• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三聚氰胺與蜜勒胺在Au(111)表面的自組裝和氫鍵識(shí)別

    2017-03-10 08:09:23石何霞王文元
    物理化學(xué)學(xué)報(bào) 2017年2期
    關(guān)鍵詞:科技前沿三聚氰胺氫鍵

    王 利 石何霞 王文元 施 宏 邵 翔,2,*

    (1中國(guó)科學(xué)技術(shù)大學(xué)化學(xué)物理系,中國(guó)科學(xué)院城市污染物轉(zhuǎn)化重點(diǎn)實(shí)驗(yàn)室,合肥 230026;2中國(guó)科學(xué)技術(shù)大學(xué)量子信息與量子科技前沿協(xié)同創(chuàng)新中心,合肥 230026)

    三聚氰胺與蜜勒胺在Au(111)表面的自組裝和氫鍵識(shí)別

    王 利1石何霞1王文元1施 宏1邵 翔1,2,*

    (1中國(guó)科學(xué)技術(shù)大學(xué)化學(xué)物理系,中國(guó)科學(xué)院城市污染物轉(zhuǎn)化重點(diǎn)實(shí)驗(yàn)室,合肥 230026;2中國(guó)科學(xué)技術(shù)大學(xué)量子信息與量子科技前沿協(xié)同創(chuàng)新中心,合肥 230026)

    三聚氰胺和蜜勒胺(即三聚氰胺的三聚體)均為合成石墨型氮化碳(g-C3N4)的前驅(qū)體分子,具有與不同相 g-C3N4的結(jié)構(gòu)基元類(lèi)似的骨架結(jié)構(gòu)。本文利用低溫掃描隧道顯微鏡(STM)對(duì)比研究了三聚氰胺與蜜勒胺在Au(111)表面上的自組裝結(jié)構(gòu),并對(duì)兩種分子可能形成的氫鍵類(lèi)型進(jìn)行識(shí)別。研究發(fā)現(xiàn),三聚氰胺在表面上僅有一種氫鍵方式,形成兩種組裝結(jié)構(gòu);而蜜勒胺卻可以形成三種類(lèi)型的氫鍵,并組裝成六種有序結(jié)構(gòu),而且不同類(lèi)型的氫鍵在表面的比例隨著分子在表面覆蓋度的變化而變化。特別的,有些氫鍵類(lèi)型之間可以在探針作用下發(fā)生轉(zhuǎn)變。這些研究結(jié)果將為利用氫鍵構(gòu)建和調(diào)控表面功能性納米結(jié)構(gòu)提供新方法,同時(shí)也為研究g-C3N4的表面原位合成及相關(guān)理化性質(zhì)打下基礎(chǔ)。

    三聚氰胺;蜜勒胺;Au(111);掃描隧道顯微鏡;氫鍵;自組裝

    1 Introduction

    Two-dimensional(2D)self-assembled porous networks of organic molecules have gained substantial interests due to their versatile applications serving as templates,receptors and mi-croreactors1,2.Such porous networks can be constructed with various intermolecular interactions including van der Waals interactions3-5,hydrogen bonding6-8,metal coordination9,10,halogen bonding11,12and covalent bonding13,14etc.Hydrogen bonding(HB) in particular,has been widely investigated in tuning the molecular ordering in one-dimensional throughout three-dimensional systems.

    Melamine(1,3,5-triazine-2,4,6-triamine,Fig.1a)has a triazine structure with three terminal amino groups and is widely used as an archetypical building block of hydrogen bonding networks. It has been found to form highly ordered hexagonal structure on Au(111)15and Ag(111)16,and was also frequently utilized to construct multicomponent 2D porous networks with other molecules such as perylene tetra-carboxylic di-imide(PTCDI)6,7, perylene tetra-carboxylic di-anhydride(PTCDA)17and cyanuric acid(CA)18-23etc.These co-assembly structures have been successfully applied to control the deposited guest molecules such as C60and thiols6,7.In addition,melamine can form two dimensional covalent structures through the polycondensation reactions with aldehyde groups and acyl chloride24.

    Melem(2,5,8-triamino-tri-s-triazine,Fig.1(b-d))is a condensed derivative of melamine.It has similar 3-fold symmetry and three amino groups as melamine but with more acceptor sites for hydrogen bonding.However,melem has received much less attention despite its high potential for richer hydrogen bond-based self-assemblies25-28.Moreover,melem has been proved an important intermediate for fabrication of graphitic carbon nitride(g-C3N4)from melamine29.The g-C3N4was recently found an efficient metal-free photocatalytic catalyst for producing hydrogen from water under visible light30.And it has been continuously found with more and more new applications31.In this regard,it would be of great interest to investigate the adsorption and assembly behavior of melem,which may build the connections to the in situ synthesis of g-C3N4on metal surfaces.

    In this report,we have conducted a comparison study of selfassembling behavior of both melamine and melem on an Au(111) surface.Based on the molecular structures shown in Fig.1, melamine is proposed to form only one type of hydrogen bonds (Fig.1a)whereas melem may form three types of hydrogen bonds (Fig.1(b-d)).The higher assembling diversity of melem can thus be anticipated.Our high resolution scanning tunneling microscopy (STM)experiments facilitated clearly the identification of various types of hydrogen bonds of melem,and revealing their involvements in distinct assembly structures.More interestingly,we found the tip scanning can trigger the transformation of the hydrogen bonds,thus providing a new strategy to tailor the functionality of the assembled porous nanostructures.

