• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 1-Good-neighbor Connectivity and Diagnosability of Locally Twisted Cubes

    2017-03-14 02:46:26

    (School of Mathematics and Information Science,Henan Normal University,Xinxiang,Henan 453007,PR China)

    §1.Introduction

    Many multiprocessor systems have interconnection networks(networks for short)as underlying topologies and a network is usually represented by a graph where nodes represent processors and links represent communication links between processors.We use graphs and networks interchangeably.For the system,study the topological properties of its network is important.Furthermore,some processors may fail in the system,so processor fault identification plays an important role for reliable computing.The first step to deal with faults is to identify the faulty processors from the fault-free ones.The identification process is called the diagnosis of the system.A systemGis said to bet-diagnosable if all faulty processors can be identified without replacement,provided that the number of presented faults does not exceedt.The diagnosability ofGis the maximum value oftsuch thatGist-diagnosable[1]-[3],[4].For at-diagnosable system,Dahbura and Masson[1]proposed an algorithm with time complexO(n2.5),which can effectively identify the set of faulty processors.

    Several diagnosis models were proposed to identify the faulty processors.One major approach is the Preparata,Metze,and Chiens(PMC)diagnosis model introduced by Preparata et al.[5].The diagnosis of the system is achieved through two linked processors testing each other.Another important model,namely the comparison diagnosis model(MM model),was proposed by Maeng and Malek[6].In the MM model,to diagnose a system,a node sends the same task to two of its neighbors,and then compares their responses.In 2005,Lai et al.[4]introduced a restricted diagnosability of a multiprocessor system called conditional diagnosability.They consider the situation that no faulty set can contain all the neighbors of any vertex in the system.In 2012,Peng et al.[7]proposed a new measure for faulty diagnosis of the system,namely,theg-good-neighbor diagnosability(which is also called theg-good-neighbor conditional diagnosability),which requires that every fault-free node has at leastgfault-free neighbors.In[7],they studied theg-good-neighbor diagnosability of then-dimensional hypercube under PMC model.In[8],Wang and Han studied theg-good-neighbor diagnosability of then-dimensional hypercube under the MM?model.Yuan et al.[9],[10]studied that theg-good-neighbor diagnosability of thek-aryn-cube(k≥3)under the PMC model and MM?model.The Cayley graphCΓngenerated by the transposition tree Γnhas recently received considerable attention.In[11],[12],Wang et al.studied theg-good-neighbor diagnosability ofCΓnunder the PMC model and MM?model forg=1,2.In this paper,the 1-good-neighbor diagnosability of the locally twisted cubeLTQnhas been studied under the PMC model and MM?model.It is proved that the 1-good-neighbor connectivityκ(1)(LTQn)=2n?2 and the 1-good-neighbor diagnosability ofLTQnis 2n?1 under the PMC model forn≥4 and the MM?model forn≥5.

    §2.Preliminaries

    2.1 Notations

    The graph is applied widely[13],[14].In this paper,a multiprocessor system is modeled as an undirected simple graphG=(V,E),whose vertices(nodes)represent processors and edges(links)represent communication links.Given a nonempty vertex subsetV′ofV,the subgraph induced byV′inG,denoted byG[V′],is a graph,whose vertex set isV′and the edge set is the set of all the edges ofGwith both endpoints inV′.The degreedG(v)of a vertexvis the number of edges incident withv.The minimum degree is denoted byδ(G).For any vertexv,we de fine the neighborhoodNG(v)ofvinGto be the set of vertices adjacent tov.uis called a neighbor vertex or a neighbor ofvforu∈NG(v).LetS?V(G).NG(S)denotes the set∪v∈SNG(v)S.For neighborhoods and degrees,we will usually omit the subscript for the graph when no confusion arises.A graphGis said to bek-regular if for any vertexv,dG(v)=k.LetGbe a connected graph.The connectivityκ(G)ofGis the minimum number of vertices whose removal results in a disconnected graph or only one vertex left whenGis complete.LetG=(V,E).A fault setF?Vis called ag-good-neighbor conditional faulty set if|N(v)∩(VF)|≥gfor every vertexvinVF.Ag-good-neighbor cut ofGis ag-good-neighbor faulty setFsuch thatG?Fis disconnected.The minimum cardinality ofg-good-neighbor cuts is said to be theg-good-neighbor connectivity ofG,denoted byκ(g)(G).A connected graphGis said to beg-good-neighbor connected ifGhas ag-good-neighbor cut.LetF1andF2be two distinct subsets ofV,and let the symmetric differenceF1△F2=(F1F2)∪(F2F1).For graph-theoretical terminology and notation not defined here we follow[15].

    2.2 The PMC Model and the MM?model

    For a multiprocessor systemG=(V(G),E(G)),one important diagnosis model,namely the PMC model,was proposed by Preparata et al.[5].In the PMC model,two adjacent processors can perform tests on each other.For two adjacent verticesuandvinV(G),the ordered pair(u,v)represents the test performed byuonv.The outcome of a test(u,v)is either 1 or 0 with the assumption that the testing result is regarded as reliable if the vertexuis fault-free.However,the outcome of a test(u,v)is unreliable,provided that the testeruitself is originally a faulty processor.Suppose that the vertexuof(u,v)is fault-free,then the result would be 0(resp.1)ifvis fault-free(resp.faulty).A test assignmentTforGis a collection of tests for every adjacent pair of vertices.It can be modeled as a directed testing graphT=(V(G),L),where(u,v)∈Limplies thatuandvare adjacent inG.The collection of all test results for a test assignmentTis called a syndrome.Formally,a syndrome is a functionσ:L→{0,1}.The set of all faulty processors in the system is called a faulty set.This can be any subset ofV(G).For a given syndromeσ,a subset of verticesF?V(G)is said to be consistent withσif syndromeσcan be produced from the situation that,for any(u,v)∈Lsuch thatu∈VF,σ(u,v)=1 if and only ifv∈F.This means thatFis a possible set of faulty processors.Since a test outcome produced by a faulty processor is unreliable,a given setFof faulty vertices may produce a lot of different syndromes.On the other hand,different faulty sets may produce the same syndrome.Letσ(F)denote the set of all syndromes whichFis consistent with.

