• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recover Implied Volatility in Short-term Interest Rate Model

    2017-03-14 02:46:28XUZuoliang

    XU Zuo-liang

    (1.School of Mathematics and Statistics,Shandong Normal University,Jinan 250014,China;2.School of Information,Renmin University of China,Beijing 100872,China)

    §1.Introduction

    Derivative security for interest rate is one whose payoffis determined by interest rate to some extent[1].Recently,in financial market,the pricing of interest rate derivatives become a very important research work.One of the most widely used classes of valuation models is the short-term interest rate model,such as CIR model[2]and Hull-While model[3].The short-term interest model is an indispensable tool for the derivatives pricing and risk management.In order to pricing more accurately,calibration of the model parameters to specific market data is required.Much research has been done on the analysis of calibration of different parameters in different models[4-8].

    As is known to us that volatilities of underlying assets have become widely used by corporate treasures as well as by risk controllers and financial institution in risk management,portfolio hedging and derivatives valuation.Since the volatilities of underlying assets cannot be directly observed in general,much research has been done on the inverse problem to reconstruct the implied volatility from market prices[9-11].In[9],Rainer gives the general structure of optimization in the context of calibration of stochastic models for interest rate derivatives.Based on the relevant market data,a novel numerical algorithm for the optimization of parameters in interest rate models is presented.In[10],Bouchouev et al.consider the problem of reconstruction of volatility from market prices of options with different strikes.As the volatility is only stock price dependent,a linearized version of the inverse problem is considered,a simple convenient representation of the linearization and a reliable numerical algorithm are obtained.

    In this paper,we continue research of the linearization technique.By using linearization,we attempt to reconstruct the implied volatility of interest rate from the market prices of zerocoupon bond,which is sold in somewhat higher discount and will be redeemed on its face value on the maturity date.

    Suppose that the behavior of short-term interest rateris modeled by the following stochastic differential equation

    whereais a constant,W(t)denotes a standard Wiener process,θ(t)is a deterministic function of time,and the volatility factorσ(r)is a function of interest rate.

    In practice,the spot rate is never less than zero and never greater than a certain number,which is assumed to beR.Therefore we assume that the interest rater∈?=[0,R].

    We denote the value of zero-coupon bondv(t,r)is a function of current timetand interest rater.Following the general method for derivative security pricing[12],we get the partial differential equation for a zero-coupon bond in the form

    whereω=[0,T]×[0,R],Tis the expiration date,a time-dependent functionλ(t)is market price for risk of interest rate which reflects the relationship between risk and yield,andσ(r)is the only parameter in the model that is unknown.

    The final condition is given by

    whereKis a certain face value of zero-coupon bond.

    Now,one key problem for us is to reconstruct implied volatilityσ(r)from the observed market prices of zero-coupon bondv,which is described as the inverse problem of zero-coupon bond pricing.

    Problem 1Given market prices of zero-coupon bond, find the implied volatility functionσ(r)such that the solution of(1.2)~(1.3)at initial timet=0 with different interest rates satis fies

    wherev?(r)denotes the current market price of zero-coupon bond at timet=0 andr∈Λ??.

    It is convenient to make the change of variableτ=T?tandV(τ,r)=v(t,r).For simplicity,we denoteθ(τ),λ(τ)still.Then equations(1.2)~(1.4)can be rewritten as follows

    The remainder of the paper is organized as follows.In section 2,we simplify the partial differential equation by applying linearization approach and introduce the power series to derive the formulas of the price of zero-coupon bond.In section 3,an integral equation is formulated and in order to solve the problem,we address the regularization method.Numerical results are given in section 4.In section 5,some concluding remarks are given.

    §2.Linearization

    In this section, first we assume the volatility to be consisting of a given constant and a small perturbation,then based on the form of perturbation,we introduce the power series which play an important role for our reconstruction formulas.

    2.1 Linearization at Constant Volatility

    To recoverσ(r),we first assume

    whereσ0is a given positive constant,the functionf(r)is a small perturbation ofσ0,and takes the form[13]

    whereεis a sufficiently small positive constant andg(r)=0 outside ?.

