• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The 1-Good-neighbor Connectivity and Diagnosability of Locally Twisted Cubes

    2017-03-14 02:46:26

    (School of Mathematics and Information Science,Henan Normal University,Xinxiang,Henan 453007,PR China)

    §1.Introduction

    Many multiprocessor systems have interconnection networks(networks for short)as underlying topologies and a network is usually represented by a graph where nodes represent processors and links represent communication links between processors.We use graphs and networks interchangeably.For the system,study the topological properties of its network is important.Furthermore,some processors may fail in the system,so processor fault identification plays an important role for reliable computing.The first step to deal with faults is to identify the faulty processors from the fault-free ones.The identification process is called the diagnosis of the system.A systemGis said to bet-diagnosable if all faulty processors can be identified without replacement,provided that the number of presented faults does not exceedt.The diagnosability ofGis the maximum value oftsuch thatGist-diagnosable[1]-[3],[4].For at-diagnosable system,Dahbura and Masson[1]proposed an algorithm with time complexO(n2.5),which can effectively identify the set of faulty processors.

    Several diagnosis models were proposed to identify the faulty processors.One major approach is the Preparata,Metze,and Chiens(PMC)diagnosis model introduced by Preparata et al.[5].The diagnosis of the system is achieved through two linked processors testing each other.Another important model,namely the comparison diagnosis model(MM model),was proposed by Maeng and Malek[6].In the MM model,to diagnose a system,a node sends the same task to two of its neighbors,and then compares their responses.In 2005,Lai et al.[4]introduced a restricted diagnosability of a multiprocessor system called conditional diagnosability.They consider the situation that no faulty set can contain all the neighbors of any vertex in the system.In 2012,Peng et al.[7]proposed a new measure for faulty diagnosis of the system,namely,theg-good-neighbor diagnosability(which is also called theg-good-neighbor conditional diagnosability),which requires that every fault-free node has at leastgfault-free neighbors.In[7],they studied theg-good-neighbor diagnosability of then-dimensional hypercube under PMC model.In[8],Wang and Han studied theg-good-neighbor diagnosability of then-dimensional hypercube under the MM?model.Yuan et al.[9],[10]studied that theg-good-neighbor diagnosability of thek-aryn-cube(k≥3)under the PMC model and MM?model.The Cayley graphCΓngenerated by the transposition tree Γnhas recently received considerable attention.In[11],[12],Wang et al.studied theg-good-neighbor diagnosability ofCΓnunder the PMC model and MM?model forg=1,2.In this paper,the 1-good-neighbor diagnosability of the locally twisted cubeLTQnhas been studied under the PMC model and MM?model.It is proved that the 1-good-neighbor connectivityκ(1)(LTQn)=2n?2 and the 1-good-neighbor diagnosability ofLTQnis 2n?1 under the PMC model forn≥4 and the MM?model forn≥5.

    §2.Preliminaries

    2.1 Notations

    The graph is applied widely[13],[14].In this paper,a multiprocessor system is modeled as an undirected simple graphG=(V,E),whose vertices(nodes)represent processors and edges(links)represent communication links.Given a nonempty vertex subsetV′ofV,the subgraph induced byV′inG,denoted byG[V′],is a graph,whose vertex set isV′and the edge set is the set of all the edges ofGwith both endpoints inV′.The degreedG(v)of a vertexvis the number of edges incident withv.The minimum degree is denoted byδ(G).For any vertexv,we de fine the neighborhoodNG(v)ofvinGto be the set of vertices adjacent tov.uis called a neighbor vertex or a neighbor ofvforu∈NG(v).LetS?V(G).NG(S)denotes the set∪v∈SNG(v)S.For neighborhoods and degrees,we will usually omit the subscript for the graph when no confusion arises.A graphGis said to bek-regular if for any vertexv,dG(v)=k.LetGbe a connected graph.The connectivityκ(G)ofGis the minimum number of vertices whose removal results in a disconnected graph or only one vertex left whenGis complete.LetG=(V,E).A fault setF?Vis called ag-good-neighbor conditional faulty set if|N(v)∩(VF)|≥gfor every vertexvinVF.Ag-good-neighbor cut ofGis ag-good-neighbor faulty setFsuch thatG?Fis disconnected.The minimum cardinality ofg-good-neighbor cuts is said to be theg-good-neighbor connectivity ofG,denoted byκ(g)(G).A connected graphGis said to beg-good-neighbor connected ifGhas ag-good-neighbor cut.LetF1andF2be two distinct subsets ofV,and let the symmetric differenceF1△F2=(F1F2)∪(F2F1).For graph-theoretical terminology and notation not defined here we follow[15].

    2.2 The PMC Model and the MM?model

    For a multiprocessor systemG=(V(G),E(G)),one important diagnosis model,namely the PMC model,was proposed by Preparata et al.[5].In the PMC model,two adjacent processors can perform tests on each other.For two adjacent verticesuandvinV(G),the ordered pair(u,v)represents the test performed byuonv.The outcome of a test(u,v)is either 1 or 0 with the assumption that the testing result is regarded as reliable if the vertexuis fault-free.However,the outcome of a test(u,v)is unreliable,provided that the testeruitself is originally a faulty processor.Suppose that the vertexuof(u,v)is fault-free,then the result would be 0(resp.1)ifvis fault-free(resp.faulty).A test assignmentTforGis a collection of tests for every adjacent pair of vertices.It can be modeled as a directed testing graphT=(V(G),L),where(u,v)∈Limplies thatuandvare adjacent inG.The collection of all test results for a test assignmentTis called a syndrome.Formally,a syndrome is a functionσ:L→{0,1}.The set of all faulty processors in the system is called a faulty set.This can be any subset ofV(G).For a given syndromeσ,a subset of verticesF?V(G)is said to be consistent withσif syndromeσcan be produced from the situation that,for any(u,v)∈Lsuch thatu∈VF,σ(u,v)=1 if and only ifv∈F.This means thatFis a possible set of faulty processors.Since a test outcome produced by a faulty processor is unreliable,a given setFof faulty vertices may produce a lot of different syndromes.On the other hand,different faulty sets may produce the same syndrome.Letσ(F)denote the set of all syndromes whichFis consistent with.