    Fig.1 Basic hydrogen bonds for melamine(a)andmelem(b-d)molecules

    2 Experimental methods

    The experiments were performed on a commercial low-temperature STM(LT-STM,Createc Co.)which is housed in a UHV chamber with base pressure lower than 1 × 10-8Pa.The atomically flat Au(111)surface was prepared by repeated cycles of Ar+sputtering and annealing.The melamine(Sigma Aldrich,98%)and melem molecules(Ambinter,90+%)were thoroughly degassed (100 °C for melamine,300 °C for melem)inside a Knudsen-cell type evaporator(Createc Co.)for 10 h in vacuum before deposition.During deposition the substrate was kept at room temperature.All STM measurements were conducted at liquid nitrogen temperature.The STM images were collected with the electrochemically etched tungsten tips in constant current mode. All the biases are referred to the sample.

    3 Results and discussion

    The assembly structures of melamine on Au(111)was already investigated by Silly et al.15in 2008.Recently we revisited this system and explored its interaction with small gaseous molecules such as CO and CO2,and found the exposure to CO can induce the production of both Au adatom and Au vacancies trapped in the melamine hexagonal pores32.Fig.2 shows the typical assembly structures of melamine.The structure I is a honeycomb(HC) structure(termed as Mela-HC)while the structure II is a closepacked structure(termed as Mela-CP).In both phases,the melamine molecules connect side by side with a pair of hydrogen bonds as proposed in Fig.1a.From the structural model shown in Fig.2 one can recognize a relatively crowded atomic arrangements in Mela-CP structure,highlighted by the red ovals,which may lead to weak repulsions between these end-groups.As a result, Mela-CP structure usually appears as small domains or narrow ribbons mixing with the widely spread Mela-HC structure.Large domains of Mela-CP can only be formed at high coverages(data not shown here).

    With the analogous molecular structure,melem was found to form similar honeycomb assembly(termed as mele-HC structure) as melamine on Au(111)surface,but with obviously larger unit cell(1.45 nm versus 1.0 nm)and larger pores(0.7 nm versus 0.4 nm).As shown in Fig.3a,in such structure each melem molecule can be clearly identified as a triangle plate with side length around 0.7 nm,consistent with a flat-lying configuration of melem on Au(111)surface.The model in Fig.3b shows that the melemmolecules connect each other by forming side-by-side type hydrogen bonds(termed as SS-HBs,see in Fig.1b),similar to the HBs within the Mela-HC structure.However,the close-packed directions of the melem honeycombs were found to orientate along the<112ˉ>direction of the Au(111)surface,deviating from the<213ˉ>direction for the melamine honeycombs15.This is possibly due to the different molecule-substrate interactions between melem and melamine.We also noticed that in the Mele-HC phase we never observed recognizable protrusions which could be assigned as gold adatoms,significantly different from the assemblytrapped gold adatoms on the HC structures of melamine33.This phenomenon can be attributed to the decreased diffusion rates of melem molecules due to the increased adsorption strength,as well as to the larger pore size leading to the decreased Au-melem interactions.

    Fig.2 Typical assembly structures of melamine on Au(111)surface

    Fig.3 STM images and corresponding unit cell models of melem self-assembly structures on Au(111)surface

    The honeycomb structure delegates the most diluted ordered phase(~0.9 nm2·molecule-1)of melem on the surface.In contrast, the densest phase is shown in Fig.3e,corresponding to a closepacked(termed as Mele-CP)assembly with periodicity of(0.9 ± 0.1)nm,i.e.0.7 nm2·molecule-1.The tentative model in Fig.3f proposes that the melem molecules also lie flat in this phase and connect each other with the head-tail type hydrogen bonds (shortened as HT-HBs,see in Fig.1d).The close-packed directions of the melem molecules align parallel to the molecular mirror planes,and orientate along the<11ˉ0>directions of the substrate. The combination of Mele-HC and Mele-CP structures leads to the formation of a series of large pin-wheel(termed as Mele-PW) structures as shown in Fig.3c.As illustrated by the model in Fig.3d,the Mele-CP domains shape into various triangles and connect each other by the SS-HBs interactions,forming large pinwheels with tunable periodicity depending on the molecular density,which is similar to the assembly behavior of trimesic acid on Au(111)surface8.

    The above three kinds of structures are exactly the same as what reported for melem assembling on Ag(111)under UHV conditions25.This is understandable since Ag and Au have significant similarity in both lattice constant and electronic properties.Particularly in such a physisorbed assembly system,the lateral intermolecular interactions dominate the molecular ordering. However,we still found exceptions of melem on Au(111),such as the flower-like(termed as Mele-FW)structure shown in Fig.4.As can be found in the high-resolution image in Fig.4b as well as themolecular model in Fig.4c,all the melem molecules in this Mele-FW structure also take a flat-lying configuration on the surface and interact with each other by the SS-HBs(see the dashed lines in Fig.4c).The hexagonal pores in this structure are distributed periodically with rhombic unit cell size of(2.5 ± 0.1)nm,corresponding to3times of that in the Mele-HC structure.Their close-packed directions are aligned with the<11ˉ0>directions of the Au(111)surface,which turn 30°relative to the close-packed direction of the honeycombs in the Mele-HC structure.Therefore, this structure can actually be regarded as a special Mele-HC structure with their hexagonal pores filled regularly.Taking any hexagonal pore in the Mele-HC structure for example,we fill additional melem molecules into all of its nearest neighbored pores,but leave all the next-nearest neighbored pores unfilled.By following this strategy,the Mele-FW structure can be produced. Furthermore,as shown by the model in Fig.4c,the filled melem molecules(highlighted by yellow circles)can form up to six hydrogen bonds with the neighboring molecules,yielding enhanced stability for both interacting molecules.This situation is however not able to be fulfilled in the melamine system,most possibly due to the insufficient size of the melamine pores as well as the lack of hydrogen bonding sites.As a matter of fact,when second layer melamine molecules adsorb on the melamine honeycomb structure,they can only be trapped above the hexagonal pores weakly and can be moved readily under the tip scanning(see the Supporting Information in Ref.32),which is drastically different from the incorporated melem molecules in the Mele-FW structure here.