    Substituting(2.1)and(2.2)into(1.5)gives

    where

    For simplification,by using the following substitution

    where

    and

    Then we simplify equations(2.3),(1.6)and(1.7)to

    where

    and

    Hereω?is the transformed intervalω.As(τ,r)∈ω,it is easy to find the intervalybelongs to denoted by ??. Λ?is the intervalybelongs to whenτ=Tandr∈Λ.

    Problem 2GivenU?(y), find the perturbation?f(?τ,y)such that the solution of(2.9)~(2.10)satis fies the condition(2.11)fory∈Λ?.

    2.2 Power Series

    Recallingf(r)=εg(r)in(2.2),we considerUin power series of the parameterε[13].

    Substituting(2.12)into(2.9)and grouping terms in power ofε,we may derive recursion equations forUn

    where

    Inserting(2.12)into(2.10)gives the initial condition forUn

    In the above recursion,it is understood thatUnis denoted as zero whenever the integern<0.We notice that the transmission problem(2.13)~(2.15)for the current termsUninvolvesMn,which depend only on the previous two termsUn?1andUn?2.Thus,the problem(2.13)~(2.15)indeed can be solved efficiently in a recursive manner starting fromn=0.For each integern,it is easy to get the solution of the initial value problem of parabolic differential equations(2.13)~(2.15).

    Lemma 1The solution of(2.13)~(2.15)is an integral equation as following

    ProofGiven a functionu(x),the one-dimensional Fourier transform ofuis defined by

    Taking the Fourier transform of(2.13)~(2.15)with respect toy,we have

    Solving the initial value problem for the ordinary differential equation,we obtain

    Taking the inverse Fourier transform of the above equation(2.20)with respect toξ,we can obtain the solution in the form of(2.16).

    §3.The Linearized Inverse Problem and Regularization

    In this section,neglecting high order terms in the power series,we formulate an integral equation about perturbationf(r).In order to solve the linearized inverse problem,we address Tikhonov regularization method[14].

    In the paper,we assume the observed market prices for zero-coupon bonds have some relative random noise.LetVδ(T,r)be the noisy data at timet=Tand it takes the form

    whereV(T,r)denotes the noise-free data at timet=Tandδrepresents the noise level.

    Under the change of variables(2.5),we have

    It follows from the expression(2.12)that we have

    Rearranging(3.3)yields

    Neglecting the asymptotic terms ofε2andδin(3.4)gives

    which plays an important role in the linearization of the inverse problem.

    In the following,we will deduce the analytic expression of the order zero term and the order one term respectively from Lemma 1.

    Order Zero TermRecalling(2.14),we have

    Using the solution representation(2.16),we obtain

    Order One TermInserting(3.7)into(2.14),we have

    where

    Using the solution representation(2.16),we have

    From variable substitution(2.5),Jacobian is obtained asJ=then we have

    where

    withh(τ)=

    Inserting(3.13)into(3.5),we have an integral function as follows

    De fine an operatorAas follows

    then we have

    The equation(3.16)is a Fredholm integral equation of the first kind and is an ill-posed problem under noisy propagation.Here we use the Tikhonov regularization method which lies in minimization of the following functional

    where 0<α<1 is the so-called regularization parameter,‖·‖2denotes the EuclideanL2-norm.

    Equation(3.17)can be realized in discrete form using finite difference method,and then the gradient descent algorithm can be applied to solve the minimization problem[14].Details about computational issues are given in the next section.

    §4.Numerical Experiments

    In this section,we give several numerical experiments for recovery of the implied volatility.In our tests,we assumeT=1,R=0.05,K=100,a=0.892,σ0=0.02,θ(t)=(0.001+0.1t)e?0.9t+0.009,λ(t)=1?t,Λ =[0.01,0.04]and the noisy data takes the form

    wherezstands for uniformly distributed random numbers and we chooseδ=0.01,0.05.

    Firstly a mesh is generated withN=101 grid points on the interval[0,T]andM=51 grid points on the interval[0,R],then we use the finite differences method to solve the direct problem(1.5)~(1.6)with artificial boundary conditions that is?V/?r=0 atr=0 andR.

    The equation(3.16)can be discretized as following

    whereAij=P(ri,yj)?r(ri∈[0,R],?r=R/M),yj=rje?aT+c(T)withrj∈Λ.Here we generate 61 grid points on the interval Λ.