    Under the PMC model,two distinct setsF1andF2inV(G)are said to be indistinguishable ifσ(F1)∩σ(F2)/=?,otherwise,F1andF2are said to be distinguishable.Besides,we say that(F1,F2)is an indistinguishable pair ifσ(F1)∩σ(F2)/=?;else,(F1,F2)is a distinguishable pair.

    Using the MM model,the diagnosis is carried out by sending the same testing task to a pair of processors and comparing their responses.Under the MM model,we always assume the output of a comparison performed by a faulty processor is unreliable.The comparison scheme of a systemG=(V(G),E(G))is modeled as a multigraph,denoted byM=(V(G),L),whereLis the labeled-edge set.A labeled edge(u,v)w∈Lrepresents a comparison in which two verticesuandvare compared by a vertexw,which impliesuw,vw∈E(G).The collection of all comparison results inM=(V(G),L)is called the syndrome,denoted byσ?,of the diagnosis.If the comparison(u,v)wdisagrees,thenσ?((u,v)w)=1,otherwise,σ?((u,v)w)=0.Hence,a syndrome is a function fromLto{0,1}.The MM*model is a special case of the MM model.In the MM*model,all comparisons of G are in the comparison scheme ofG,i.e.,ifuw,vw∈E(G),then(u,v)w∈L.

    Similarly to the PMC model,we can de fine a subset of verticesF?V(G)is consistent with a given syndromeσ?and two distinct setsF1andF2inV(G)are indistinguishable(resp.distinguishable)under the MM*model.

    A systemG=(V,E)isg-good-neighbort-diagnosable ifF1andF2are distinguishable,for each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤t.Theg-good-neighbor diagnosabilitytg(G)ofGis the maximum value oftsuch thatGisg-good-neighbort-diagnosable.

    2.3 Locally twisted cubes

    For an integern≥1,a binary string of lengthnis denoted byu1u2...un,whereui∈{0,1}for every integeri∈{1,2,...,n}.Then-dimensional locally twisted cube,denoted byLTQn,is ann-regular graph of 2nvertices andn2n?1edges,which can be recursively defined as follows[16].

    Definition 2.1[16]Forn≥2,ann-dimensional locally twisted cube,denoted byLTQn,is defined recursively as follows:

    1)LTQ2is a graph consisting of four nodes labeled with 00,01,10 and 11,respectively,connected by four edges{00,01},{01,11},{11,10}and{10,00}.

    2)Forn≥3,LTQnis built from two disjoint copies ofLTQn?1according to the following steps:Let 0LTQn?1denote the graph obtained from one copy ofLTQn?1by pre fixing the label of each node with 0.Let 1LTQn?1denote the graph obtained from the other copy ofLTQn?1by pre fixing the label of each node with 1.Connect each node 0u2u3···unof 0LTQn?1to the node 1(u2+un)u3···unof 1LTQn?1with an edge,where ”+” represents the modulo 2 addition.

    Figs.1 and 2 show three examples of locally twisted cubes.The locally twisted cube can also be equivalently defined in the following non-recursive fashion.

    Definition 2.2[16]Forn≥2,then-dimensional locally twisted cube,denoted byLTQn,is a graph with{0,1}nas the node set.Two nodesu1u2···unandv1v2···vnofLTQnare adjacent if and only if either one of the following conditions are satisfied.

    Proposition 2.3LetLTQnbe the locally twisted cube.If two verticesu,vare adjacent,then there is no common neighbor vertex of these two vertices,i.e.,|N(u)∩N(v)|=0.If two verticesu,vare not adjacent,then there are at most two common neighbor vertices of these two vertices,i.e.,|N(u)∩N(v)|≤2.

    ProofLetu,v∈V(LTQn).The proof is by induction onn.Forn=2,LTQ2is a 4-cycle.Therefore,if two verticesu,vare adjacent,then|N(u)∩N(v)|=0;if two verticesu,vare not adjacent,then|N(u)∩N(v)|≤2.Assumen≥2 and the result holds forLTQn?1.Suppose thatu,v∈V(iLTQn?1)fori∈{0,1}.Ifuis adjacent tov,by the inductive hypothesis,the result holds iniLTQn?1.Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|=0 holds.Ifuis not adjacent tov,by the inductive hypothesis,then the result holds iniLTQn?1.Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|≤2 holds.So we suppose thatu∈V(0LTQn?1)andv∈V(1LTQn?1).Since the edges whose end vertices in differentiLTQn?1’s are a matching,|N(u)∩N(v)|≤2.

    Fig.1.LTQ2and LTQ3

    Fig.2.LTQ4

    §3.The 1-Good-neighbor Connectivity of Locally Twisted Cubes

    In this section,we shall show theg-good-neighbor connectivity of the locally twisted cubeLTQn.

    Theorem 3.1[16]LetLTQnbe the locally twisted cube.Thenκ(LTQn)=n.

    Lemma 3.2[17]LetLTQnbe the locally twisted cube,and letS?V(LTQn)andn≥3.Suppose thatLTQn?Sis disconnected.The following two conditions hold:

    (1)|S|≥n;

    (2)Ifn≤|S|≤2n?3,thenLTQn?Shas exactly two components,one is trivial and the other is nontrivial.

    Lemma 3.3LetAbe defined as above and letLTQnbe the locally twisted cube.IfF1=NLTQn(A),F2=F1∪A,then|F1|=2n?2,|F2|=2n,andδ(LTQn?F1?F2)≥1.

    ProofSinceA={0n?1X:X∈{0,1}}and the definition ofLTQn,we haveLTQn[A]2and|A|=2.By Proposition 2.3,|F1|=n?1+n?1=2n?2 and|F2|=2n.

    Claim 1LTQn?F2is connected.

    The proof of this claim is by induction onn.Forn=4,F1={0100,0111,0010,0011,1101,1000}andF2={0000,0001,0100,0111,0010,0011,1101,1000}.It is easy to see thatLTQ4?F2is connected(See Fig.2).Assume thatn≥5 andLTQn?1?F2is connected.Let=F2∩V(iLTQn?1)fori=0,1.By Definition 2.1,A?V(0LTQn?1),0LTQn?1is connected and|N(A)∩V(1LTQn?1)|=2.By Theorem 3.1,1LTQn?1is connected.Note that|F2|=2n.Sincen≥5,22?1>2nholds.Therefore,LTQn?F2is connected by De finition 2.1.

    By Claim 1,δ(LTQn?F1?F2)≥1.