    Fig.4 Flower-type structure of melem onAu(111)surface

    Only the SS-HBs and HT-HBs of the melem molecules are found in the above four types of assembly structures,indicating their dominance in the melem film over the surface.However,the third type of hydrogen bonding,ASS-HBs as proposed in Fig.1c, appeared rather rarely on the surface despite its principle similarity as the SS-HBs.This type of hydrogen bonding was not even observed in the melem assemblies on Ag(111)25.Here in our experiments,we frequently observed some domain boundaries of the Mele-HC structure consisting of close-packed melem molecules, as shown in Fig.5(a-c).As revealed by the high-resolution STM image together with the molecular model,these antiphase domain boundaries are constructed based on the combination of both ASSHBs and SS-HBs.Interestingly,upon annealing the film to about 100 °C,they gradually transformed into a series of squashed hexagonal(SH)pores incorporated into the Mele-HC domains,as shown in Fig.5d.The high resolution STM image in Fig.5e clearly evidences that the melem molecules around these SH pores were also composed of ASS-HBs mixed with SS-HBs,as shown by the model in Fig.5f.Judging from the number of the molecules,we propose that the transformation of the anti-phase domain boundary to the SH pores is accompanied with desorption of some melem molecules.Its occurrence indicates that substantial strains may exist in these close-packed regions consisting of both SS-HBs and ASS-HBs,which may be ascribed to the crowded end-group arrangements as shown in Fig.5c.

    In contrast to that in the antiphase domain boundary,the ASSHBs in the stripes of SH pores seem to be readily accommodated with the common Mele-HC structure,as shown by the model in Fig.5f.But a hard transition from ASS-HBs to SS-HBs at the end of a finite stripe of SH cannot be avoided,which will inevitably lead to the instability of the existing structure.Therefore,upon the stimulation of external forces,the SH pores is anticipated to transform back to normal hexagonal pores composed of only SSHBs.In fact,this is exactly what we observed in our experiments. As shown in Fig.6a,we found a stripe consisting of 5 SH pores. These SH pores were rather stable under normal scanning conditions such as 1.7 V and 100 pA.However,once we switched to higher minus biases,for instance -2.7 V in Fig.6b,part of the SH pores would be transformed back to the normal hexagonal ones, indicating the transformation of ASS-HBs to SS-HBs,as evidenced by the subsequent image taken at normal scanning condition.Keep scanning with such higher minus biases can finally transform all of the SH pores(data not shown).We also tried other biases,but normally a bias smaller than -2.5 V was required to turn on the transition,thus defining a threshold for such a process. As a comparison,large positive biases were found incapable ofdoing so until very high values.When the bias got above the work function of the surface,field emission started and the molecular film was drastically destructed by other mechanisms such as electron beam bombardment.Therefore,the hydrogen bonding transition displays an electron hole-mediated characteristic.And the observed phenomenon may provide a manipulation strategy of porous nanostructures constructed based on hydrogen bonds, which may find new applications in host-guest chemistry.

    Fig.5 STM images of the ASS-HBs of melem on Au(111)surface

    Fig.6 Transition of the ASS-HBs to SS-HBs under tip manipulation

    4 Conclusions

    In conclusion,we have studied the self-assemblies of both melamine and melem on Au(111)with low temperature STM.In contrast to the only one type of hydrogen bonding between melamine,melem can form up to three types of intermolecular hydrogen bonds.As a result,melamine was found to form two types of assembled structures whereas melem form six.And the combination of the hydrogen bonding patterns in various assemblies can be clearly identified with our high resolution STM. Their distributions were found closely relied on the molecular coverage on the surface.Furthermore,we found that different types of hydrogen bonding can be transformed upon the tip manipulation,with which the constructed assembly structure can be tuned.These findings should provide basic understanding of the adsorption of cyanamide oligmors on metal surfaces,and pave aroute forin situsynthesis of nitrogen-doped two-dimensional carbon materials such as g-C3N4.

    (1)Kudernac,T.;Lei,S.;Elemans,J.A.;De Feyter,S.Chem.Soc. Rev.2009,38,402.doi:10.1039/b708902n

    (2)Bonifazi,D.;Mohnani,S.;Llanes-Pallas,A.Chem.-Eur.J.2009,15,7004.doi:10.1002/chem.200900900

    (3)Furukawa,S.;Uji-i,H.;Tahara,K.;Ichikawa,T.;Sonoda,M.; De Schryver,F.C.;Tobe,Y.;De Feyter,S.J.Am.Chem.Soc.2006,128,3502.doi:10.1021/ja0655441

    (4)Lei,S.;Tahara,K.;Feng,X.;Furukawa,S.;De Schryver,F.C.; Müllen,K.;Tobe,Y.;De Feyter,S.J.Am.Chem.Soc.2008,130,7119.doi:10.1021/ja800801e

    (5)Chen,T.;Yan,H.J.;Pan,G.B.;Wan,L.J.;Wang,Q.Q.;Wang, M.X.Chem.J.Chin.Univ.2008,29,113.[陳 婷,嚴(yán)會(huì)娟,潘革波,萬(wàn)立駿,王其強(qiáng),王梅祥.高等學(xué)校化學(xué)學(xué)報(bào),2008,29, 113.]