    In order to solve the problem(3.17),we take a fixed valueα=0.001 and use the gradient descent method.We consider the perturbation function obeys the linear distribution,the sine distribution and the piecewise function respectively.For the first one,we let the functionf(r)=εr,for the second one,we letf(r)=εsin(40πr),and for the last,we letf(r)=εforr∈[0,0.02]∪(0.04,0.05],andf(r)=0 forr∈(0.02,0.04].According to different perturbation functions,we choose different values ofεto make the perturbations can reach 0-0.5 of the magnitude of constant volatilityσ0.

    Example 1f(r)=εr.With differentε=0.001,0.0025,0.005,0.01,we can obtain the reconstructed perturbation functions.Figures 1,2 show the reconstructed results and relative errors respectively.From Figure 2,we obtain that smallerεyields smaller relative errors and gives better reconstruction.It can be seen from the equation(2.2)that the linearization procedure(3.4)gives more accurate approximation to the original nonlinear inverse problem if the parameterεis smaller.

    Figure 1 Reconstructed Perturbation with Different Parameters of ε

    Example 2f(r)=εsin(40πr).For this example,we consider different parameters ofε=0.001,0.0025,0.005,0.01.Figures 3,4 show the reconstructions and relative errors respectively.Clearly,we can see that whenε=0.001,the reconstruction result is the most close to the true value.

    Example 3In this example,the functionf(r)is discontinuous and we let the parameters ofε=0.001,0.0025,0.005,0.01.Figures 5,6 show the reconstructions and relative errors respectively.From the figures,we can get the same result as the above two examples.In this case,the errors between the estimated results and the true value are relatively large.Also we can see that at the discontinuous pointsr=0.02 and 0.04,the errors reach maximum.For this situation that the perturbation is non-smooth,our future work is to apply the total variation regularization method to reconstruct the volatility more accurately.

    Furthermore,in this paper,we consider volatility depend on interest rate only.In the next step,we will consider the case that volatility doesnot depend on interest rate,but also relates to the time and text our algorithm to the real market data.

    Figure 2 Relative Errors with Different Parameters of ε

    Figure 3 Reconstructed Perturbations with Different Parameters of ε

    Figure 4 Relative Errors with Different Parameters of ε

    Figure 5 Reconstructed Perturbations with Different Parameters of ε

    Figure 6 Relative Errors with Different Parameters of ε

    §5.Conclusion

    In this paper,we study a numerical method for the reconstruction of the implied volatility in short-term interest rate model from the market prices of zero-coupon bonds.Assuming the volatility function to be combination of a given constant and a small perturbation,we simplify the partial differential equation.Introducing the power series,we derive recursive formulas of the price of zero-coupon bond.Then we consider the inverse problem by neglecting the high order terms in the power series,and obtain an integral equation of the perturbation function.In order to solve the inverse problem,we address the Tikhonov regularization method.Using the gradient decent method,three examples are considered and the numerical results show that the method is effective.In the test,by considering different values of the parameter in perturbation function,we get the result that smaller perturbation yields better reconstruction.

    [1]HULL J.Options,Futures and Other Derivatives[M].New Jersey:Prentice Hall,2006.

    [2]COX J C,INGERSOLL J E,ROSS S A.A theory of the term structure of interest rates[J].Econometrica,1985,53(2):385-408.

    [3]HULL J,WHITE A.The general Hull-White model and super calibration[J].Finance Analysis Journal,2001,57(6):34-43.

    [4]BOUCHOUEV I,ISAKOV V.The inverse problem of option pricing[J].Inverse Problems,1997,13(5):11-17.

    [5]BOUCHOUEV I,ISAKOV V.Uniqueness,stability and numerical methods for the inverse problem that arises in financial markets[J].Inverse Problems,1999,15(3):95-116.

    [6]ZHANG Guan-quan,LI Pei-jun.An Inverse Problem of Derivative Security Pricing[C].New Jersey:The International Conf on Inverse Problems,World Sci,2003:411-419.

    [7]EGGER H,HEIN T,HOFMANN B.On decoupling of volatility smile and term structure in inverse option pricing[J].Inverse Problem,2006,22(4):1247-1259.