    Lemma 3.4LetLTQnbe the locally twisted cube.Then 1-neighbor-connectivityκ(1)(LTQn)≤2(n?1).

    ProofLetF1andF2be defined in Lemma 3.3.Note thatLTQn?F1has two componentsLTQn?F2andK2.By Lemma 4.4,F1is ag-good-neighbor cut.By the definition of 1-goodneighbor connectivity,we haveκ1(LTQn)≤2(n?1).

    Theorem 3.5LetLTQnbe the locally twisted cube.Thenκ(1)(LTQn)=2n?2 forn≥4.

    ProofLetFbe an arbitrary subset ofV(LTQn)such that|F|≤2n?3.Suppose that|F|≤n?1.By Theorem 3.1,LTQn?Fis connected.Suppose thatn≤|F|≤2n?3.By Lemma 3.2,LTQn?Fhas two components:an isolated vertex and a nontrivial subgraph.Therefore,Fis not a 1-good-neighbor cut ofLTQn.Thus,κ1(LTQn)≥2n?2.By Lemma 3.4,we haveκ1(LTQn)=2n?2 forn≥4.

    §4.The 1-Good-neighbor Diagnosability of the Locally Twisted Cube LTQnunder the PMC Model

    In this section,we shall show the 1-good-neighbor diagnosability of locally twisted cubes under the PMC model.

    Theorem 4.1[9]A systemG=(V,E)isg-good-neighbort-diagnosable under thePMCmodel if and only if there is an edgeuv∈Ewithu∈V(F1∪F2)andv∈F1△F2for each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤t.

    Lemma 4.2A graph of minimum degree 1 has at least two vertices.

    The proof of Lemma 4.2 is trivial.

    Lemma 4.3Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is less than or equal to 2n?1,i.e.,t1(LTQn)≤2n?1.

    Proof LetAbe defined in Lemma 2,and letF1=NLTQn(A),F2=A∪NLTQn(A).By Lemma 3.3,|F1|=2n?2,|F2|=|A|+|F1|=2n,δ(LTQn?F1)≥1 andδ(LTQn?F2)≥1.Therefore,F1andF2are 1-good-neighbor faulty sets ofLTQnwith|F1|=2n?2 and|F2|=2n.SinceA=F1△F2andNLTQn(A)=F1?F2,there is no edge ofLTQnbetweenV(LTQn)(F1∪F2)andF1△F2.By Theorem 4.1,we can deduce thatLTQnis not 1-goodneighbor 2n-diagnosable under the PMC model.Hence,by the de finition of 1-good-neighbor diagnosability,we conclude that the 1-good-neighbor diagnosability ofLTQnis less than 2n,i.e.,t1(LTQn)≤2n?1.

    Lemma 4.4Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is more than or equal to 2n?1,i.e.,t1(LTQn)≥2n?1.

    ProofBy the definition of 1-good-neighbor diagnosability,it is sufficient to show thatLTQnis 1-good-neighbor(2n?1)-diagnosable.By Theorem 4.1,to proveLTQnis 1-goodneighbor(2n?1)-diagnosable,it is equivalent to prove that there is an edgeuv∈E(LTQn)withu∈V(LTQn)(F1∪F2)andv∈F1△F2for each distinct pair of 1-good-neighbor faulty subsetsF1andF2ofV(LTQn)with|F1|≤2n?1 and|F2|≤2n?1.

    We prove this statement by contradiction.Suppose that there are two distinct 1-goodneighbor faulty subsetsF1andF2ofLTQnwith|F1|≤2n?1 and|F2|≤2n?1,but the vertex set pair(F1,F2)is not satisfied with the condition in Theorem 4.1,i.e.,there are no edges betweenV(LTQn)(F1∪F2)andF1△F2.Without loss of generality,assume thatF2F1/=?.Assume thatV(LTQn)=F1∪F2.Sincen≥4,we have that 2n=|V(LTQn)|=|F1∪F2|=|F1|+|F2|?|F1∩F2|≤|F1|+|F2|≤2n?1+2n?1≤4n?2,a contradiction.Therefore,V(LTQn)/=F1∪F2.

    Since there are no edges betweenV(LTQn)(F1∪F2)andF1△F2,andF1is a 1-goodneighbor faulty set,LTQn?F1has two partsLTQn?F1?F2andLTQn[F2F1].Thus,δ(LTQn?F1?F2)≥1 andδ(LTQn[F2F1])≥1.Similarly,δ(LTQn[F1F2])≥1 whenF1F2/=?.Therefore,F1∩F2is also a 1-good-neighbor faulty set.Since there are no edges betweenV(LTQn?F1?F2)andF1△F2,F1∩F2is also a 1-good-neighbor cut.WhenF1F2=?,F1∩F2=F1is also a 1-good-neighbor faulty set.Since there are no edges betweenV(LTQn?F1?F2)andF1△F2,F1∩F2is a 1-good-neighbor cut.By Theorem 3.5,|F1∩F2|≥2n?2.By Lemma 4.2,|F2F1|≥2.Therefore,|F2|=|F2F1|+|F1∩F2|≥2+2n?2=2n,which contradicts with that|F2|≤2n?1.SoLTQnis 1-good-neighbor(2n?1)-diagnosable.By the de finition oft1(LTQn),t1(LTQn)≥2n?1.

    Combining Lemmas 4.3 and Lemma 4.4,we have the following theorem.

    Theorem 4.5Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the PMC model is 2n?1.

    §5.The 1-Good-neighbor Diagnosability of Locally Twisted Cubes Under the MM?Model

    Before discussing the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model,we first give an existing result.

    Theorem 5.1([1],[9])A systemG=(V,E)isg-good-neighbort-diagnosable under theMM?model if and only if each distinct pair ofg-good-neighbor faulty subsetsF1andF2ofVwith|F1|≤tand|F2|≤tsatisfies one of the following conditions.

    (1)There are two verticesu,w∈V(F1∪F2)and there is a vertexv∈F1△F2such thatuw∈Eandvw∈E.

    (2)There are two verticesu,v∈F1F2and there is a vertexw∈V(F1∪F2)such thatuw∈Eandvw∈E.

    (3)There are two verticesu,v∈F2F1and there is a vertexw∈V(F1∪F2)such thatuw∈Eandvw∈E.