    Under the PMC model,two distinct setsF1andF2inV(G)are said to be indistinguishable ifσ(F1)∩σ(F2)/=?,otherwise,F1andF2are said to be distinguishable.Besides,we say that(F1,F2)is an indistinguishable pair ifσ(F1)∩σ(F2)/=?;else,(F1,F2)is a distinguishable pair.

    Using the MM model,the diagnosis is carried out by sending the same testing task to a pair of processors and comparing their responses.Under the MM model,we always assume the output of a comparison performed by a faulty processor is unreliable.The comparison scheme of a systemG=(V(G),E(G))is modeled as a multigraph,denoted byM=(V(G),L),whereLis the labeled-edge set.A labeled edge(u,v)w∈Lrepresents a comparison in which two verticesuandvare compared by a vertexw,which impliesuw,vw∈E(G).The collection of all comparison results inM=(V(G),L)is called the syndrome,denoted byσ?,of the diagnosis.If the comparison(u,v)wdisagrees,thenσ?((u,v)w)=1,otherwise,σ?((u,v)w)=0.Hence,a syndrome is a function fromLto{0,1}.The MM*model is a special case of the MM model.In the MM*model,all comparisons of G are in the comparison scheme ofG,i.e.,ifuw,vw∈E(G),then(u,v)w∈L.

    Similarly to the PMC model,we can de fine a subset of verticesF?V(G)is consistent with a given syndromeσ?and two distinct setsF1andF2inV(G)are indistinguishable(resp.distinguishable)under the MM*model.

    A systemG=(V,E)isg-good-neighbort-diagnosable ifF1andF2are distinguishable,for each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤t.Theg-good-neighbor diagnosabilitytg(G)ofGis the maximum value oftsuch thatGisg-good-neighbort-diagnosable.

    2.3 Locally twisted cubes

    For an integern≥1,a binary string of lengthnis denoted byu1u2...un,whereui∈{0,1}for every integeri∈{1,2,...,n}.Then-dimensional locally twisted cube,denoted byLTQn,is ann-regular graph of 2nvertices andn2n?1edges,which can be recursively defined as follows[16].

    Definition 2.1[16]Forn≥2,ann-dimensional locally twisted cube,denoted byLTQn,is defined recursively as follows:

    1)LTQ2is a graph consisting of four nodes labeled with 00,01,10 and 11,respectively,connected by four edges{00,01},{01,11},{11,10}and{10,00}.

    2)Forn≥3,LTQnis built from two disjoint copies ofLTQn?1according to the following steps:Let 0LTQn?1denote the graph obtained from one copy ofLTQn?1by pre fixing the label of each node with 0.Let 1LTQn?1denote the graph obtained from the other copy ofLTQn?1by pre fixing the label of each node with 1.Connect each node 0u2u3···unof 0LTQn?1to the node 1(u2+un)u3···unof 1LTQn?1with an edge,where ”+” represents the modulo 2 addition.

    Figs.1 and 2 show three examples of locally twisted cubes.The locally twisted cube can also be equivalently defined in the following non-recursive fashion.

    Definition 2.2[16]Forn≥2,then-dimensional locally twisted cube,denoted byLTQn,is a graph with{0,1}nas the node set.Two nodesu1u2···unandv1v2···vnofLTQnare adjacent if and only if either one of the following conditions are satisfied.

    Proposition 2.3LetLTQnbe the locally twisted cube.If two verticesu,vare adjacent,then there is no common neighbor vertex of these two vertices,i.e.,|N(u)∩N(v)|=0.If two verticesu,vare not adjacent,then there are at most two common neighbor vertices of these two vertices,i.e.,|N(u)∩N(v)|≤2.

    ProofLetu,v∈V(LTQn).The proof is by induction onn.Forn=2,LTQ2is a 4-cycle.Therefore,if two verticesu,vare adjacent,then|N(u)∩N(v)|=0;if two verticesu,vare not adjacent,then|N(u)∩N(v)|≤2.Assumen≥2 and the result holds forLTQn?1.Suppose thatu,v∈V(iLTQn?1)fori∈{0,1}.Ifuis adjacent tov,by the inductive hypothesis,the result holds iniLTQn?1.Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|=0 holds.Ifuis not adjacent tov,by the inductive hypothesis,then the result holds iniLTQn?1.Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|≤2 holds.So we suppose thatu∈V(0LTQn?1)andv∈V(1LTQn?1).Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|≤2.

    Fig.1.LTQ2and LTQ3

    Fig.2.LTQ4

    §3.The 1-Good-neighbor Connectivity of Locally Twisted Cubes

    In this section,we shall show theg-good-neighbor connectivity of the locally twisted cubeLTQn.

    Theorem 3.1[16]LetLTQnbe the locally twisted cube.Thenκ(LTQn)=n.

    Lemma 3.2[17]LetLTQnbe the locally twisted cube,and letS?V(LTQn)andn≥3.Suppose thatLTQn?Sis disconnected.The following two conditions hold:

    (1)|S|≥n;

    (2)Ifn≤|S|≤2n?3,thenLTQn?Shas exactly two components,one is trivial and the other is nontrivial.

    Lemma 3.3LetAbe defined as above and letLTQnbe the locally twisted cube.IfF1=NLTQn(A),F2=F1∪A,then|F1|=2n?2,|F2|=2n,andδ(LTQn?F1?F2)≥1.

    ProofSinceA={0n?1X:X∈{0,1}}and the definition ofLTQn,we haveLTQn[A]2and|A|=2.By Proposition 2.3,|F1|=n?1+n?1=2n?2 and|F2|=2n.

    Claim 1LTQn?F2is connected.

    The proof of this claim is by induction onn.Forn=4,F1={0100,0111,0010,0011,1101,1000}andF2={0000,0001,0100,0111,0010,0011,1101,1000}.It is easy to see thatLTQ4?F2is connected(See Fig.2).Assume thatn≥5 andLTQn?1?F2is connected.Let=F2∩V(iLTQn?1)fori=0,1.By Definition 2.1,A?V(0LTQn?1),0LTQn?1is connected and|N(A)∩V(1LTQn?1)|=2.By Theorem 3.1,1LTQn?1is connected.Note that|F2|=2n.Sincen≥5,22?1>2nholds.Therefore,LTQn?F2is connected by De finition 2.1.