    (6)Madueno,R.;R?is?nen,M.T.;Silien,C.;Buck,M.Nature2008,454,618.doi:10.1038/nature07096

    (7)Theobald,J.A.;Oxtoby,N.S.;Phillips,M.A.;Champness,N. R.;Beton,P.H.Nature2003,424,1029.doi:10.1038/ nature01915

    (8)Ye,Y.;Sun,W.;Wang,Y.;Shao,X.;Xu,X.;Cheng,F.;Li,J.; Wu,K.J.Phys.Chem.C2007,111,10138.doi:10.1021/ jp072726o

    (9)Langner,A.;Tait,S.L.;Lin,N.;Chandrasekar,R.;Meded,V.; Fink,K.;Ruben,M.;Kern,K.Angew.Chem.2012,124,4403. doi:10.1002/anie.201108530

    (10)Lin,T.;Shang,X.S.;Adisoejoso,J.;Liu,P.N.;Lin,N.J.Am. Chem.Soc.2013,135,3576.doi:10.1021/ja311890n

    (11)Zheng,Q.N.;Liu,X.H.;Chen,T.;Yan,H.J.;Cook,T.;Wang, D.;Stang,P.J.;Wan,L.J.J.Am.Chem.Soc.2015,137,6128. doi:10.1021/jacs.5b02206

    (12)Shang,J.;Wang,Y.;Chen,M.;Dai,J.;Zhou,X.;Kuttner,J.; Hilt,G.;Shao,X.;Gottfried,J.M.;Wu,K.Nat.Chem.2015,7, 389.doi:10.1038/nchem.2211

    (13)Grill,L.;Dyer,M.;Lafferentz,L.;Persson,M.;Peters,M.V.; Hecht,S.Nat.Nano2007,2,687.doi:10.1038/nnano.2007.346

    (14)Yang,B.;Bj?rk,J.;Lin,H.;Zhang,X.;Zhang,H.;Li,Y.;Fan, J.;Li,Q.;Chi,L.J.Am.Chem.Soc.2015,137,490410. doi:1021/jacs.5b00774

    (15)Silly,F.;Shaw,A.Q.;Castell,M.R.;Briggs,G.A.D.;Mura, M.;Martsinovich,N.;Kantorovich,L.J.Phys.Chem.C2008,112,11476.doi:10.1021/jp8033769

    (16)Schmitz,C.H.;Ikonomov,J.;Sokolowski,M.Surf.Sci.2011,605,1.doi:10.1016/j.susc.2010.09.006

    (17)Swarbrick,J.;Rogers,B.;Champness,N.;Beton,P.J.Phys. Chem.B2006,110,6110.doi:10.1021/jp056517k

    (18)Bombis,C.;Kalashnyk,N.;Xu,W.;L?gsgaard,E.; Besenbacher,F.;Linderoth,T.R.Small2009,5,2177. doi:10.1002/smll.200900301

    (19)Zhang,H.M.;Xie,Z.X.;Long,L.S.;Zhong,H.P.;Zhao,W.; Mao,B.W.;Xu,X.;Zheng,L.S.J.Phys.Chem.C2008,112, 4209.doi:10.1021/jp076916a

    (20)Staniec,P.;Perdigao,L.;Rogers,B.;Champness,N.;Beton,P.J.Phys.Chem.C2007,111,886.doi:10.1021/jp064964+

    (21)Perdig?o,L.M.;Champness,N.R.;Beton,P.H.Chem. Commun.2006,538.doi:10.1039/B514389F

    (22)Xu,W.;Dong,M.;Gersen,H.;Rauls,E.;Vázquez-Campos,S.; Crego-Calama,M.;Reinhoudt,D.N.;Stensgaard,I.; Laegsgaard,E.;Linderoth,T.R.Small2007,3,854. doi:10.1002/smll.200600407

    (23)Zhang,X.;Chen,T.;Chen,Q.;Wang,L.;Wan,L.J.Phys. Chem.Chem.Phys.2009,11,7708.doi:10.1039/b907557g

    (24)Jensen,S.;Greenwood,J.;Früchtl,H.A.;Baddeley,C.J.J. Phys.Chem.C2011,115,8630.doi:10.1021/jp111237q

    (25)Eichhorn,J.;Schl?gl,S.;Lotsch,B.V.;Schnick,W.;Heckl,W. M.;Lackinger,M.CrystEngComm2011,13,5559.doi:10.1039/ c1ce05342f

    (26)Uemura,S.;Aono,M.;Komatsu,T.;Kunitake,M.Langmuir2010,27,1336.doi:10.1021/la103948n

    (27)Uemura,S.;Aono,M.;Sakata,K.;Komatsu,T.;Kunitake,M.J. Phys.Chem.C2013,117,24815.doi:10.1021/jp406810c

    (28)Uemura,S.;Sakata,K.;Aono,M.;Nakamura,Y.;Kunitake,M.Front.Chem.Sci.Eng.2016,10,294.doi:10.1007/s11705-016-1564-4

    (29)Zheng,Y.;Lin,L.;Wang,B.;Wang,X.Angew.Chem.Int.Ed.2015,54,12868.doi:10.1002/anie.201501788

