• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content?

    2021-05-06 08:55:38RuiLi李睿MingShengXu徐明升PengWang汪鵬ChengXinWang王成新ShangDaQu屈尚達KaiJuShi時凱居YeHuiWei魏燁輝XianGangXu徐現(xiàn)剛andZiWuJi冀子武
    Chinese Physics B 2021年4期
    關(guān)鍵詞:李睿王成

    Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鵬), Cheng-Xin Wang(王成新),Shang-Da Qu(屈尚達), Kai-Ju Shi(時凱居), Ye-Hui Wei(魏燁輝),Xian-Gang Xu(徐現(xiàn)剛), and Zi-Wu Ji(冀子武),?

    1School of Microelectronics,Shandong University,Jinan 250100,China

    2Shandong Inspur Huaguang Optoelectronics Co.,Ltd.,Weifang 261061,China

    3State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    Keywords: photoluminescence,carrier localization effect,internal quantum efficiency,growth temperature

    1. Introduction

    Much attention has been paid to white light-emitting diodes (WLEDs) for solid-state lighting applications due to their excellent brightness, low power consumption, long lifetime, and environmental friendliness.[1–3]Generally, white light emission results from the use of phosphor to transform part of emissions of blue LEDs to the yellow–green spectral range. The transformation is related to an energy loss termed Stokes’ loss, which is on the order of 25% and thus restricts the highest attainable phosphor-converted WLED efficiency to much less than 100%;[4,5]however, in principle, one can avoid the loss through the use of phosphor-free monolithic WLEDs, which are integrated by blue, green, and even red long-wavelength InGaN-based LEDs, since the nitride system can cover the entire spectral region of the emitted light from near-ultraviolet to near-infrared by adjusting the composition of InGaN alloy.[6,7]Therefore, InGaN-based LEDs are a promising candidate for realizing the phosphor-free monolithic WLEDs operated at a high efficiency.

    Currently,InGaN/GaN multiple quantum wells(MQWs)-based blue LEDs with low In content have been found to have a high internal quantum efficiency (IQE) of about 90%,[8,9]however, by contrast, the IQE for the InGaN/GaN MQWsbased long-wavelength (e.g., yellow–green) LEDs with high In content is still much lower.[10–12]Several factors are responsible for the deterioration of emission efficiency.First,because of the low InN dissociation temperature, the high-In-content InGaN must be grown at low temperatures:[13]however,unfortunately,besides an increased density of structural defects[14]and incorporation of impurities,[15]the use of a low growth temperature for the InGaN well layers can result in more numerous composition fluctuation-induced point defects[16–18]and a stronger well/barrier lattice mismatch-induced quantumconfined Stark effect(QCSE)in the MQWs on account of the high In content.[19]Nevertheless,it has also been reported that in such InGaN/GaN MQW structures with a high-In-contentinduced compositional fluctuation, the In-rich regions in the InGaN well layers, acting as localization centers with deep potential levels, can restrict the outflow of carriers to nonradiative recombination center around, thus improving the emission efficiencies of the MQW structures.[20,21]In addition,some studies have shown that for a series of InGaN/GaN MQW LEDs with similar structures but different growth conditions, although those members in the set have almost the same In content, their localization effects are different as reported in Refs.[22,23]. These reports show that the emission mechanisms of the InGaN/GaN MQW structures, especially those of the InGaN/GaN MQW structures with lower growthtemperatures used for formation of their InGaN well layers,are diverse,and a comprehensive investigation is thus deemed necessary.

    In the present work, two green InGaN/GaN MQW samples with different growth temperatures of InGaN well layers are grown. To facilitate the incorporation of In into the MQWs and improve the emission efficiency of the MQWs,an underlying superlattice layer is introduced into both samples for releasing the strain in the MQW region.[24–26]The effects of growth temperature on the emission mechanism in such samples are investigated by measuring the dependence of photoluminescence(PL)spectra on temperature and excitation power.