    [8]EGGER H,ENGL H W.Tikhonov regularization applied to the inverse problem of option pricing:convergence analysis and rates[J].Inverse Problems,2005,21(3):1027-1045.

    [9]RAINER M.Calibration of stochastic models for interest rate derivatives[J].2009,58(3):373-388.

    [10]BOUCHOUEV I,ISAKOV V,VALDIVIA V.Recovery of volatility coefficient by linearization[J].Quantitative Finance,2002,2(4):257-263.

    [11]LU Lu,YI Lei.Recover implied volatility of underlying asset from European option price[J].Journal of Inverse and Ill-posed Problems,2009,17(5):499-509.

    [12]HULL J,WHITE A.Pricing interest-rate-derivative securities[J].The Review of Financial Studies,1990,3(4):573-592.

    [13]BAO Gang,LI Pei-jun.Near- field imaging of in finite rough surfaces in dielectric media[J].SIAM J.Imaging Sciences.2014,7(2):867-899.

    [14]WANG Yan-fei.Computational Methods for Inverse Problems and Their Applications[M].Beijing:Higher Education Press,2007.

    卡戴珊不雅视频在线播放| 高清av免费在线| 寂寞人妻少妇视频99o| .国产精品久久| 少妇的逼水好多| 麻豆成人av视频| 免费av观看视频| 国产免费男女视频| 国产综合懂色| 国产高清三级在线| 色播亚洲综合网| 91久久精品国产一区二区成人| 欧美成人a在线观看| 97热精品久久久久久| 69av精品久久久久久| 国产成人a∨麻豆精品| 69av精品久久久久久| 亚洲va在线va天堂va国产| 女人十人毛片免费观看3o分钟| 亚洲精品影视一区二区三区av| 日韩成人av中文字幕在线观看| 狠狠狠狠99中文字幕| 成人无遮挡网站| 乱系列少妇在线播放| 男人和女人高潮做爰伦理| 简卡轻食公司| 九九爱精品视频在线观看| 特级一级黄色大片| 婷婷色综合大香蕉| 观看美女的网站| 精品午夜福利在线看| 女人十人毛片免费观看3o分钟| 欧美丝袜亚洲另类| 欧美日本视频| 国产真实伦视频高清在线观看| 国国产精品蜜臀av免费| 淫秽高清视频在线观看| 91久久精品国产一区二区成人| 51国产日韩欧美| 又爽又黄a免费视频| 欧美日本视频| 伦理电影大哥的女人| 日本黄色视频三级网站网址| 边亲边吃奶的免费视频| 国产精品国产三级专区第一集| 日本色播在线视频| 七月丁香在线播放| 欧美一区二区国产精品久久精品| 精品免费久久久久久久清纯| 91久久精品国产一区二区成人| 国产精品熟女久久久久浪| 亚洲一区高清亚洲精品| 午夜福利成人在线免费观看| 国产精品麻豆人妻色哟哟久久 | av女优亚洲男人天堂| 久久精品国产99精品国产亚洲性色| 高清在线视频一区二区三区 | 国产真实伦视频高清在线观看| 国产一区二区在线av高清观看| 日韩欧美精品免费久久| 国产亚洲一区二区精品| 成人欧美大片| 亚洲中文字幕日韩| 国产av在哪里看| 久久精品影院6| 日韩av在线大香蕉| 少妇人妻精品综合一区二区| 黄片无遮挡物在线观看| 