    (30)Wang,X.;Maeda,K.;Thomas,A.;Takanabe,K.;Xin,G.; Carlsson,J.M.;Domen,K.;Antonietti,M.Nat.Mater.2009,8, 76.doi:10.1038/nmat2317

    (31)Zhang,X.;Wang,H.;Wang,H.;Zhang,Q.;Xie,J.;Tian,Y.; Wang,J.;Xie,Y.Adv.Mater.2014,26,4438.doi:10.1002/ adma.201400111

    (32)Wang,L.;Chen,Q.;Shi,H.;Liu,H.;Ren,X.;Wang,B.;Wu, K.;Shao,X.Phys.Chem.Chem.Phys.2016,18,2324. doi:10.1039/c5cp0 5976c

    (33)Mura,M.;Silly,F.;Burlakov,V.;Castell,M.R.;Briggs,G.A. D.;Kantorovich,L.N.Phys.Rev.Lett.2012,108,176103. doi:10.1103/PhysRevLett.108.176103

    Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111)Surface

    WANG Li1SHI He-Xia1WANG Wen-Yuan1SHI Hong1SHAO Xiang1,2,*
    (1Department of Chemical Physics,CAS Key Laboratory of Urban Pollutant Conversion,University of Science and Technology of China,Hefei 230026,P.R.China;2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China,Hefei 230026,P.R.China)

    Melamine and melem molecules are widely used precursors for synthesizing graphitic carbon nitride (g-C3N4),the latter also a hot two-dimensional material with photocatalytic applications.The molecular structures of both are respectively identical to the repeating units of two distinct g-C3N4phases.In this work,the adsorption and self-assembly of melamine and melem on an Au(111)surface were investigated with low-temperature scanning tunneling microscopy(STM).Particularly,the patterns of hydrogen bonds(HBs)in their assemblies were identified and compared.It was found that melamine can only form one type of HB and two kinds of assembly structures,whereas melem can form three types of HBs and six kinds of assembly structures in total. Moreover,the involved HBs can be transformed by tip manipulation.These findings may provide a new strategy for tuning the functionality of surface self-assemblies by manipulating intermolecular hydrogen bonds.This also paves a route for the in situ synthesis of g-C3N4on metallic surfaces and subsequent investigations of their physicochemical properties.

    Melamine;Melem;Au(111);Scanning tunneling microscopy;Hydrogen bond;Selfassembly

    O647

    10.3866/PKU.WHXB201611033

    Received:October 28,2016;Revised:November 2,2016;Published online:November 3,2016.

    *Corresponding author.Email:shaox@ustc.edu.cn;Tel:+86-551-63600765.

    The project was supported by the National Natural Science Foundation of China(91227117,21333001,91545128).