    By Claim 1,δ(LTQn?F1?F2)≥1.

    Lemma 3.4LetLTQnbe the locally twisted cube.Then 1-neighbor-connectivityκ(1)(LTQn)≤2(n?1).

    ProofLetF1andF2be defined in Lemma 3.3.Note thatLTQn?F1has two componentsLTQn?F2andK2.By Lemma 4.4,F1is ag-good-neighbor cut.By the definition of 1-goodneighbor connectivity,we haveκ1(LTQn)≤2(n?1).

    Theorem 3.5LetLTQnbe the locally twisted cube.Thenκ(1)(LTQn)=2n?2 forn≥4.

    ProofLetFbe an arbitrary subset ofV(LTQn)such that|F|≤2n?3.Suppose that|F|≤n?1.By Theorem 3.1,LTQn?Fis connected.Suppose thatn≤|F|≤2n?3.By Lemma 3.2,LTQn?Fhas two components:an isolated vertex and a nontrivial subgraph.Therefore,Fis not a 1-good-neighbor cut ofLTQn.Thus,κ1(LTQn)≥2n?2.By Lemma 3.4,we haveκ1(LTQn)=2n?2 forn≥4.

    §4.The 1-Good-neighbor Diagnosability of the Locally Twisted Cube LTQnunder the PMC Model

    In this section,we shall show the 1-good-neighbor diagnosability of locally twisted cubes under the PMC model.

    Theorem 4.1[9]A systemG=(V,E)isg-good-neighbort-diagnosable under thePMCmodel if and only if there is an edgeuv∈Ewithu∈V(F1∪F2)andv∈F1△F2for each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤t.

    Lemma 4.2A graph of minimum degree 1 has at least two vertices.

    The proof of Lemma 4.2 is trivial.

    Lemma 4.3Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is less than or equal to 2n?1,i.e.,t1(LTQn)≤2n?1.

    Proof LetAbe defined in Lemma 2,and letF1=NLTQn(A),F2=A∪NLTQn(A).By Lemma 3.3,|F1|=2n?2,|F2|=|A|+|F1|=2n,δ(LTQn?F1)≥1 andδ(LTQn?F2)≥1.Therefore,F1andF2are 1-good-neighbor faulty sets ofLTQnwith|F1|=2n?2 and|F2|=2n.SinceA=F1△F2andNLTQn(A)=F1?F2,there is no edge ofLTQnbetweenV(LTQn)(F1∪F2)andF1△F2.By Theorem 4.1,we can deduce thatLTQnis not 1-goodneighbor 2n-diagnosable under the PMC model.Hence,by the de finition of 1-good-neighbor diagnosability,we conclude that the 1-good-neighbor diagnosability ofLTQnis less than 2n,i.e.,t1(LTQn)≤2n?1.

    Lemma 4.4Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is more than or equal to 2n?1,i.e.,t1(LTQn)≥2n?1.

    ProofBy the definition of 1-good-neighbor diagnosability,it is sufficient to show thatLTQnis 1-good-neighbor(2n?1)-diagnosable.By Theorem 4.1,to proveLTQnis 1-goodneighbor(2n?1)-diagnosable,it is equivalent to prove that there is an edgeuv∈E(LTQn)withu∈V(LTQn)(F1∪F2)andv∈F1△F2for each distinct pair of 1-good-neighbor faulty subsetsF1andF2ofV(LTQn)with|F1|≤2n?1 and|F2|≤2n?1.

    We prove this statement by contradiction.Suppose that there are two distinct 1-goodneighbor faulty subsetsF1andF2ofLTQnwith|F1|≤2n?1 and|F2|≤2n?1,but the vertex set pair(F1,F2)is not satisfied with the condition in Theorem 4.1,i.e.,there are no edges betweenV(LTQn)(F1∪F2)andF1△F2.Without loss of generality,assume thatF2F1/=?.Assume thatV(LTQn)=F1∪F2.Sincen≥4,we have that 2n=|V(LTQn)|=|F1∪F2|=|F1|+|F2|?|F1∩F2|≤|F1|+|F2|≤2n?1+2n?1≤4n?2,a contradiction.Therefore,V(LTQn)/=F1∪F2.

    Since there are no edges betweenV(LTQn)(F1∪F2)andF1△F2,andF1is a 1-goodneighbor faulty set,LTQn?F1has two partsLTQn?F1?F2andLTQn[F2F1].Thus,δ(LTQn?F1?F2)≥1 andδ(LTQn[F2F1])≥1.Similarly,δ(LTQn[F1F2])≥1 whenF1F2/=?.Therefore,F1∩F2is also a 1-good-neighbor faulty set.Since there are no edges betweenV(LTQn?F1?F2)andF1△F2,F1∩F2is also a 1-good-neighbor cut.WhenF1F2=?,F1∩F2=F1is also a 1-good-neighbor faulty set.Since there are no edges betweenV(LTQn?F1?F2)andF1△F2,F1∩F2is a 1-good-neighbor cut.By Theorem 3.5,|F1∩F2|≥2n?2.By Lemma 4.2,|F2F1|≥2.Therefore,|F2|=|F2F1|+|F1∩F2|≥2+2n?2=2n,which contradicts with that|F2|≤2n?1.SoLTQnis 1-good-neighbor(2n?1)-diagnosable.By the de finition oft1(LTQn),t1(LTQn)≥2n?1.

    Combining Lemmas 4.3 and Lemma 4.4,we have the following theorem.

    Theorem 4.5Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is 2n?1.

    §5.The 1-Good-neighbor Diagnosability of Locally Twisted Cubes Under the MM?Model

    Before discussing the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model,we first give an existing result.

    Theorem 5.1([1],[9])A systemG=(V,E)isg-good-neighbort-diagnosable under theMM?model if and only if each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤tsatisfies one of the following conditions.