天堂√8在线中文| 日韩av在线大香蕉| 欧美xxxx黑人xx丫x性爽| 建设人人有责人人尽责人人享有的 | 久久精品91蜜桃| 免费观看a级毛片全部| 久久人人爽人人爽人人片va| 精品免费久久久久久久清纯| 精品欧美国产一区二区三| 韩国av在线不卡| 最近最新中文字幕大全电影3| 免费观看精品视频网站| 色网站视频免费| 久久99蜜桃精品久久| 菩萨蛮人人尽说江南好唐韦庄 | 成人无遮挡网站| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩卡通动漫| 1024手机看黄色片| 亚洲av不卡在线观看| 亚洲av成人精品一区久久| 国产成人一区二区在线| 你懂的网址亚洲精品在线观看 | 中文字幕精品亚洲无线码一区| 午夜福利成人在线免费观看| 欧美高清成人免费视频www| 天堂中文最新版在线下载 | 成年女人看的毛片在线观看| 综合色av麻豆| 国产单亲对白刺激| 99视频精品全部免费 在线| 七月丁香在线播放| 久久精品国产亚洲网站| 成年版毛片免费区| 国产精品一区二区三区四区久久| 三级国产精品片| 国产精品人妻久久久久久| 亚洲欧美精品自产自拍| 在线观看一区二区三区| 亚洲av男天堂| 成人漫画全彩无遮挡| 汤姆久久久久久久影院中文字幕 | 精品酒店卫生间| 男人舔奶头视频| 精品一区二区免费观看| 国产精品爽爽va在线观看网站| 色播亚洲综合网| 亚洲人与动物交配视频| 日本三级黄在线观看| 国产午夜精品一二区理论片| 黄色日韩在线| 亚洲精品aⅴ在线观看| 欧美bdsm另类| 我的女老师完整版在线观看| 九九在线视频观看精品| 老司机福利观看| 欧美xxxx性猛交bbbb| 三级国产精品片| 最近的中文字幕免费完整| 99在线视频只有这里精品首页| 韩国av在线不卡| 精品人妻一区二区三区麻豆| 免费观看精品视频网站| 中文字幕av在线有码专区| 国产免费男女视频| 在线天堂最新版资源| 汤姆久久久久久久影院中文字幕 | 真实男女啪啪啪动态图| 久久这里有精品视频免费| 免费看光身美女| 国产精品1区2区在线观看.| av免费在线看不卡| 一本一本综合久久| 国产午夜精品一二区理论片| 精品久久久久久久久亚洲| 一级二级三级毛片免费看| 麻豆精品久久久久久蜜桃| 国产精品乱码一区二三区的特点| 精华霜和精华液先用哪个| 亚洲精品乱久久久久久| 免费在线观看成人毛片| 欧美激情国产日韩精品一区| 亚洲国产欧洲综合997久久,| 毛片女人毛片| 亚洲人成网站高清观看| 自拍偷自拍亚洲精品老妇| 日韩强制内射视频| av黄色大香蕉| 国产黄片美女视频| 丰满人妻一区二区三区视频av| 国产美女午夜福利| 国产免费男女视频| 亚洲欧美精品专区久久| 亚洲av熟女| 成人鲁丝片一二三区免费| 一个人看的www免费观看视频| 成人国产麻豆网| 99久久无色码亚洲精品果冻| 人人妻人人看人人澡| 久久精品人妻少妇| 成人特级av手机在线观看| 如何舔出高潮| 美女脱内裤让男人舔精品视频| 国产国拍精品亚洲av在线观看| 97热精品久久久久久| 久久久久性生活片| 午夜久久久久精精品| 免费av不卡在线播放| 亚洲乱码一区二区免费版| 99久久中文字幕三级久久日本| 视频中文字幕在线观看| 简卡轻食公司| 国产成人a区在线观看| 久久人妻av系列| 国产伦一二天堂av在线观看| 成人毛片60女人毛片免费| 高清日韩中文字幕在线| 亚洲av免费在线观看| 我要搜黄色片| 国产精品久久视频播放| 水蜜桃什么品种好| 久久精品国产亚洲av天美| 特级一级黄色大片| .