    國(guó)家自然科學(xué)基金(91227117,21333001,91545128)資助項(xiàng)目? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    科技前沿三聚氰胺氫鍵
    教材和高考中的氫鍵
    三聚氰胺價(jià)格兩個(gè)月腰斬
    三聚氰胺:上半年走勢(shì)偏弱 下半年能否反彈?
    科技前沿
    軍事文摘(2021年24期)2022-01-11 08:29:02
    三聚氰胺:上半年機(jī)會(huì)大于下半年
    科技前沿
    軍事文摘(2017年16期)2018-01-19 05:09:59
    科技前沿
    科技前沿
    三聚氰胺價(jià)格上躥下跳為哪般
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    91成人精品电影| 你懂的网址亚洲精品在线观看| 亚洲人成网站在线观看播放| 免费av中文字幕在线| 欧美精品一区二区大全| 欧美日韩综合久久久久久| 99国产精品免费福利视频| 国产欧美日韩一区二区三区在线 | 曰老女人黄片| 五月天丁香电影| av女优亚洲男人天堂| av在线播放精品| 极品人妻少妇av视频| 国产黄色免费在线视频| 边亲边吃奶的免费视频| 亚洲av二区三区四区| 日韩成人伦理影院| 99久久精品一区二区三区| av视频免费观看在线观看| 在线观看一区二区三区激情| 亚洲av综合色区一区| 亚洲五月色婷婷综合| 日本欧美国产在线视频| 日日摸夜夜添夜夜爱| 一二三四中文在线观看免费高清| 一级a做视频免费观看| 国产成人免费观看mmmm| 七月丁香在线播放| 搡女人真爽免费视频火全软件| 亚洲精品亚洲一区二区| 日本-黄色视频高清免费观看| 久久精品国产亚洲av涩爱| 人人妻人人爽人人添夜夜欢视频| 日韩精品免费视频一区二区三区 | 国产精品熟女久久久久浪| 国产精品久久久久成人av| 热99国产精品久久久久久7| 亚洲欧美清纯卡通| 亚洲精品av麻豆狂野| 国产精品久久久久久av不卡| 丰满少妇做爰视频| 亚洲精品国产av成人精品| 久久国内精品自在自线图片| 人妻系列 视频| 免费看av在线观看网站| 欧美成人午夜免费资源| 欧美成人午夜免费资源| 精品亚洲乱码少妇综合久久| 午夜福利视频在线观看免费| 亚洲第一av免费看| 国产日韩欧美在线精品| 亚洲第一av免费看| av视频免费观看在线观看| 赤兔流量卡办理| 亚洲国产精品999| 99国产精品免费福利视频| 热99久久久久精品小说推荐| 国产精品国产av在线观看| 99国产精品免费福利视频| 高清视频免费观看一区二区| 99国产精品免费福利视频| 夫妻性生交免费视频一级片| 大陆偷拍与自拍| av.在线天堂| 亚洲精品乱码久久久久久按摩| 蜜臀久久99精品久久宅男| 亚洲国产av影院在线观看| 大码成人一级视频| 男女高潮啪啪啪动态图| 国国产精品蜜臀av免费| 国产亚洲最大av| 久久韩国三级中文字幕| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 亚洲精品成人av观看孕妇| 水蜜桃什么品种好| 蜜桃国产av成人99| 国产一级毛片在线| 亚洲不卡免费看| 涩涩av久久男人的天堂| 中文字幕人妻熟人妻熟丝袜美| 又黄又爽又刺激的免费视频.| 中文字幕久久专区| 免费看光身美女| 大话2 男鬼变身卡| 一区二区三区精品91| 最近最新中文字幕免费大全7| 男女国产视频网站| 精品国产国语对白av| a级毛片黄视频| 国产精品一区www在线观看| 如何舔出高潮| 91成人精品电影| 日韩视频在线欧美| 少妇被粗大的猛进出69影院 | 99久久精品一区二区三区| 在线观看免费视频网站a站| 亚洲在久久综合| 中文字幕人妻丝袜制服| 这个男人来自地球电影免费观看 | 国产极品天堂在线| 欧美日韩视频精品一区| av福利片在线| 成人国产av品久久久| 人人澡人人妻人| 久久久久久久精品精品| av电影中文网址| 简卡轻食公司| 欧美3d第一页| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久丰满| 国产成人午夜福利电影在线观看| 国产午夜精品一二区理论片| 国产探花极品一区二区| 精品酒店卫生间| 亚洲中文av在线| 久久国产精品大桥未久av| 免费高清在线观看视频在线观看| 日本色播在线视频| 国产一区二区在线观看av| av免费在线看不卡| 一级a做视频免费观看| 久久影院123| av卡一久久| a 毛片基地| 日韩一区二区三区影片| 精品亚洲乱码少妇综合久久| 国产精品麻豆人妻色哟哟久久| 国产午夜精品一二区理论片| 精品少妇黑人巨大在线播放| 大陆偷拍与自拍| 日本-黄色视频高清免费观看| 国产精品国产三级专区第一集| 成人手机av| 日韩三级伦理在线观看| 九色成人免费人妻av| 日本av手机在线免费观看| 精品国产国语对白av| 久久精品国产亚洲网站| 新久久久久国产一级毛片| 精品一品国产午夜福利视频| 国产在线视频一区二区| 精品国产露脸久久av麻豆| 这个男人来自地球电影免费观看 | 在现免费观看毛片| 精品国产露脸久久av麻豆| 色婷婷av一区二区三区视频| 国产成人精品一,二区| 国产精品秋霞免费鲁丝片| 亚洲精品乱久久久久久| 亚洲欧洲日产国产| av在线播放精品| 五月天丁香电影| 一级黄片播放器| 国产欧美日韩一区二区三区在线 | 久久精品国产自在天天线| 亚洲av男天堂| 人人澡人人妻人| 一区二区三区免费毛片| 性色avwww在线观看| 色婷婷久久久亚洲欧美| 久久久精品区二区三区| 乱人伦中国视频| 97超碰精品成人国产| 大话2 男鬼变身卡| 日本午夜av视频| 国产男女内射视频| 国产高清有码在线观看视频| 国产亚洲精品久久久com| 中文字幕亚洲精品专区| 久久狼人影院| 国产成人一区二区在线| 亚洲欧美一区二区三区黑人 | 婷婷成人精品国产| 久久久a久久爽久久v久久| 一个人看视频在线观看www免费| 国产av码专区亚洲av| 欧美精品一区二区大全| 精品久久久久久电影网| 日韩强制内射视频| 国产成人免费无遮挡视频| 色婷婷久久久亚洲欧美| 三上悠亚av全集在线观看| 老女人水多毛片| 最新中文字幕久久久久| 制服诱惑二区| 精品久久蜜臀av无| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区国产| 女的被弄到高潮叫床怎么办| 久热这里只有精品99| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 