    (1)There are two verticesu,w∈V(F1∪F2)and there is a vertexv∈F1△F2such thatuw∈Eandvw∈E.

    (2)There are two verticesu,v∈F1F2and there is a vertexw∈V(F1∪F2)such thatuw∈Eandvw∈E.

    (3)There are two verticesu,v∈F2F1and there is a vertexw∈V(F1∪F2)such thatuw∈Eandvw∈E.

    Lemma 5.1Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model is less than or equal to 2n?1,i.e.,t1(LTQn)≤2n?1.

    ProofLetAbe defined in Lemma 3.3,and letF1=NLTQn(A),F2=A∪NLTQn(A).By Lemma 3.3,|F1|=2n?2,|F2|=|A|+|F1|=2n,δ(LTQn?F1)≥1 andδ(LTQn?F2)≥1.Therefore,F1andF2are 1-good-neighbor faulty sets ofLTQnwith|F1|=2n?2 and|F2|=2n.By the definitions ofF1andF2,F1△F2=A.NoteF1F2=?,F2F1=Aand(V(LTQn)(F1∪F2))∩A=?.Therefore,bothF1andF2are not satisfied with any one condition in Theorem 5.1,andLTQnis not 1-good-neighbor 2n-diagnosable.Hence,t1(LTQn)≤2n?1.

    Lemma 5.2Letn≥5.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model is more than or equal to 2n?1,i.e.,t1(LTQn)≥2n?1.

    ProofBy the definition of 1-good-neighbor diagnosability,it is sufficient to show thatLTQnis 1-good-neighbor(2n?1)-diagnosable.

    By Theorem 5.1,suppose,on the contrary,that there are two distinct 1-good-neighbor faulty subsetsF1andF2ofLTQnwith|F1|≤2n?1 and|F2|≤2n?1,but the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1.Without loss of generality,assume thatF2F1/=?.Similarly to the discussion onV(LTQn)=F1∪F2in Lemma 4.4,we can deduceV(LTQn)/=F1∪F2.

    Claim 1LTQn?F1?F2has no isolated vertex.

    Suppose,on the contrary,thatLTQn?F1?F2has at least one isolated vertexw.SinceF1is a 1-good neighbor faulty set,there is a vertexu∈F2F1such thatuis adjacent tow.Since the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1,there is at most one vertexu∈F2F1such thatuis adjacent tow.Thus,there is just one vertexu∈F2F1such thatuis adjacent tow.Similarly,we can deduce that there is just one vertexv∈F1F2such thatvis adjacent towwhenF1F2/=?.LetW?V(LTQn)(F1∪F2)be the set of isolated vertices inLTQn[V(LTQn)(F1∪F2)],and letHbe the subgraph induced by the vertex setV(LTQn)(F1∪F2∪W).Then for anyw∈W,there are(n?2)neighbors inF1∩F2whenF1F2/=?.Since|F2|≤2n?1,we have that∑w∈W|NLTQn[(F1∩F2)∪W](w)|=|W|(n?2)≤∈F1∩F2dLTQn(v)=n|F1∩F2|≤n(|F2|?1)≤n(2n?2)=2n2?2n.It follows that|W|≤≤2n+4 forn≥5.Note|F1∪F2|=|F1|+|F2|?|F1∩F2|≤2(2n?1)?(n?2)=3n.Suppose thatV(H)=?.Then 2n=|V(LTQn)|=|F1∪F2|+|W|≤3n+2n+4=5n+4.This is a contradiction ton≥5.SoV(H)/=?.Since the vertex set pair(F1,F2)is not satisfied with the condition(1)of Theorem 5.1,and any vertex ofV(H)is not isolated inH,we deduce that there is no edge betweenV(H)andF1△F2.Thus,F1∩F2is a vertex cut ofLTQnandδ(LTQn?(F1∩F2))≥1,i.e.,F1∩F2is a 1-good-neighbor cut ofLTQn.By Theorem 3.5,|F1∩F2|≥2n?2.Because|F1|≤2n?1,|F2|≤2n?1,and neitherF1F2norF2F1is empty,we have|F1F2|=|F2F1|=1.LetF1F2={v1}andF2F1={v2}.Then for any vertexw∈W,ware adjacent tov1andv2.According to Proposition 2.3,there are at most two common neighbors for any pair of vertices inLTQn,it follows that there are at most two isolated vertices inLTQn?F1?F2.

    Suppose that there is exactly one isolated vertexvinLTQn?F1?F2.Letv1andv2be adjacent tov.ThenNLTQn(v){v1,v2}?F1∩F2.SinceLTQncontains no triangle,it follows thatNLTQn(v1){v}?F1∩F2;NLTQn(v2){v}?F1∩F2;[NLTQn(v){v1,v2}]∩[NLTQn(v1){v}]=?and[NLTQn(v){v1,v2}]∩[NLTQn(v2){v}]=?.By Proposition 2.3,|[NLTQn(v1){v}]∩[NLTQn(v2){v}]|≤1.Thus,|F1∩F2|≥|NLTQn(v){v1,v2}|+|NLTQn(v1){v}|+|NLTQn(v2){v}|=(n?2)+(n?1)+(n?1)?1=3n?5.It follows that|F2|=|F2F1|+|F1∩F2|≥1+3n?5=3n?4>2n?1(n≥4),which contradicts|F2|≤2n?1.

    Suppose that there are exactly two isolated verticesvandwinLTQn?F1?F2.Letv1andv2be adjacent tovandw,respectively.ThenNLTQn(v){v1,v2}?F1∩F2.SinceLTQncontains no triangle,it follows thatNLTQn(v1){v,w}?F1∩F2,NLTQn(v2){v,w}?F1∩F2,[NLTQn(v){v1,v2}]∩[NLTQn(v1){v,w}]=?and[NLTQn(v){v1,v2}]∩[NLTQn(v2){v,w}]=?.By Proposition 2.3,there are at most two common neighbors for any pair of vertices inLTQn.Thus,it follows that|[NLTQn(v1){v,w}]∩[NLTQn(v2){v,w}]|=0.Thus,|F1∩F2|≥|NLTQn(v){v1,v2}|+|NLTQn(w){v1,v2}|+|NLTQn(v1){v,w}|+|NLTQn(v2){v,w}|=(n?2)+(n?2)+(n?2)+(n?2)=4n?8.It follows that|F2|=|F2F1|+|F1∩F2|≥1+4n?8=4n?7>2n?1 (n≥4),which contradicts|F2|≤2n?1.