    Lemma 5.1Letn≥4.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model is less than or equal to 2n?1,i.e.,t1(LTQn)≤2n?1.

    ProofLetAbe defined in Lemma 3.3,and letF1=NLTQn(A),F2=A∪NLTQn(A).By Lemma 3.3,|F1|=2n?2,|F2|=|A|+|F1|=2n,δ(LTQn?F1)≥1 andδ(LTQn?F2)≥1.Therefore,F1andF2are 1-good-neighbor faulty sets ofLTQnwith|F1|=2n?2 and|F2|=2n.By the definitions ofF1andF2,F1△F2=A.NoteF1F2=?,F2F1=Aand(V(LTQn)(F1∪F2))∩A=?.Therefore,bothF1andF2are not satisfied with any one condition in Theorem 5.1,andLTQnis not 1-good-neighbor 2n-diagnosable.Hence,t1(LTQn)≤2n?1.

    Lemma 5.2Letn≥5.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder the MM?model is more than or equal to 2n?1,i.e.,t1(LTQn)≥2n?1.

    ProofBy the definition of 1-good-neighbor diagnosability,it is sufficient to show thatLTQnis 1-good-neighbor(2n?1)-diagnosable.

    By Theorem 5.1,suppose,on the contrary,that there are two distinct 1-good-neighbor faulty subsetsF1andF2ofLTQnwith|F1|≤2n?1 and|F2|≤2n?1,but the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1.Without loss of generality,assume thatF2F1/=?.Similarly to the discussion onV(LTQn)=F1∪F2in Lemma 4.4,we can deduceV(LTQn)/=F1∪F2.

    Claim 1LTQn?F1?F2has no isolated vertex.

    Suppose,on the contrary,thatLTQn?F1?F2has at least one isolated vertexw.SinceF1is a 1-good neighbor faulty set,there is a vertexu∈F2F1such thatuis adjacent tow.Since the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1,there is at most one vertexu∈F2F1such thatuis adjacent tow.Thus,there is just one vertexu∈F2F1such thatuis adjacent tow.Similarly,we can deduce that there is just one vertexv∈F1F2such thatvis adjacent towwhenF1F2/=?.LetW?V(LTQn)(F1∪F2)be the set of isolated vertices inLTQn[V(LTQn)(F1∪F2)],and letHbe the subgraph induced by the vertex setV(LTQn)(F1∪F2∪W).Then for anyw∈W,there are(n?2)neighbors inF1∩F2whenF1F2/=?.Since|F2|≤2n?1,we have that∑w∈W|NLTQn[(F1∩F2)∪W](w)|=|W|(n?2)≤∈F1∩F2dLTQn(v)=n|F1∩F2|≤n(|F2|?1)≤n(2n?2)=2n2?2n.It follows that|W|≤≤2n+4 forn≥5.Note|F1∪F2|=|F1|+|F2|?|F1∩F2|≤2(2n?1)?(n?2)=3n.Suppose thatV(H)=?.Then 2n=|V(LTQn)|=|F1∪F2|+|W|≤3n+2n+4=5n+4.This is a contradiction ton≥5.SoV(H)/=?.Since the vertex set pair(F1,F2)is not satisfied with the condition(1)of Theorem 5.1,and any vertex ofV(H)is not isolated inH,we deduce that there is no edge betweenV(H)andF1△F2.Thus,F1∩F2is a vertex cut ofLTQnandδ(LTQn?(F1∩F2))≥1,i.e.,F1∩F2is a 1-good-neighbor cut ofLTQn.By Theorem 3.5,|F1∩F2|≥2n?2.Because|F1|≤2n?1,|F2|≤2n?1,and neitherF1F2norF2F1is empty,we have|F1F2|=|F2F1|=1.LetF1F2={v1}andF2F1={v2}.Then for any vertexw∈W,ware adjacent tov1andv2.According to Proposition 2.3,there are at most two common neighbors for any pair of vertices inLTQn,it follows that there are at most two isolated vertices inLTQn?F1?F2.

    Suppose that there is exactly one isolated vertexvinLTQn?F1?F2.Letv1andv2be adjacent tov.ThenNLTQn(v){v1,v2}?F1∩F2.SinceLTQncontains no triangle,it follows thatNLTQn(v1){v}?F1∩F2;NLTQn(v2){v}?F1∩F2;[NLTQn(v){v1,v2}]∩[NLTQn(v1){v}]=?and[NLTQn(v){v1,v2}]∩[NLTQn(v2){v}]=?.By Proposition 2.3,|[NLTQn(v1){v}]∩[NLTQn(v2){v}]|≤1.Thus,|F1∩F2|≥|NLTQn(v){v1,v2}|+|NLTQn(v1){v}|+|NLTQn(v2){v}|=(n?2)+(n?1)+(n?1)?1=3n?5.It follows that|F2|=|F2F1|+|F1∩F2|≥1+3n?5=3n?4>2n?1(n≥4),which contradicts|F2|≤2n?1.

    Suppose that there are exactly two isolated verticesvandwinLTQn?F1?F2.Letv1andv2be adjacent tovandw,respectively.ThenNLTQn(v){v1,v2}?F1∩F2.SinceLTQncontains no triangle,it follows thatNLTQn(v1){v,w}?F1∩F2,NLTQn(v2){v,w}?F1∩F2,[NLTQn(v){v1,v2}]∩[NLTQn(v1){v,w}]=?and[NLTQn(v){v1,v2}]∩[NLTQn(v2){v,w}]=?.By Proposition 2.3,there are at most two common neighbors for any pair of vertices inLTQn.Thus,it follows that|[NLTQn(v1){v,w}]∩[NLTQn(v2){v,w}]|=0.Thus,|F1∩F2|≥|NLTQn(v){v1,v2}|+|NLTQn(w){v1,v2}|+|NLTQn(v1){v,w}|+|NLTQn(v2){v,w}|=(n?2)+(n?2)+(n?2)+(n?2)=4n?8.It follows that|F2|=|F2F1|+|F1∩F2|≥1+4n?8=4n?7>2n?1 (n≥4),which contradicts|F2|≤2n?1.

    Suppose thatF1F2=?.ThenF1?F2.SinceF2is a 1-good neighbor faulty set,LTQn?F2=LTQn?F1?F2has no isolated vertex.The proof of Claim 1 is complete.