国产精品久久| 天天躁夜夜躁狠狠久久av| 2021天堂中文幕一二区在线观| 草草在线视频免费看| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 久久草成人影院| 国内精品一区二区在线观看| 麻豆国产97在线/欧美| 国产精品一区www在线观看| 午夜免费男女啪啪视频观看| 久久精品夜夜夜夜夜久久蜜豆| 好男人视频免费观看在线| 亚洲精品一区蜜桃| 波多野结衣高清无吗| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式| 我的老师免费观看完整版| 亚州av有码| 亚洲av成人av| 少妇裸体淫交视频免费看高清| 简卡轻食公司| 九九爱精品视频在线观看| 黄色欧美视频在线观看| 欧美+日韩+精品| 免费看a级黄色片| 亚洲精品乱久久久久久| 久久久久久国产a免费观看| 97热精品久久久久久| 亚洲一区高清亚洲精品| 国产精品久久久久久久久免| 午夜精品一区二区三区免费看| 中文字幕av在线有码专区| 女人久久www免费人成看片 | 国产精品久久久久久精品电影小说 | 夜夜爽夜夜爽视频| 国产精品综合久久久久久久免费| 色综合站精品国产| 成年av动漫网址| 一级黄色大片毛片| 成年女人永久免费观看视频| 国产91av在线免费观看| 精品一区二区三区人妻视频| 听说在线观看完整版免费高清| 高清在线视频一区二区三区 | 欧美精品国产亚洲| 国产精品伦人一区二区| 亚洲电影在线观看av| 我要搜黄色片| 国产色爽女视频免费观看| 亚洲激情五月婷婷啪啪| 两个人视频免费观看高清| 亚洲精品乱码久久久v下载方式| 婷婷色麻豆天堂久久 | 美女被艹到高潮喷水动态| 男女下面进入的视频免费午夜| 日韩高清综合在线| 99久久九九国产精品国产免费| 美女国产视频在线观看| 亚洲国产色片| av天堂中文字幕网| 亚洲欧洲日产国产| 国产成人精品一,二区| 日韩av在线免费看完整版不卡| 欧美性感艳星| 午夜视频国产福利| 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 黄片无遮挡物在线观看| 69人妻影院| 熟女人妻精品中文字幕| 十八禁国产超污无遮挡网站| 人人妻人人澡人人爽人人夜夜 | 午夜久久久久精精品| 欧美潮喷喷水| 日本免费在线观看一区| 欧美精品国产亚洲| 能在线免费看毛片的网站| 国产一级毛片在线| 免费av观看视频| 大话2 男鬼变身卡| 有码 亚洲区| 午夜老司机福利剧场| 中文字幕制服av| 色5月婷婷丁香| av播播在线观看一区| 激情 狠狠 欧美| 亚洲国产色片| 国产成人午夜福利电影在线观看| 最近中文字幕2019免费版| 亚洲欧美日韩无卡精品| 97在线视频观看| 最近手机中文字幕大全| 久久精品国产99精品国产亚洲性色| 国产又色又爽无遮挡免| 亚洲真实伦在线观看| 听说在线观看完整版免费高清| 亚洲国产色片| 国产又黄又爽又无遮挡在线| 麻豆成人av视频| 成年女人看的毛片在线观看| 精品一区二区免费观看| 99久久无色码亚洲精品果冻| 桃色一区二区三区在线观看| 亚洲最大成人中文| 亚洲成人精品中文字幕电影| 嫩草影院精品99| 亚洲国产色片| 久久久久久久亚洲中文字幕| 最近中文字幕2019免费版| 久久久成人免费电影| 一区二区三区四区激情视频| 久久人人爽人人片av| 日本熟妇午夜| 少妇被粗大猛烈的视频| 91在线精品国自产拍蜜月| 日韩欧美国产在线观看| 少妇熟女aⅴ在线视频| 熟女电影av网| 日韩制服骚丝袜av| av在线播放精品| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 我的老师免费观看完整版| av又黄又爽大尺度在线免费看 | 亚洲av不卡在线观看| 伊人久久精品亚洲午夜| 97人妻精品一区二区三区麻豆| 久久精品综合一区二区三区| 亚洲精品456在线播放app| 国产成人一区二区在线| 亚洲精品日韩av片在线观看| 偷拍熟女少妇极品色| 99久久成人亚洲精品观看| 日本免费在线观看一区| 精品国产三级普通话版| 国产淫片久久久久久久久| 国产黄片美女视频| 日本免费a在线| 久久久久久久久中文| 久久这里只有精品中国| 精品无人区乱码1区二区| 国产精品一区二区在线观看99 | 亚洲国产欧美在线一区| 国产色爽女视频免费观看| 国产av在哪里看| 中文字幕精品亚洲无线码一区| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 99热精品在线国产| 亚洲伊人久久精品综合 | 久久久久国产网址| АⅤ资源中文在线天堂| 国产成人精品一,二区| 深夜a级毛片| 