    Suppose thatF1F2=?.ThenF1?F2.SinceF2is a 1-good neighbor faulty set,LTQn?F2=LTQn?F1?F2has no isolated vertex.The proof of Claim 1 is complete.

    Letu∈V(LTQn)(F1∪F2).By Claim 1,uhas at least one neighbor inLTQn?F1?F2.Since the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1,by the condition(1)of Theorem 5.1,for any pair of adjacent verticesu,w∈V(LTQn)(F1∪F2),there is no vertexv∈F1△F2such thatuw∈E(LTQn)andvw∈E(LTQn).It follows thatuhas no neighbor inF1△F2.By the arbitrariness ofu,there is no edge betweenV(LTQn)(F1∪F2)andF1△F2.SinceF2F1/=?andF1is a 1-good-neighbor faulty set,δ(LTQn?F1?F2)≥1 andδ(LTQn[F2F1])≥1.SinceF2is a 1-good-neighbor faulty set,δ(LTQn[F1F2])≥1 whenF1F2/=?.Therefore,F1∩F2is a 1-good-neighbor cut ofLTQn.Suppose thatF1F2=?.ThenF1∩F2=F1.Therefore,F1∩F2is a 1-good-neighbor cut ofLTQnwhenF1F2=?.By Theorem 3.5,we have|F1∩F2|≥2n?2.By Lemma 4.2,|F2F1|≥2.Therefore,|F2|=|F2F1|+|F1∩F2|≥2+(2n?2)=2n,which contradicts|F2|≤2n?1.Therefore,LTQnis 1-good-neighbor(2n?1)-diagnosable andt1(LTQn)≥2n?1.

    Combining Lemmas 5.2 and 5.3,we have the following theorem.

    Theorem 5.4Letn≥5.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder theMM?model is 2n?1.

    [1]DAHBURA A T,MASSON G M.AnO(n2.5)Fault identification algorithm for diagnosable systems[J].IEEE Transactions on Computers,1984,33(6):486-492.

    [2]FAN Jian-xi.Diagnosability of crossed cubes under the comparison diagnosis model[J].IEEE Transactions on Parallel and Distributed Systems,2002,13(10):1099-1104.

    [3]FAN Jian-xi,ZHANG Shu-kui,JIA Xiao-hua,et al.The Restricted Connectivity of Locally Twisted Cubes[C].10th International Symposium on Pervasive Systems,Algorithms,and Networks(ISPAN).Kaohsiung,14-16 December 2009,574–578.

    [4]LAI Pao-Lien,TAN J J M,CHANG Chien-Ping,et al.Conditional Diagnosability Measures for Large Multiprocessor Systems[J].IEEE Transactions on Computers,2005,54(2):165-175.

    [5]PREPARATA F.P,METZE G,CHIEN R T.On the connection assignment problem of diagnosable systems[J].IEEE Transactions on Computers,1967,EC-16:848-854.

    [6]MAENG J,MALEK M.A comparison connection assignment for self-diagnosis of multiprocessor systems[C].in:Proceeding of 11th International Symposium on Fault-Tolerant Computing,Washington,D C:IEEE Computer Society Press,1981,173-175.

    [7]PENG Shao-Lun,LIN Cheng-Kuan,TAN J J M,et al.Theg-good-neighbor conditional diagnosability of hypercube under PMC model[J].Applied Mathematics and Computation,2012,218(21):10406-10412.

    [8]WANG Shi-ying,HAN Wei-ping.Theg-good-neighbor conditional diagnosability ofn-dimensional hypercubes under the MM*model[J].Information Processing Letters,2016,116:574-577.

    [9]YUAN Jun,LIU Ai-xia,MA Xue,et al.Theg-good-neighbor conditional diagnosability ofk-aryn-cubes under the PMC model and MM?model[J].IEEE Transactions on Parallel and Distributed Systems,2015,26:1165-1177.

    [10]YUAN Jun,LIU Ai-xia,QIN Xiao,et al.g-Good-neighbor conditional diagnosability measures for 3-aryn-cube networks[J].Theoretical Computer Science,2016,622:144-162.

    [11]WANG Mu-jiang-shan,GUO Yubao,WANG Shiying.The 1-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM?model[J].International Journal of Computer Mathematics,2017,94(3):620-631.

    [12]WANG Mu-jiang-shan,LIN Yu-qing,WANG Shi-ying.The 2-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM*model[J].Theoretical Computer Science 628(2016)92-100.

    [13]LIN Hao,LIN Lan.Minimum Dominating Tree Problem for Graphs[J].Chinese Quarterly Journal of Mathematics,2014,29(1):1–8.

    [14]WANG Mu-Jiang-shan,YUAN Jun,LIN Shang-wei,et al.Ordered and Hamilton Digraphs,Chinese Quarterly Journal of Mathematics[J].2010,25(3):317-326.

    [15]BONDY J A,MURTY U S R..Graph Theory[M].New York:Springer,2007.

    [16]YANG Xiao-fan,EVANS D J,MEGSON G M.The Locally Twisted Cubes[J].International Journal of Computer Mathematics,2005(82)(4):401-413.

    [17]FENG Rui-tao,BIAN Genq-ing,WANG Xin-ke.Conditional diagnosability of the locally twisted cubes under the PMC model[J].Communications and Network,2011,3:220-224.