    Letu∈V(LTQn)(F1∪F2).By Claim 1,uhas at least one neighbor inLTQn?F1?F2.Since the vertex set pair(F1,F2)is not satisfied with any one condition in Theorem 5.1,by the condition(1)of Theorem 5.1,for any pair of adjacent verticesu,w∈V(LTQn)(F1∪F2),there is no vertexv∈F1△F2such thatuw∈E(LTQn)andvw∈E(LTQn).It follows thatuhas no neighbor inF1△F2.By the arbitrariness ofu,there is no edge betweenV(LTQn)(F1∪F2)andF1△F2.SinceF2F1/=?andF1is a 1-good-neighbor faulty set,δ(LTQn?F1?F2)≥1 andδ(LTQn[F2F1])≥1.SinceF2is a 1-good-neighbor faulty set,δ(LTQn[F1F2])≥1 whenF1F2/=?.Therefore,F1∩F2is a 1-good-neighbor cut ofLTQn.Suppose thatF1F2=?.ThenF1∩F2=F1.Therefore,F1∩F2is a 1-good-neighbor cut ofLTQnwhenF1F2=?.By Theorem 3.5,we have|F1∩F2|≥2n?2.By Lemma 4.2,|F2F1|≥2.Therefore,|F2|=|F2F1|+|F1∩F2|≥2+(2n?2)=2n,which contradicts|F2|≤2n?1.Therefore,LTQnis 1-good-neighbor(2n?1)-diagnosable andt1(LTQn)≥2n?1.

    Combining Lemmas 5.2 and 5.3,we have the following theorem.

    Theorem 5.4Letn≥5.Then the 1-good-neighbor diagnosability of the locally twisted cubeLTQnunder theMM?model is 2n?1.

    [1]DAHBURA A T,MASSON G M.AnO(n2.5)Fault identification algorithm for diagnosable systems[J].IEEE Transactions on Computers,1984,33(6):486-492.

    [2]FAN Jian-xi.Diagnosability of crossed cubes under the comparison diagnosis model[J].IEEE Transactions on Parallel and Distributed Systems,2002,13(10):1099-1104.

    [3]FAN Jian-xi,ZHANG Shu-kui,JIA Xiao-hua,et al.The Restricted Connectivity of Locally Twisted Cubes[C].10th International Symposium on Pervasive Systems,Algorithms,and Networks(ISPAN).Kaohsiung,14-16 December 2009,574–578.

    [4]LAI Pao-Lien,TAN J J M,CHANG Chien-Ping,et al.Conditional Diagnosability Measures for Large Multiprocessor Systems[J].IEEE Transactions on Computers,2005,54(2):165-175.

    [5]PREPARATA F.P,METZE G,CHIEN R T.On the connection assignment problem of diagnosable systems[J].IEEE Transactions on Computers,1967,EC-16:848-854.

    [6]MAENG J,MALEK M.A comparison connection assignment for self-diagnosis of multiprocessor systems[C].in:Proceeding of 11th International Symposium on Fault-Tolerant Computing,Washington,D C:IEEE Computer Society Press,1981,173-175.

    [7]PENG Shao-Lun,LIN Cheng-Kuan,TAN J J M,et al.Theg-good-neighbor conditional diagnosability of hypercube under PMC model[J].Applied Mathematics and Computation,2012,218(21):10406-10412.

    [8]WANG Shi-ying,HAN Wei-ping.Theg-good-neighbor conditional diagnosability ofn-dimensional hypercubes under the MM*model[J].Information Processing Letters,2016,116:574-577.

    [9]YUAN Jun,LIU Ai-xia,MA Xue,et al.Theg-good-neighbor conditional diagnosability ofk-aryn-cubes under the PMC model and MM?model[J].IEEE Transactions on Parallel and Distributed Systems,2015,26:1165-1177.

    [10]YUAN Jun,LIU Ai-xia,QIN Xiao,et al.g-Good-neighbor conditional diagnosability measures for 3-aryn-cube networks[J].Theoretical Computer Science,2016,622:144-162.

    [11]WANG Mu-jiang-shan,GUO Yubao,WANG Shiying.The 1-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM?model[J].International Journal of Computer Mathematics,2017,94(3):620-631.

    [12]WANG Mu-jiang-shan,LIN Yu-qing,WANG Shi-ying.The 2-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM*model[J].Theoretical Computer Science 628(2016)92-100.

    [13]LIN Hao,LIN Lan.Minimum Dominating Tree Problem for Graphs[J].Chinese Quarterly Journal of Mathematics,2014,29(1):1–8.

    [14]WANG Mu-Jiang-shan,YUAN Jun,LIN Shang-wei,et al.Ordered and Hamilton Digraphs,Chinese Quarterly Journal of Mathematics[J].2010,25(3):317-326.

    [15]BONDY J A,MURTY U S R..Graph Theory[M].New York:Springer,2007.

    [16]YANG Xiao-fan,EVANS D J,MEGSON G M.The Locally Twisted Cubes[J].International Journal of Computer Mathematics,2005(82)(4):401-413.

    [17]FENG Rui-tao,BIAN Genq-ing,WANG Xin-ke.Conditional diagnosability of the locally twisted cubes under the PMC model[J].Communications and Network,2011,3:220-224.