最黄视频免费看| 中文精品一卡2卡3卡4更新| 在线观看美女被高潮喷水网站| 大香蕉97超碰在线| 蜜桃国产av成人99| 秋霞伦理黄片| 色94色欧美一区二区| 精品国产露脸久久av麻豆| av在线观看视频网站免费| 亚洲国产av新网站| 丰满乱子伦码专区| 最后的刺客免费高清国语| 亚洲国产成人一精品久久久| 99久久精品一区二区三区| 国产免费现黄频在线看| 街头女战士在线观看网站| 少妇的逼好多水| 亚洲国产最新在线播放| 婷婷色av中文字幕| 欧美一级a爱片免费观看看| 国产男女超爽视频在线观看| 纵有疾风起免费观看全集完整版| 最近最新中文字幕免费大全7| 少妇猛男粗大的猛烈进出视频| 久久精品夜色国产| 国产亚洲精品第一综合不卡 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲综合色网址| 久久99热这里只频精品6学生| 亚洲精品国产av成人精品| 亚洲精品456在线播放app| 国产av一区二区精品久久| 国产免费现黄频在线看| 日本与韩国留学比较| 精品久久久久久久久av| 国产免费一区二区三区四区乱码| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 亚洲精品亚洲一区二区| 欧美精品国产亚洲| 亚洲国产最新在线播放| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 99国产综合亚洲精品| 少妇丰满av| 国产片内射在线| 欧美 亚洲 国产 日韩一| 精品亚洲乱码少妇综合久久| 国产在线视频一区二区| 国产精品无大码| 国产成人av激情在线播放 | 成年女人在线观看亚洲视频| 精品熟女少妇av免费看| 日韩制服骚丝袜av| 亚洲色图综合在线观看| 啦啦啦啦在线视频资源| kizo精华| 伊人亚洲综合成人网| 亚洲精品乱久久久久久| 久久午夜福利片| 国产精品蜜桃在线观看| 熟女av电影| 亚洲av中文av极速乱| 亚洲av福利一区| 中文字幕精品免费在线观看视频 | 黑人巨大精品欧美一区二区蜜桃 | 免费大片黄手机在线观看| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av天美| 不卡视频在线观看欧美| 日本与韩国留学比较| 伦理电影免费视频| 热99国产精品久久久久久7| 久久久国产欧美日韩av| 成人亚洲精品一区在线观看| 国产一区二区三区av在线| 成人18禁高潮啪啪吃奶动态图 | 夜夜爽夜夜爽视频| 亚洲成色77777| 久久精品久久久久久噜噜老黄| 天美传媒精品一区二区| 久久人人爽人人片av| 久久精品熟女亚洲av麻豆精品| 日本-黄色视频高清免费观看| 女人精品久久久久毛片| 久久99热这里只频精品6学生| 国产视频内射| 欧美变态另类bdsm刘玥| 久久人妻熟女aⅴ| 亚洲国产精品专区欧美| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线 | 丰满乱子伦码专区| 简卡轻食公司| 久热这里只有精品99| 大话2 男鬼变身卡| 国产欧美另类精品又又久久亚洲欧美| av电影中文网址| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 精品国产一区二区久久| 国产av国产精品国产| 18在线观看网站| 中文精品一卡2卡3卡4更新| 毛片一级片免费看久久久久| 欧美成人精品欧美一级黄| 九草在线视频观看| 制服诱惑二区| 久久青草综合色| 中文字幕制服av| 日韩,欧美,国产一区二区三区| 欧美亚洲 丝袜 人妻 在线| 男女高潮啪啪啪动态图| 51国产日韩欧美| 青春草视频在线免费观看| 美女大奶头黄色视频| 五月玫瑰六月丁香| 亚洲国产色片| 在线观看免费视频网站a站| 美女大奶头黄色视频| 亚洲精品国产色婷婷电影| 欧美3d第一页| 国产成人精品福利久久| 精品国产乱码久久久久久小说| 在线观看免费高清a一片| 女的被弄到高潮叫床怎么办| 亚洲国产日韩一区二区| 国产极品粉嫩免费观看在线 | 亚洲国产成人一精品久久久| 欧美激情极品国产一区二区三区 | 最黄视频免费看| 国产成人免费无遮挡视频| 丝袜喷水一区| 亚洲国产精品一区二区三区在线| 大码成人一级视频| 丝袜脚勾引网站| 久久久欧美国产精品| 91国产中文字幕| 久久影院123| 自线自在国产av| 亚洲人成77777在线视频| 97超视频在线观看视频| 99久久综合免费| av黄色大香蕉| 久久99一区二区三区| 欧美另类一区| 一边摸一边做爽爽视频免费| 亚洲国产精品999| 国产熟女午夜一区二区三区 | 人妻一区二区av| 日本av免费视频播放| xxxhd国产人妻xxx| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲五月色婷婷综合| 看十八女毛片水多多多| 免费不卡的大黄色大毛片视频在线观看| 男人爽女人下面视频在线观看| 国产又色又爽无遮挡免| 只有这里有精品99| 观看美女的网站| 免费黄网站久久成人精品| 高清午夜精品一区二区三区| 午夜激情久久久久久久| 99热全是精品| 日本黄色日本黄色录像| 最新中文字幕久久久久| 最后的刺客免费高清国语| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 国产综合精华液| 国产乱人偷精品视频| 亚洲av国产av综合av卡| 啦啦啦视频在线资源免费观看| 国产成人精品一,二区| 街头女战士在线观看网站| 精品久久久精品久久久| 久久久精品免费免费高清| 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 丁香六月天网| 亚洲精品aⅴ在线观看| 国产成人av激情在线播放 | 高清视频免费观看一区二区| 亚洲美女视频黄频| 好男人视频免费观看在线| 在线观看一区二区三区激情| 国产永久视频网站| 中国国产av一级| 高清在线视频一区二区三区| 三级国产精品欧美在线观看| 亚洲情色 制服丝袜| 国产欧美日韩一区二区三区在线 | 夫妻午夜视频| 免费看av在线观看网站| 99国产精品免费福利视频| 十分钟在线观看高清视频www| 在线 av 中文字幕| 伦精品一区二区三区| 日日撸夜夜添| 亚洲国产色片| 国产毛片在线视频| 亚洲美女视频黄频| 国产精品一区www在线观看| 免费大片黄手机在线观看| 国产成人精品婷婷| 妹子高潮喷水视频| 欧美日韩综合久久久久久| 精品一区在线观看国产| 国产精品久久久久久精品古装| 