    伦理电影免费视频| 欧美精品亚洲一区二区| 日本av手机在线免费观看| 女人精品久久久久毛片| 亚洲精品亚洲一区二区| 欧美激情极品国产一区二区三区 | 亚洲国产欧美日韩在线播放| 中文字幕av电影在线播放| av一本久久久久| 色吧在线观看| 日本午夜av视频| a级毛片在线看网站| 国产av精品麻豆| 亚洲性久久影院| 美女中出高潮动态图| 中文字幕免费在线视频6| av不卡在线播放| 校园人妻丝袜中文字幕| 欧美少妇被猛烈插入视频| 成人国产av品久久久| 午夜久久久在线观看| 日日撸夜夜添| av免费观看日本| 亚洲熟女精品中文字幕| 我的老师免费观看完整版| 久久精品国产亚洲av涩爱| 久久av网站| 麻豆成人av视频| 亚洲国产精品999| 少妇的逼水好多| 国产一区有黄有色的免费视频| 另类精品久久| 建设人人有责人人尽责人人享有的| 亚洲欧美中文字幕日韩二区| 亚洲精品日本国产第一区| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久av不卡| av国产精品久久久久影院| 制服人妻中文乱码| 日本猛色少妇xxxxx猛交久久| 成人国产av品久久久| 人妻人人澡人人爽人人| 日本av手机在线免费观看| 亚洲精品国产色婷婷电影| 免费黄网站久久成人精品| 亚洲国产精品999| 亚洲精品亚洲一区二区| 午夜免费鲁丝| 亚洲图色成人| 一个人看视频在线观看www免费| 日韩av在线免费看完整版不卡| 亚洲内射少妇av| 男人爽女人下面视频在线观看| 久久国产精品男人的天堂亚洲 | 亚洲美女黄色视频免费看| 国产片内射在线| 久久久久国产精品人妻一区二区| 99久久精品一区二区三区| 男女免费视频国产| 97超视频在线观看视频| 熟女人妻精品中文字幕| 99国产精品免费福利视频| 午夜av观看不卡| 视频中文字幕在线观看| 香蕉精品网在线| 国产一区二区三区综合在线观看 | 国产综合精华液| a级毛色黄片| 午夜福利,免费看| 大香蕉久久成人网| 午夜激情久久久久久久| 欧美 亚洲 国产 日韩一| 国产深夜福利视频在线观看| 波野结衣二区三区在线| 十分钟在线观看高清视频www| 在线观看免费高清a一片| 婷婷成人精品国产| 岛国毛片在线播放| 亚洲精品aⅴ在线观看| 日韩精品有码人妻一区| 最近中文字幕高清免费大全6| 嘟嘟电影网在线观看| 99re6热这里在线精品视频| 国产一区二区三区av在线| 欧美日韩视频高清一区二区三区二| 亚洲av综合色区一区| 亚洲久久久国产精品| 一区在线观看完整版| 免费观看性生交大片5| 丝袜在线中文字幕| 免费大片黄手机在线观看| 少妇人妻 视频| 午夜91福利影院| 久久久a久久爽久久v久久| 九九在线视频观看精品| 国产片内射在线| 欧美丝袜亚洲另类| 国产精品一区二区在线观看99| 久久久久久伊人网av| 国内精品宾馆在线| 高清视频免费观看一区二区| 国产伦精品一区二区三区视频9| av国产久精品久网站免费入址| 久久久a久久爽久久v久久| 人妻夜夜爽99麻豆av| 九色成人免费人妻av| 亚洲精品第二区| 人妻一区二区av| av福利片在线| 免费观看的影片在线观看| 男人添女人高潮全过程视频| 母亲3免费完整高清在线观看 | 汤姆久久久久久久影院中文字幕| 久久综合国产亚洲精品| 丁香六月天网| 国产极品天堂在线| 能在线免费看毛片的网站| 国产精品麻豆人妻色哟哟久久| 三级国产精品欧美在线观看| 日本爱情动作片www.在线观看| 自线自在国产av| 国产av精品麻豆| 午夜激情久久久久久久| 如何舔出高潮| 满18在线观看网站| 最近中文字幕高清免费大全6| 亚洲图色成人| 男女免费视频国产| 视频中文字幕在线观看| 久久精品国产亚洲av天美| 全区人妻精品视频| 亚洲欧洲日产国产| 欧美 日韩 精品 国产| 免费高清在线观看日韩| 国产精品一区二区在线不卡| 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看 | 一级毛片黄色毛片免费观看视频| 久久影院123| 晚上一个人看的免费电影| 精品人妻熟女毛片av久久网站| 视频区图区小说| 99久久精品国产国产毛片| 久久久精品免费免费高清| 91国产中文字幕| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久| 91午夜精品亚洲一区二区三区| 国产成人av激情在线播放 | 91国产中文字幕| av卡一久久| 午夜影院在线不卡| 精品久久久久久久久亚洲| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看| 99热网站在线观看| 久久久久国产精品人妻一区二区| 久久女婷五月综合色啪小说| 国产亚洲最大av| 亚洲国产欧美日韩在线播放| 母亲3免费完整高清在线观看 | 国产欧美日韩综合在线一区二区| 国产黄色视频一区二区在线观看| 波野结衣二区三区在线| 欧美另类一区| 99久久人妻综合| 亚洲精品aⅴ在线观看| 国产综合精华液| 高清毛片免费看| 纵有疾风起免费观看全集完整版| 人人妻人人添人人爽欧美一区卜| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 最近中文字幕高清免费大全6| videos熟女内射| 日韩av在线免费看完整版不卡| 免费观看无遮挡的男女| a级片在线免费高清观看视频| 国产黄频视频在线观看| 婷婷色综合www| 国产不卡av网站在线观看| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 岛国毛片在线播放| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 成人毛片a级毛片在线播放| 国产成人av激情在线播放 | 欧美人与性动交α欧美精品济南到 | 伦精品一区二区三区| 亚洲av.av天堂| 精品人妻熟女av久视频| 欧美最新免费一区二区三区| 免费大片18禁| 日韩精品免费视频一区二区三区 | 十分钟在线观看高清视频www| 亚洲精品成人av观看孕妇| 伦理电影大哥的女人| 一级片'在线观看视频| 国产69精品久久久久777片| 99国产综合亚洲精品| 男女高潮啪啪啪动态图| 91成人精品电影| 汤姆久久久久久久影院中文字幕| 国内精品宾馆在线| .