    啦啦啦在线观看免费高清www| 777米奇影视久久| 日本与韩国留学比较| 精品国产一区二区三区久久久樱花 | 夜夜骑夜夜射夜夜干| 亚洲,一卡二卡三卡| 午夜福利视频精品| av国产久精品久网站免费入址| 欧美xxxx黑人xx丫x性爽| 国模一区二区三区四区视频| 中文字幕精品免费在线观看视频 | 一区二区av电影网| 我要看日韩黄色一级片| 99热全是精品| 欧美老熟妇乱子伦牲交| 日本黄大片高清| 色婷婷av一区二区三区视频| 人人妻人人添人人爽欧美一区卜 | a级一级毛片免费在线观看| 夫妻性生交免费视频一级片| 欧美亚洲 丝袜 人妻 在线| 九色成人免费人妻av| 春色校园在线视频观看| 国产91av在线免费观看| .国产精品久久| 亚洲成人中文字幕在线播放| 青青草视频在线视频观看| 99热6这里只有精品| 老师上课跳d突然被开到最大视频| 日韩国内少妇激情av| 亚洲av国产av综合av卡| 一级二级三级毛片免费看| 亚洲精品日本国产第一区| 国产大屁股一区二区在线视频| www.av在线官网国产| 亚洲天堂av无毛| 国产精品女同一区二区软件| 午夜激情福利司机影院| 午夜视频国产福利| 这个男人来自地球电影免费观看 | 少妇丰满av| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| 在线观看免费视频网站a站| 你懂的网址亚洲精品在线观看| 精品国产乱码久久久久久小说| 亚洲精品国产成人久久av| 国模一区二区三区四区视频| 欧美 日韩 精品 国产| 99国产精品免费福利视频| 22中文网久久字幕| 一级a做视频免费观看| 日本欧美国产在线视频| 亚洲精品中文字幕在线视频 | 国产91av在线免费观看| 欧美日本视频| 日韩av不卡免费在线播放| 搡女人真爽免费视频火全软件| 久久6这里有精品| 国产成人a∨麻豆精品| 如何舔出高潮| 国产伦精品一区二区三区四那| 寂寞人妻少妇视频99o| 26uuu在线亚洲综合色| 亚洲色图综合在线观看| 国产视频内射| 尾随美女入室| 成人黄色视频免费在线看| 欧美精品一区二区免费开放| 久久久久久久精品精品| 精品一区二区三区视频在线| 国产成人a区在线观看| 色网站视频免费| 99久久精品热视频| 亚洲色图综合在线观看| 老师上课跳d突然被开到最大视频| 免费大片黄手机在线观看| 大陆偷拍与自拍| 亚洲欧美成人综合另类久久久| 最近最新中文字幕免费大全7| 丰满少妇做爰视频| 久久国产精品男人的天堂亚洲 | 九九在线视频观看精品| 亚洲久久久国产精品| 亚洲欧美精品专区久久| 男女边吃奶边做爰视频| a级毛色黄片| 国产免费一区二区三区四区乱码| 久久久久久人妻| 亚洲最大成人中文| 日日撸夜夜添| 欧美xxxx黑人xx丫x性爽| 九九爱精品视频在线观看| 80岁老熟妇乱子伦牲交| 男人舔奶头视频| 青春草亚洲视频在线观看| 日韩免费高清中文字幕av| 三级国产精品片| 亚洲av成人精品一区久久| 亚洲精品aⅴ在线观看| 男女边吃奶边做爰视频| 性色av一级| 精品视频人人做人人爽| 国产真实伦视频高清在线观看| 这个男人来自地球电影免费观看 | 久久久亚洲精品成人影院| 又粗又硬又长又爽又黄的视频| 国产精品久久久久成人av| 欧美97在线视频| 网址你懂的国产日韩在线| 黄片wwwwww| 国产成人免费无遮挡视频| 久久久久性生活片| 波野结衣二区三区在线| 欧美三级亚洲精品| 亚洲国产精品一区三区| 国国产精品蜜臀av免费| 欧美极品一区二区三区四区| 最近最新中文字幕大全电影3| 国产乱来视频区| 欧美老熟妇乱子伦牲交| 国产在线免费精品| 国产男人的电影天堂91| 成人影院久久| 热re99久久精品国产66热6| 国产成人精品福利久久| 国产精品无大码| 卡戴珊不雅视频在线播放| 国产精品久久久久久av不卡| 少妇精品久久久久久久| 一级毛片aaaaaa免费看小| 国产极品天堂在线| 一本色道久久久久久精品综合| 成年人午夜在线观看视频| 免费看不卡的av| 日本午夜av视频| 亚洲天堂av无毛| 亚洲av福利一区| 国产美女午夜福利| 亚洲三级黄色毛片| 一区二区三区精品91| 国产综合精华液| 晚上一个人看的免费电影| 久久国产精品男人的天堂亚洲 | 免费播放大片免费观看视频在线观看| 美女cb高潮喷水在线观看| 纯流量卡能插随身wifi吗| 欧美日韩综合久久久久久| 在线观看一区二区三区| 老司机影院成人| 小蜜桃在线观看免费完整版高清| 哪个播放器可以免费观看大片| 国产成人免费无遮挡视频| 在线观看人妻少妇| 亚洲第一区二区三区不卡| 97在线视频观看| 男人爽女人下面视频在线观看| 小蜜桃在线观看免费完整版高清| 91久久精品电影网| 国产精品久久久久久av不卡| av在线老鸭窝| 免费高清在线观看视频在线观看| 欧美另类一区| 亚洲不卡免费看| 女性生殖器流出的白浆| 九九久久精品国产亚洲av麻豆| 国产一区亚洲一区在线观看| freevideosex欧美| 国产成人精品久久久久久| 亚洲激情五月婷婷啪啪| 成人黄色视频免费在线看| 日韩av免费高清视频| 久久综合国产亚洲精品| 久久6这里有精品| 日韩av免费高清视频| 久久6这里有精品| 好男人视频免费观看在线| 亚洲aⅴ乱码一区二区在线播放| 欧美国产精品一级二级三级 | 日本av免费视频播放| 亚洲国产欧美在线一区| 有码 亚洲区| 亚洲欧美清纯卡通| 一级av片app| 国产精品国产三级国产专区5o| 久热这里只有精品99| 大话2 男鬼变身卡| 噜噜噜噜噜久久久久久91| 少妇 在线观看| 五月开心婷婷网| 国产黄色免费在线视频| 一本久久精品| 欧美人与善性xxx| 亚洲精品,欧美精品| videossex国产| 中文字幕免费在线视频6| 男女免费视频国产| 亚州av有码| 久久久精品94久久精品| 成年免费大片在线观看| 在线天堂最新版资源| 成人18禁高潮啪啪吃奶动态图 | 亚洲综合色惰| 国产无遮挡羞羞视频在线观看| .