2021少妇久久久久久久久久久| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 九草在线视频观看| or卡值多少钱| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 寂寞人妻少妇视频99o| 两个人视频免费观看高清| 国产成人freesex在线| 午夜福利视频1000在线观看| 国产成人freesex在线| 日本免费a在线| 99久久精品一区二区三区| 亚洲av成人av| 直男gayav资源| 99久久精品热视频| 国产精品蜜桃在线观看| 精品不卡国产一区二区三区| 午夜免费激情av| 成人高潮视频无遮挡免费网站| 亚洲av一区综合| 天堂网av新在线| 日韩欧美精品v在线| 精品一区二区三区视频在线| 在线观看66精品国产| 性插视频无遮挡在线免费观看| 中文字幕av在线有码专区| 色综合站精品国产| 成人综合一区亚洲| 26uuu在线亚洲综合色| 中文字幕免费在线视频6| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 欧美一区二区精品小视频在线| 国产精品久久久久久精品电影小说 | 你懂的网址亚洲精品在线观看 | 国产毛片a区久久久久| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 久久99热这里只有精品18| 国产精品永久免费网站| 美女大奶头视频| 国产精品一区www在线观看| 久久久久久九九精品二区国产| 亚洲高清免费不卡视频| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 色综合色国产| 免费观看性生交大片5| 日韩欧美国产在线观看| 长腿黑丝高跟| 日本一本二区三区精品| 亚洲国产欧洲综合997久久,| 尤物成人国产欧美一区二区三区| 国产精品,欧美在线| 极品教师在线视频| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩高清专用| 黄色日韩在线| 国内精品宾馆在线| 九九在线视频观看精品| av女优亚洲男人天堂| 三级男女做爰猛烈吃奶摸视频| 丰满少妇做爰视频| 波野结衣二区三区在线| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 少妇熟女aⅴ在线视频| 一级毛片电影观看 | 日本五十路高清| 春色校园在线视频观看| 精品人妻偷拍中文字幕| 日本一二三区视频观看| 精品人妻偷拍中文字幕| 午夜爱爱视频在线播放| 国产亚洲5aaaaa淫片| 成人av在线播放网站| 2022亚洲国产成人精品| 51国产日韩欧美| 久久99精品国语久久久| 亚洲人与动物交配视频| 夫妻性生交免费视频一级片| 亚洲av免费高清在线观看| 欧美区成人在线视频| 午夜精品在线福利| 国产精品久久久久久久电影| 欧美xxxx黑人xx丫x性爽| 亚洲无线观看免费| 一级二级三级毛片免费看| 大又大粗又爽又黄少妇毛片口| 亚洲av免费在线观看| videos熟女内射| 日韩中字成人| 蜜桃亚洲精品一区二区三区| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 成年av动漫网址| 亚洲av.av天堂| 九九爱精品视频在线观看| 97超视频在线观看视频| 又爽又黄a免费视频| 亚洲美女视频黄频| 国产一级毛片在线| 国产不卡一卡二| 亚洲天堂国产精品一区在线| 国产精品一及| 一级毛片aaaaaa免费看小| 国产成年人精品一区二区| 久久久久久久国产电影| 婷婷六月久久综合丁香| 精品无人区乱码1区二区| 五月伊人婷婷丁香| 中文字幕制服av| 美女黄网站色视频| 久久久久久久亚洲中文字幕| 噜噜噜噜噜久久久久久91| 99久久精品一区二区三区| 观看美女的网站| 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 啦啦啦观看免费观看视频高清| 在线观看66精品国产| 亚洲欧美日韩卡通动漫| 两性午夜刺激爽爽歪歪视频在线观看| 日韩高清综合在线| 亚洲av二区三区四区| 