国产精品久久| 丰满乱子伦码专区| 在线观看一区二区三区激情| 亚洲美女黄色视频免费看| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲av福利一区| 婷婷色av中文字幕| 美女大奶头黄色视频| 亚洲精品av麻豆狂野| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 黄色毛片三级朝国网站| 亚洲性久久影院| 黑人高潮一二区| 999精品在线视频| 国产免费福利视频在线观看| 久久午夜福利片| a级片在线免费高清观看视频| 成人国产av品久久久| 国产极品天堂在线| 精品一区二区三区视频在线| 国产成人精品福利久久| 精品久久国产蜜桃| 精品人妻一区二区三区麻豆| 3wmmmm亚洲av在线观看| 青春草国产在线视频| 一级毛片黄色毛片免费观看视频| av国产精品久久久久影院| h视频一区二区三区| 视频区图区小说| 97精品久久久久久久久久精品| 久久久久久久久久人人人人人人| 国精品久久久久久国模美| 日韩欧美一区视频在线观看| 精品一区二区免费观看| 久久精品久久久久久久性| 免费观看在线日韩| 精品卡一卡二卡四卡免费| 中国美白少妇内射xxxbb| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲av天美| 超色免费av| 99久国产av精品国产电影| 亚洲精品美女久久av网站| 国产精品三级大全| 夜夜爽夜夜爽视频| 中国三级夫妇交换| 老熟女久久久| av福利片在线| 久久久精品区二区三区| 中文天堂在线官网| 99久久精品国产国产毛片| 久久久久国产网址| 国产综合精华液| 国产淫语在线视频| 久久久久视频综合| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区精品91| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 久久99热这里只频精品6学生| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 在线免费观看不下载黄p国产| 精品国产一区二区三区久久久樱花| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 飞空精品影院首页| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 久久久久久久久大av| 日韩 亚洲 欧美在线| 免费高清在线观看日韩| 欧美国产精品一级二级三级| 久久精品国产a三级三级三级| 91aial.com中文字幕在线观看| a 毛片基地| 日本免费在线观看一区| 国语对白做爰xxxⅹ性视频网站| 看免费成人av毛片| 日本爱情动作片www.在线观看| 考比视频在线观看| 一边亲一边摸免费视频| 国产成人精品一,二区| 精品国产一区二区久久| 纯流量卡能插随身wifi吗| 亚洲av中文av极速乱| 在现免费观看毛片| 免费观看av网站的网址| 美女cb高潮喷水在线观看| 国产白丝娇喘喷水9色精品| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品专区欧美| 九九爱精品视频在线观看| 如日韩欧美国产精品一区二区三区 | 99久久精品一区二区三区| 97超视频在线观看视频| 国产乱人偷精品视频| 日本午夜av视频| 青春草国产在线视频| 母亲3免费完整高清在线观看 | av又黄又爽大尺度在线免费看| 特大巨黑吊av在线直播| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 亚洲av免费高清在线观看| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 大码成人一级视频| 夜夜爽夜夜爽视频| 啦啦啦在线观看免费高清www| 日日啪夜夜爽| 国产一区二区在线观看av| 亚洲国产欧美日韩在线播放| 免费观看a级毛片全部| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 五月天丁香电影| 你懂的网址亚洲精品在线观看| 99久久综合免费| 久久久久国产网址| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 在线观看国产h片| 秋霞伦理黄片| 黑人猛操日本美女一级片| 精品一区二区三卡| 九九久久精品国产亚洲av麻豆| 三上悠亚av全集在线观看| 国产黄频视频在线观看| 成人二区视频| 哪个播放器可以免费观看大片| 日本黄色片子视频| 午夜av观看不卡| 建设人人有责人人尽责人人享有的| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产专区5o| 亚洲精品视频女| 国产成人aa在线观看| 纵有疾风起免费观看全集完整版| 熟女人妻精品中文字幕| 午夜日本视频在线| 少妇 在线观看| av网站免费在线观看视频| 一本大道久久a久久精品| 在线天堂最新版资源| 人妻人人澡人人爽人人| 精品国产一区二区三区久久久樱花| 精品卡一卡二卡四卡免费| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频| 国产成人精品福利久久| 啦啦啦视频在线资源免费观看| 亚洲精品一二三| 国产视频首页在线观看| 在线观看人妻少妇| 亚洲精品,欧美精品| 久久精品久久精品一区二区三区| 日韩电影二区| av免费在线看不卡| 美女视频免费永久观看网站| 91久久精品电影网| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产日韩一区二区| 国产一区亚洲一区在线观看| 亚洲av不卡在线观看| 欧美精品一区二区大全| 91久久精品国产一区二区成人| 精品久久久噜噜| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 人妻一区二区av| 欧美精品国产亚洲| 晚上一个人看的免费电影| 大话2 男鬼变身卡| 亚洲,一卡二卡三卡| 日本欧美视频一区| 最黄视频免费看| 黄色视频在线播放观看不卡| 成年人免费黄色播放视频| 黑人高潮一二区| 国产无遮挡羞羞视频在线观看| 日本免费在线观看一区| 日韩免费高清中文字幕av| 全区人妻精品视频| 简卡轻食公司| 只有这里有精品99| 亚洲精品国产av蜜桃| 国产伦精品一区二区三区视频9| 日日啪夜夜爽| 一级片'在线观看视频| 久久这里有精品视频免费| 激情五月婷婷亚洲| 亚洲在久久综合| 久久青草综合色| 