区| 久久女婷五月综合色啪小说| 最近中文字幕高清免费大全6| 免费看不卡的av| 久久久国产一区二区| 午夜福利视频在线观看免费| 久久精品久久久久久噜噜老黄| 国产一级毛片在线| 91aial.com中文字幕在线观看| 下体分泌物呈黄色| 国产福利在线免费观看视频| 欧美国产精品va在线观看不卡| 亚洲成人av在线免费| 在线观看免费高清a一片| 老汉色av国产亚洲站长工具| 伦理电影免费视频| 精品人妻在线不人妻| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频| 精品一区二区免费观看| 午夜精品国产一区二区电影| 日本午夜av视频| 国产无遮挡羞羞视频在线观看| 久久99精品国语久久久| 国产亚洲一区二区精品| 亚洲激情五月婷婷啪啪| 97人妻天天添夜夜摸| 国产成人精品久久二区二区91 | 丝瓜视频免费看黄片| 欧美日韩福利视频一区二区| 国产成人欧美| 国产精品无大码| 侵犯人妻中文字幕一二三四区| 电影成人av| 日韩 亚洲 欧美在线| 亚洲七黄色美女视频| 久久精品亚洲熟妇少妇任你| 天堂中文最新版在线下载| 精品国产国语对白av| 亚洲成色77777| 91精品伊人久久大香线蕉| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| 考比视频在线观看| www.熟女人妻精品国产| 国产又色又爽无遮挡免| 欧美少妇被猛烈插入视频| 国产精品久久久人人做人人爽| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 巨乳人妻的诱惑在线观看| 777米奇影视久久| 男人添女人高潮全过程视频| 大码成人一级视频| 在线观看人妻少妇| 成人国产av品久久久| 中文字幕高清在线视频| 国产一区二区三区综合在线观看| 久久久久精品国产欧美久久久 | av免费观看日本| 999久久久国产精品视频| 久久久久精品久久久久真实原创| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 九九爱精品视频在线观看| 精品一区二区免费观看| 涩涩av久久男人的天堂| 亚洲精品乱久久久久久| 午夜影院在线不卡| 2018国产大陆天天弄谢| 国产精品久久久人人做人人爽| √禁漫天堂资源中文www| 欧美在线黄色| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 久久ye,这里只有精品| 亚洲欧美成人精品一区二区| 青青草视频在线视频观看| 国产欧美亚洲国产| 嫩草影院入口| 制服丝袜香蕉在线| 视频在线观看一区二区三区| 最黄视频免费看| 国产精品久久久av美女十八| 久久久久人妻精品一区果冻| 精品酒店卫生间| 又黄又粗又硬又大视频| 精品福利永久在线观看| 欧美精品亚洲一区二区| 制服诱惑二区| 女人高潮潮喷娇喘18禁视频| 国产精品免费大片| 亚洲,欧美,日韩| 毛片一级片免费看久久久久| 国产伦人伦偷精品视频| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 激情视频va一区二区三区| 久久精品亚洲av国产电影网| 99久久精品国产亚洲精品| 成年av动漫网址| 亚洲免费av在线视频| 成年动漫av网址| 青春草亚洲视频在线观看| 国产一区二区三区综合在线观看| 嫩草影院入口| 免费女性裸体啪啪无遮挡网站| 欧美精品亚洲一区二区| 亚洲精品日韩在线中文字幕| 如何舔出高潮| 七月丁香在线播放| 美女午夜性视频免费| 国产精品欧美亚洲77777| 人妻一区二区av| 丁香六月欧美| 你懂的网址亚洲精品在线观看| 一边摸一边抽搐一进一出视频| 国产黄色免费在线视频| 老汉色∧v一级毛片| 亚洲国产av新网站| 国产成人系列免费观看| 国产男女内射视频| 久久av网站|