一个人观看的视频www高清免费观看| 国产精品国产高清国产av| 国产黄色小视频在线观看| 欧美日韩国产亚洲二区| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 国产一区二区亚洲精品在线观看| 青春草视频在线免费观看| АⅤ资源中文在线天堂| 久久久久久久久久成人| av在线播放精品| 欧美日韩一区二区视频在线观看视频在线 | 日韩 亚洲 欧美在线| 成人三级黄色视频| 男人狂女人下面高潮的视频| 国产精品一及| 国产成人a区在线观看| 欧美性猛交╳xxx乱大交人| 少妇的逼水好多| 欧美激情在线99| 亚洲成色77777| 午夜福利视频1000在线观看| 国产极品精品免费视频能看的| 禁无遮挡网站| 日本-黄色视频高清免费观看| 国语对白做爰xxxⅹ性视频网站| 在线观看av片永久免费下载| 99热全是精品| 国产精品久久久久久精品电影| 色尼玛亚洲综合影院| 国产精品三级大全| a级一级毛片免费在线观看| 两个人视频免费观看高清| 少妇熟女aⅴ在线视频| 亚洲四区av| av在线蜜桃| 久久草成人影院| 中文天堂在线官网| 久久久久久久国产电影| 久久这里只有精品中国| 精品久久久久久久人妻蜜臀av| 国产成人精品婷婷| 高清视频免费观看一区二区 | 性色avwww在线观看| 国产一区二区三区av在线| 又爽又黄无遮挡网站| 美女大奶头视频| 人妻少妇偷人精品九色| 男人舔女人下体高潮全视频| 免费人成在线观看视频色| 男女国产视频网站| 国产黄片美女视频| 亚洲综合精品二区| 免费看a级黄色片| 国产69精品久久久久777片| 色综合亚洲欧美另类图片| 乱码一卡2卡4卡精品| 国产精品爽爽va在线观看网站| 国产伦一二天堂av在线观看| 国产亚洲av嫩草精品影院| 永久网站在线| 91精品国产九色| 久久久久精品久久久久真实原创| 可以在线观看毛片的网站| 91久久精品国产一区二区三区| .国产精品久久| 禁无遮挡网站| 久久国产乱子免费精品| 直男gayav资源| 国产高清国产精品国产三级 | 日本免费一区二区三区高清不卡| 国产v大片淫在线免费观看| 久久这里只有精品中国| 18+在线观看网站| 欧美性猛交╳xxx乱大交人| 你懂的网址亚洲精品在线观看 | av在线观看视频网站免费| 欧美3d第一页| 日韩欧美三级三区| 联通29元200g的流量卡| 国产免费视频播放在线视频 | 又粗又爽又猛毛片免费看| 欧美成人免费av一区二区三区| 久久精品国产自在天天线| 韩国高清视频一区二区三区| 美女国产视频在线观看| 日韩在线高清观看一区二区三区| 亚洲av熟女| 22中文网久久字幕| 国产精品一二三区在线看| 亚州av有码| 国产午夜精品一二区理论片| 一边摸一边抽搐一进一小说| 国产极品精品免费视频能看的| 如何舔出高潮| 久久久成人免费电影| 日日摸夜夜添夜夜添av毛片| 欧美zozozo另类| 在线观看av片永久免费下载| 三级国产精品片| 久久精品久久久久久噜噜老黄 | 神马国产精品三级电影在线观看| 精品久久久久久久久久久久久| 嫩草影院精品99| 亚洲电影在线观看av| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 97超碰精品成人国产| 国产亚洲av嫩草精品影院| eeuss影院久久| 美女被艹到高潮喷水动态| 狠狠狠狠99中文字幕| 日本黄色视频三级网站网址| 精品无人区乱码1区二区| 国产精品国产三级国产av玫瑰| 日本熟妇午夜| 国产美女午夜福利| 五月伊人婷婷丁香| 中文字幕av在线有码专区| 国产高清有码在线观看视频| 天天躁夜夜躁狠狠久久av| 精品人妻熟女av久视频| 国产成人免费观看mmmm| 青春草视频在线免费观看| 欧美一区二区亚洲| 亚洲精品aⅴ在线观看| a级毛色黄片| 天堂√8在线中文| 亚洲,欧美,日韩| 国产精品一区www在线观看| 亚洲精品日韩av片在线观看| 看片在线看免费视频| 国产视频首页在线观看| 午夜福利在线观看免费完整高清在| 午夜福利成人在线免费观看| 亚洲国产欧洲综合997久久,| 人人妻人人澡人人爽人人夜夜 | 免费看美女性在线毛片视频|