黄色一级大片看看| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 热99国产精品久久久久久7| 男女免费视频国产| 亚洲五月色婷婷综合| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 菩萨蛮人人尽说江南好唐韦庄| 精品亚洲乱码少妇综合久久| 国产成人精品婷婷| 亚洲欧美成人精品一区二区| 亚洲精品av麻豆狂野| 色94色欧美一区二区| 亚洲综合精品二区| 成人毛片a级毛片在线播放| 亚洲精品第二区| 国产精品无大码| 18禁观看日本| 成人国产av品久久久| 一级毛片电影观看| 色5月婷婷丁香| 亚洲欧美日韩卡通动漫| 久久久久久久国产电影| 亚洲天堂av无毛| 欧美成人午夜免费资源| 日韩三级伦理在线观看| 热99久久久久精品小说推荐| 成人18禁高潮啪啪吃奶动态图 | 狂野欧美激情性xxxx在线观看| 精品久久久噜噜| 国产av码专区亚洲av| 九色亚洲精品在线播放| 日产精品乱码卡一卡2卡三| 蜜桃国产av成人99| 少妇人妻久久综合中文| 夜夜爽夜夜爽视频| 美女xxoo啪啪120秒动态图| 亚洲精品美女久久av网站| 王馨瑶露胸无遮挡在线观看| 久久99一区二区三区| 最近的中文字幕免费完整| 91国产中文字幕| 久久久久久久国产电影| 国产精品人妻久久久影院| 人妻 亚洲 视频| 亚洲av电影在线观看一区二区三区| 人妻制服诱惑在线中文字幕| 一级片'在线观看视频| 午夜免费观看性视频| 免费大片18禁| 久久久久久久久久人人人人人人| 国产老妇伦熟女老妇高清| 国产精品国产三级专区第一集| 久热久热在线精品观看| 我的女老师完整版在线观看| 考比视频在线观看| 啦啦啦视频在线资源免费观看| 在线天堂最新版资源| 欧美精品亚洲一区二区| 免费观看a级毛片全部| 精品人妻一区二区三区麻豆| 欧美人与性动交α欧美精品济南到 | 精品国产乱码久久久久久小说| 精品人妻一区二区三区麻豆| 欧美少妇被猛烈插入视频| 国产成人freesex在线| 最后的刺客免费高清国语| 久久久久久久久久久久大奶| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 精品视频人人做人人爽| 日本爱情动作片www.在线观看| 99国产综合亚洲精品| 日韩 亚洲 欧美在线| 日本色播在线视频| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲精品一区二区精品久久久 | av福利片在线| 免费少妇av软件| 美女xxoo啪啪120秒动态图| 免费av不卡在线播放| 国产老妇伦熟女老妇高清| 国产精品成人在线| 久久久久久久大尺度免费视频| 18禁裸乳无遮挡动漫免费视频| 人妻 亚洲 视频| 一区二区三区四区激情视频| 午夜福利在线观看免费完整高清在| 秋霞在线观看毛片| 日韩不卡一区二区三区视频在线| 秋霞伦理黄片| 少妇猛男粗大的猛烈进出视频| 在线看a的网站| 另类精品久久| 日韩三级伦理在线观看| 伦精品一区二区三区| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 乱人伦中国视频| 黑人猛操日本美女一级片| 国产精品一区二区三区四区免费观看| 在线 av 中文字幕| 免费高清在线观看视频在线观看| 97在线人人人人妻| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 97精品久久久久久久久久精品| 视频区图区小说| 亚洲精品久久成人aⅴ小说 | 国产毛片在线视频| 最后的刺客免费高清国语| 国产黄色免费在线视频| 97在线人人人人妻| 亚洲av电影在线观看一区二区三区| 久久久久久久久久人人人人人人| 久久人人爽人人片av| 菩萨蛮人人尽说江南好唐韦庄| 考比视频在线观看| 毛片一级片免费看久久久久| 亚洲av欧美aⅴ国产| 国产欧美日韩一区二区三区在线 | 久久久久久久久久成人| 我要看黄色一级片免费的| 成人手机av| 在线观看人妻少妇| 在线观看美女被高潮喷水网站| 国产精品久久久久久久电影| 另类精品久久| 中文精品一卡2卡3卡4更新| 国产成人freesex在线| 女性被躁到高潮视频| 欧美日韩在线观看h| 精品亚洲成a人片在线观看| 成人18禁高潮啪啪吃奶动态图 | 少妇猛男粗大的猛烈进出视频| 男的添女的下面高潮视频| 特大巨黑吊av在线直播| 一级a做视频免费观看| 国产白丝娇喘喷水9色精品| 狂野欧美白嫩少妇大欣赏| 国产一区二区在线观看av| 国产精品人妻久久久久久| 成人无遮挡网站| 大香蕉久久成人网| 久久久a久久爽久久v久久| 国产成人av激情在线播放 | 热re99久久国产66热| 母亲3免费完整高清在线观看 | 精品国产国语对白av| 国产精品国产三级专区第一集| 国产亚洲av片在线观看秒播厂| 成人18禁高潮啪啪吃奶动态图 | 大片免费播放器 马上看| 日韩av不卡免费在线播放| 伊人久久国产一区二区| 9色porny在线观看| 欧美三级亚洲精品| 久久久久久久大尺度免费视频| 男女边吃奶边做爰视频| 大陆偷拍与自拍| 啦啦啦啦在线视频资源| 亚洲av福利一区| 国产精品.久久久| 少妇人妻精品综合一区二区| 99久久中文字幕三级久久日本| 99re6热这里在线精品视频| 在线 av 中文字幕| 少妇人妻 视频| a级片在线免费高清观看视频| 美女cb高潮喷水在线观看| 观看av在线不卡| av专区在线播放| 成人无遮挡网站| 国产一区二区三区av在线| 日韩精品免费视频一区二区三区 | 国产精品久久久久久精品电影小说| 国产欧美日韩综合在线一区二区| 久久久欧美国产精品| 国产在视频线精品| 国产熟女午夜一区二区三区 | 日本av手机在线免费观看| 交换朋友夫妻互换小说| 久久久久久久久久久丰满| 在线观看美女被高潮喷水网站| 亚洲精品aⅴ在线观看| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 制服丝袜香蕉在线| 亚洲美女搞黄在线观看| 成人18禁高潮啪啪吃奶动态图 | 久久国产亚洲av麻豆专区| 91久久精品电影网| 久久精品国产鲁丝片午夜精品| 中国国产av一级| 在线看a的网站| 久久久久久久久久久丰满| 视频中文字幕在线观看| 久久热精品热| av在线app专区| 综合色丁香网| 一级,二级,三级黄色视频| tube8黄色片| 91精品国产国语对白视频| 在线观看免费日韩欧美大片 | 国产成人av激情在线播放 | 热99国产精品久久久久久7| 人人妻人人澡人人看|