99国产综合亚洲精品| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 满18在线观看网站| 综合色丁香网| videos熟女内射| freevideosex欧美| 丝袜美足系列| 久久久欧美国产精品| 亚洲美女视频黄频| 国产精品熟女久久久久浪| 麻豆成人av视频| 97超视频在线观看视频| 久久久久国产精品人妻一区二区| 欧美激情极品国产一区二区三区 | 亚洲国产欧美在线一区| 另类精品久久| 精品国产一区二区三区久久久樱花| 久久ye,这里只有精品| 亚洲av在线观看美女高潮| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 丁香六月天网| 在线观看免费日韩欧美大片 | 国产精品一区二区在线观看99| 多毛熟女@视频| 中文字幕人妻熟人妻熟丝袜美| 日本与韩国留学比较| 老司机影院毛片| 一级a做视频免费观看| 嘟嘟电影网在线观看| 欧美精品人与动牲交sv欧美| videossex国产| 日本黄色日本黄色录像| 精品国产乱码久久久久久小说| 51国产日韩欧美| 在线天堂最新版资源| 久久韩国三级中文字幕| 国产不卡av网站在线观看| 成人国产麻豆网| 欧美精品亚洲一区二区| 夫妻性生交免费视频一级片| 日本爱情动作片www.在线观看| 国产免费又黄又爽又色| 91午夜精品亚洲一区二区三区| 一区二区三区四区激情视频| 久久狼人影院| 少妇人妻 视频| 啦啦啦啦在线视频资源| 插逼视频在线观看| 亚洲情色 制服丝袜| 男人添女人高潮全过程视频| 哪个播放器可以免费观看大片| 久久久久网色| 色94色欧美一区二区| 国产男女内射视频| 丁香六月天网| av.在线天堂| 人体艺术视频欧美日本| 久久久久人妻精品一区果冻| 国产成人精品一,二区| 99热国产这里只有精品6| 久久99热6这里只有精品| 中文天堂在线官网| 国产免费一区二区三区四区乱码| 亚洲无线观看免费| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 国产精品国产三级专区第一集| 色视频在线一区二区三区| 免费人成在线观看视频色| 久久久久久久久大av| 中文字幕免费在线视频6| 最新的欧美精品一区二区| 女性被躁到高潮视频| 美女脱内裤让男人舔精品视频| 亚洲精品av麻豆狂野| 在线播放无遮挡| 欧美精品国产亚洲| 极品少妇高潮喷水抽搐| 婷婷色综合大香蕉| 最近的中文字幕免费完整| 国产有黄有色有爽视频| 精品国产国语对白av| 久久久久久久久久久免费av| 国精品久久久久久国模美| 国产精品不卡视频一区二区| 国产亚洲午夜精品一区二区久久| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 三上悠亚av全集在线观看| 日韩人妻高清精品专区| 日本欧美国产在线视频| 99精国产麻豆久久婷婷| 少妇猛男粗大的猛烈进出视频| 亚洲在久久综合| 99九九线精品视频在线观看视频| 考比视频在线观看| xxx大片免费视频| 久久久久久久久久久丰满| 最黄视频免费看| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 麻豆精品久久久久久蜜桃| a级毛片在线看网站| 成年人午夜在线观看视频| 免费观看在线日韩| 欧美日韩国产mv在线观看视频| 久久久国产精品麻豆| 啦啦啦视频在线资源免费观看| 人妻一区二区av| 9色porny在线观看| 18+在线观看网站| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 国产精品国产三级国产av玫瑰| 精品亚洲乱码少妇综合久久| 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区免费开放| 少妇人妻精品综合一区二区| 91久久精品电影网| 国产精品久久久久成人av| 国产精品久久久久久久电影| 热re99久久国产66热| 岛国毛片在线播放| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 精品一区二区三卡| 日韩三级伦理在线观看| 丁香六月天网| 久久久久久久久大av| 亚洲国产成人一精品久久久| 国产一区二区三区av在线| 国产视频内射| 久久久午夜欧美精品| 九色亚洲精品在线播放| 永久免费av网站大全| 亚洲精品国产av成人精品| www.av在线官网国产| 色视频在线一区二区三区| 免费看不卡的av| 国产亚洲最大av| 热99久久久久精品小说推荐| 精品一区在线观看国产| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 亚洲欧美成人精品一区二区| 久久影院123| 久久久久久久久久成人| 在线观看美女被高潮喷水网站| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡 | 成人毛片60女人毛片免费| 一区二区三区免费毛片| 亚洲成色77777| 一区二区三区乱码不卡18| 国产白丝娇喘喷水9色精品| 国产免费视频播放在线视频| 看免费成人av毛片| av卡一久久| 免费av不卡在线播放| 精品国产国语对白av| 插逼视频在线观看| 日韩免费高清中文字幕av| 一级毛片黄色毛片免费观看视频| 国产亚洲精品久久久com| 永久网站在线| 国产片特级美女逼逼视频| 肉色欧美久久久久久久蜜桃| 在线 av 中文字幕| 久久热精品热| 99热这里只有是精品在线观看| 欧美日韩在线观看h| 丝袜在线中文字幕| 视频区图区小说| 国产日韩欧美视频二区| 久久久午夜欧美精品| 婷婷色综合www| 国产免费福利视频在线观看| 久久久久网色| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲网站| 国产一区二区三区av在线| 亚洲精品456在线播放app| 又大又黄又爽视频免费| 91成人精品电影| 国产精品国产三级国产av玫瑰| 国产成人精品一,二区| 在线观看三级黄色| 97超碰精品成人国产| 狂野欧美激情性xxxx在线观看| 18+在线观看网站| 9色porny在线观看| 国产成人精品福利久久| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 一区二区三区免费毛片| 免费观看av网站的网址| 中文乱码字字幕精品一区二区三区| 22中文网久久字幕| 亚洲精品中文字幕在线视频| 五月伊人婷婷丁香| 老熟女久久久| 亚州av有码| 国产精品国产av在线观看| 久久青草综合色| 五月开心婷婷网| 一区二区三区乱码不卡18|