国产精品久久| 又大又黄又爽视频免费| 国产视频内射| 国产精品国产av在线观看| 少妇人妻 视频| 天堂8中文在线网| 观看免费一级毛片| 91午夜精品亚洲一区二区三区| 久久精品久久精品一区二区三区| 男女无遮挡免费网站观看| 3wmmmm亚洲av在线观看| 国产在视频线精品| 亚洲中文av在线| 国产亚洲91精品色在线| 久久久久久久大尺度免费视频| 看免费成人av毛片| 十分钟在线观看高清视频www | www.av在线官网国产| 熟女av电影| 成人毛片a级毛片在线播放| av在线观看视频网站免费| 看非洲黑人一级黄片| 三级国产精品欧美在线观看| 一本—道久久a久久精品蜜桃钙片| 街头女战士在线观看网站| av一本久久久久| 亚洲精品国产av成人精品| 观看免费一级毛片| 久久国产精品大桥未久av | 欧美日韩亚洲高清精品| 少妇精品久久久久久久| 欧美高清成人免费视频www| 中文天堂在线官网| 亚洲美女视频黄频| 伦理电影免费视频| 卡戴珊不雅视频在线播放| 欧美zozozo另类| 青青草视频在线视频观看| 少妇裸体淫交视频免费看高清| 一二三四中文在线观看免费高清| 少妇人妻精品综合一区二区| 狂野欧美白嫩少妇大欣赏| 色婷婷久久久亚洲欧美| 成年女人在线观看亚洲视频| 成人毛片60女人毛片免费| 国产精品国产三级专区第一集| 欧美bdsm另类| 成人国产av品久久久| 亚洲一区二区三区欧美精品| 一级毛片我不卡| 小蜜桃在线观看免费完整版高清| 欧美日韩综合久久久久久| 亚洲美女视频黄频| 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 男女国产视频网站| 香蕉精品网在线| 国产永久视频网站| 在线 av 中文字幕| 日日摸夜夜添夜夜添av毛片| 日韩av不卡免费在线播放| 丰满少妇做爰视频| 成人亚洲精品一区在线观看 | 亚洲色图综合在线观看| 久久久久久久国产电影| 国产午夜精品久久久久久一区二区三区| 免费观看性生交大片5| 成年女人在线观看亚洲视频| 亚洲精品日韩av片在线观看| 欧美精品亚洲一区二区| 成年美女黄网站色视频大全免费 | 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 99久久精品国产国产毛片| 亚洲欧美日韩东京热| 男女国产视频网站| 亚洲第一av免费看| 欧美日韩精品成人综合77777| 久久久久国产精品人妻一区二区| 国产毛片在线视频| 国产精品爽爽va在线观看网站| 最近最新中文字幕大全电影3| 日韩中字成人| 2021少妇久久久久久久久久久| 久久这里有精品视频免费| 亚洲真实伦在线观看| 97热精品久久久久久| 免费看光身美女| 美女国产视频在线观看| 免费看日本二区| 亚洲av中文av极速乱| 老司机影院成人| 国产伦在线观看视频一区| 亚洲欧洲日产国产| 亚洲av在线观看美女高潮| 免费观看av网站的网址| 777米奇影视久久| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久v下载方式| 国产一区有黄有色的免费视频| www.av在线官网国产| 22中文网久久字幕| 一区二区av电影网| 自拍欧美九色日韩亚洲蝌蚪91 | 精品国产乱码久久久久久小说| 国产综合精华液| 亚洲四区av| 欧美高清性xxxxhd video| 如何舔出高潮| 亚洲国产日韩一区二区| 中文天堂在线官网| 26uuu在线亚洲综合色| 午夜福利影视在线免费观看| 久久99热6这里只有精品| 乱码一卡2卡4卡精品| 22中文网久久字幕| 亚洲成人av在线免费| 18禁裸乳无遮挡动漫免费视频| 天堂8中文在线网| 国产黄色视频一区二区在线观看| 蜜桃在线观看..| 搡女人真爽免费视频火全软件| 久久久久网色| 极品教师在线视频| 新久久久久国产一级毛片| 欧美激情极品国产一区二区三区 | 国产人妻一区二区三区在| 97在线人人人人妻| 中文天堂在线官网| 精品少妇久久久久久888优播| 高清欧美精品videossex| 赤兔流量卡办理| av播播在线观看一区| 国产精品国产三级国产av玫瑰| 国产精品久久久久成人av| 欧美变态另类bdsm刘玥| 午夜视频国产福利| 亚洲国产日韩一区二区| 校园人妻丝袜中文字幕| 国产一区二区三区综合在线观看 | 色视频在线一区二区三区| 日韩成人伦理影院| 色婷婷av一区二区三区视频| 亚洲国产成人一精品久久久| 国产黄频视频在线观看| 免费在线观看成人毛片| 国产免费福利视频在线观看| 大香蕉97超碰在线| 九草在线视频观看| 精品少妇久久久久久888优播| 人妻 亚洲 视频| 日韩av免费高清视频| 精品久久久噜噜| 久久久久久伊人网av| 国产69精品久久久久777片| 亚洲av国产av综合av卡| 日韩免费高清中文字幕av| 三级经典国产精品| 欧美一区二区亚洲| 另类亚洲欧美激情| 青春草亚洲视频在线观看| 2021少妇久久久久久久久久久| 三级经典国产精品| 天美传媒精品一区二区| 纵有疾风起免费观看全集完整版| 成人18禁高潮啪啪吃奶动态图 | 免费观看在线日韩| 99久国产av精品国产电影| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频| 男女国产视频网站| 亚洲精品一二三| 99久久中文字幕三级久久日本| av在线app专区| 老司机影院毛片| 久久久久久久久大av| 国产精品久久久久久久久免| 夜夜看夜夜爽夜夜摸| 一区二区三区免费毛片| 全区人妻精品视频| 精品一区二区三区视频在线| 边亲边吃奶的免费视频| 在线观看国产h片| 亚洲国产精品999| 久久精品久久久久久噜噜老黄| 亚洲av综合色区一区| 日本av免费视频播放| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 我要看黄色一级片免费的| 精品酒店卫生间| 一边亲一边摸免费视频| 国产 一区 欧美 日韩| 亚洲精品乱久久久久久| 又爽又黄a免费视频| 99久久中文字幕三级久久日本| 免费看日本二区| 国产一区二区在线观看日韩| 亚洲国产精品国产精品| av又黄又爽大尺度在线免费看| 久久国产精品男人的天堂亚洲 | 亚洲精品一区蜜桃| 十分钟在线观看高清视频www | kizo精华| 久久青草综合色| h日本视频在线播放| 国语对白做爰xxxⅹ性视频网站| 久久人妻熟女aⅴ| 中文乱码字字幕精品一区二区三区| 欧美精品人与动牲交sv欧美| 久久精品夜色国产| 亚洲熟女精品中文字幕| av线在线观看网站| 777米奇影视久久| 日韩欧美一区视频在线观看 | 人妻系列 视频| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线 | 日韩人妻高清精品专区| 99久久精品国产国产毛片| 成人毛片60女人毛片免费| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 国产淫片久久久久久久久| 亚洲激情五月婷婷啪啪| 国产精品99久久99久久久不卡 | 春色校园在线视频观看| 高清黄色对白视频在线免费看 | 热99国产精品久久久久久7| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 欧美三级亚洲精品| 久久精品夜色国产| 日本av免费视频播放| 欧美成人精品欧美一级黄| 草草在线视频免费看| 国产一区有黄有色的免费视频| 大香蕉97超碰在线| 大陆偷拍与自拍| 五月天丁香电影| 国产精品一区二区三区四区免费观看| 亚洲va在线va天堂va国产| 亚洲人成网站在线观看播放| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看| 午夜老司机福利剧场| h日本视频在线播放| 大香蕉97超碰在线| 国产av码专区亚洲av| 黄色视频在线播放观看不卡| 午夜日本视频在线| 国产精品嫩草影院av在线观看| 日韩av在线免费看完整版不卡| 美女福利国产在线 | 国产伦精品一区二区三区四那| 99九九线精品视频在线观看视频| 观看免费一级毛片| 久久久国产一区二区| 干丝袜人妻中文字幕| 国产高潮美女av| 美女国产视频在线观看| 中文字幕亚洲精品专区| 亚洲欧美日韩东京热| 多毛熟女@视频| 亚洲精品456在线播放app| 男人舔奶头视频| 国产片特级美女逼逼视频| 99精国产麻豆久久婷婷| 91久久精品国产一区二区成人| 成人无遮挡网站| 男女无遮挡免费网站观看| 精品一区二区免费观看| 在线 av 中文字幕| 国产精品久久久久久久电影| av卡一久久| 97超碰精品成人国产| 亚洲美女黄色视频免费看| 噜噜噜噜噜久久久久久91| 亚洲人成网站高清观看| 在线观看免费日韩欧美大片 | 伦理电影大哥的女人| 夜夜骑夜夜射夜夜干| h视频一区二区三区| 国产精品一区二区在线不卡| 亚洲最大成人中文| 午夜福利影视在线免费观看| 日韩av在线免费看完整版不卡| 在线观看免费日韩欧美大片 | 亚洲伊人久久精品综合| 狠狠精品人妻久久久久久综合| 黑人高潮一二区| 蜜桃亚洲精品一区二区三区| 日韩制服骚丝袜av| 国产欧美日韩一区二区三区在线 | 亚洲欧美成人精品一区二区| 美女福利国产在线 | 国产亚洲91精品色在线| 亚洲丝袜综合中文字幕| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 秋霞在线观看毛片| 99久久精品热视频| 午夜视频国产福利| 国产成人a∨麻豆精品| 亚洲精品aⅴ在线观看| 美女内射精品一级片tv| 男女啪啪激烈高潮av片| 国产91av在线免费观看| 国产精品偷伦视频观看了| 亚洲国产精品国产精品| 99久久精品热视频| 欧美日韩视频精品一区| 涩涩av久久男人的天堂| 成人影院久久| 久久女婷五月综合色啪小说| 春色校园在线视频观看| 日本与韩国留学比较| 熟女人妻精品中文字幕| 尤物成人国产欧美一区二区三区| 日本午夜av视频| 国产 一区 欧美 日韩| 精品一区二区免费观看| 在线观看人妻少妇| 一级二级三级毛片免费看| 国产黄片美女视频| 日韩欧美精品免费久久| 一区二区三区精品91| 极品教师在线视频| 高清av免费在线| 亚洲国产日韩一区二区| 女人十人毛片免费观看3o分钟| 男女免费视频国产| 欧美成人一区二区免费高清观看| 亚洲精品亚洲一区二区| 亚洲av在线观看美女高潮| 男女下面进入的视频免费午夜| 日韩电影二区| 免费久久久久久久精品成人欧美视频 | 男女免费视频国产| 超碰av人人做人人爽久久| 九草在线视频观看| 亚洲成人手机| 看十八女毛片水多多多| 青青草视频在线视频观看| 国产成人一区二区在线| 亚洲精品久久午夜乱码| 国产探花极品一区二区| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 精品久久久久久电影网| 又爽又黄a免费视频| 最新中文字幕久久久久| 伊人久久国产一区二区| 中国三级夫妇交换| 夜夜爽夜夜爽视频| 欧美国产精品一级二级三级 | 男女无遮挡免费网站观看| 精品久久国产蜜桃| 18+在线观看网站| 免费大片18禁| 伦理电影大哥的女人| 丰满少妇做爰视频| 国产精品一区二区性色av| 亚洲av综合色区一区| 亚洲精品色激情综合| 免费看光身美女| 亚洲国产色片| 黄片wwwwww| 小蜜桃在线观看免费完整版高清| 欧美成人一区二区免费高清观看| 婷婷色麻豆天堂久久| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧美人成| 国产成人一区二区在线| 欧美zozozo另类| 久久人妻熟女aⅴ| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 美女高潮的动态| 26uuu在线亚洲综合色| 老师上课跳d突然被开到最大视频| 国产亚洲91精品色在线| 久久久欧美国产精品| 人人妻人人添人人爽欧美一区卜 | 99热国产这里只有精品6| 又爽又黄a免费视频| 欧美精品国产亚洲| 小蜜桃在线观看免费完整版高清| 日韩成人av中文字幕在线观看| 亚洲成色77777| 国产精品嫩草影院av在线观看| 男人舔奶头视频| 欧美成人精品欧美一级黄| 久久久久久伊人网av| 一级毛片aaaaaa免费看小| 国产成人免费观看mmmm| 成人综合一区亚洲| 亚洲怡红院男人天堂| 国产亚洲av片在线观看秒播厂| 日韩av免费高清视频| 97精品久久久久久久久久精品| 精品人妻视频免费看| 中文在线观看免费www的网站| 在线观看免费日韩欧美大片 | 久久人人爽人人片av| 国产成人a区在线观看| 精品国产一区二区三区久久久樱花 | 久久婷婷青草| 日韩av免费高清视频| 亚洲无线观看免费| 亚洲国产欧美人成|