    2. Experiment

    Two green InGaN/GaN MQW samples(S1 and S2)under study were grown on (0001)-oriented sapphire substrates via metal-organic chemical vapor deposition (MOCVD). During epitaxial growth,trimethylgallium(TMGa),ammonia(NH3),trimethylindium (TMIn), and silane (SiH4) were separately used as the precursors of Ga, N, In, and Si. The epitaxial structure for each of both samples includes a GaN buffer layer (25-nm thick), an undoped GaN layer (4-μm thick),an Si-doped n-type GaN layer (3-μm thick), five periods of In0.05Ga0.95N/GaN (1 nm/5 nm) forming a strain relief layer(SRL),and ten periods of InGaN/GaN(3 nm/17 nm)forming the MQW active region, in turn. For better comparison, the growth parameters of the two samples are the same except the growth temperature of InGaN well layers in the active region,which is 745?C for S1 and 730?C for S2.

    Temperature and excitation-power-dependent PL were measured by placing samples on a Cu cold-stage in a closedcycle He cryostat at temperatures ranging from 6 K to 330 K,and a semiconductor laser (405-nm cw) with a spot size of about 200μm and an operating range of 0.001 mW to 75 mW was used as an excitation source. An iHR320 monochromator(Jobin-Yvon) and a thermoelectrically cooled Synapse CCD detector were used to scatter and detect PL signals, respectively.

    3. Results and discussion

    Figure 1 shows the typical 5-mW PL spectra of samples S1 and S2 detected at 6 K and 300 K,respectively, where all PL spectra exhibit one InGaN-related main PL peak at around 2.35 eV.Two weak peaks denoted as 1LO and 2LO at 6 K for both the samples are phonon replicas of the main PL peak. In order to estimate the peak position and linewidth of the main PL peak,the spectra are deconvoluted by multi-peak gaussian fitting.[21]Additionally,it is also found from Fig.1 that comparison between scenarios of samples S1 and S2 shows that the main PL peak of S2 has a lower energy and a slightly larger linewidth at all measured temperatures,and the integrated PL intensity shows a more significant reduction as the temperature increases from 6 K to 300 K.To further investigate the effects of growth temperature of the InGaN well layers on the emission mechanism of the InGaN/GaN MQWs,both the temperature and excitation-power-dependent PL spectra for the two samples will be investigated.

    Fig.1.The 5-mW PL spectra of S1 and S2 at(a)6 K and(b)300 K,with two observed weak shoulder peaks(1LO and 2LO)at 6 K belonging to phonon replicas originating from the main peak, thin dotted lines denoting fitted Gaussion peaks of profile of S1 at 6 K,and empty circles referring to their sum.

    Figure 2 shows the dependence of the PL peak energy and linewidth on excitation power for these two samples measured in a range of 0.001 mW–75 mW at 6 K. As seen from Fig.2, when the excitation power rises from 0.001 mW to about 0.02 mW, the peak energy remains almost unchanged while the linewidth narrows in a monotonic manner for each of the two samples. This behavior can be explained as follows: with the increase of excitation power in the initial range below about 0.02 mW, the increased free carriers in the In-GaN matrix can weaken the QCSE in the MQWs, resulting in an increase in peak energy accompanied by a decrease in linewidth; meanwhile, the increased localized carriers in the localized centers will enhance the carrier scattering effect,which causes the localized carriers to transfer from the highenergy localized centers to the low-energy localized centers by tunneling, resulting in a decrease in peak energy accompanied by a decrease in linewidth.[26–29]That is, the above MQW-related emission processes for both samples should be dominated simultaneously by the carrier scattering effect and the Coulomb screening effect of QCSE in the initial excitation power range. Nevertheless, by comparison, it is found from Fig.2 that the behaviour of the excitation-power-dependent linewidth narrowing is more significant for S2 than for S1,indicating that both the carrier scattering effect and the Coulomb screening effect in the process should be stronger for S2 than for S1. Next, when the excitation power further increases above about 0.02 mW,the peak energy values for both samples increase monotonically up to 75 mW,but the difference is that the linewidth of S1 significantly narrows below 10 mW due to the Coulomb screening effect, and then markedly broadens because of the filling effect of the high-energy localized states;in contrast,the linewidth of S2 slightly broadens below 0.1 mW due to the filling effect of the low-energy localized states,and then significantly narrows because of the more significant Coulomb screening effect.

    Fig.2. Excitation-power-dependent peak energy and full-width at halfmaximum(FWHM)for(a)S1 and(b)S2 measured at 6 K.

    The above results obtained from Figs. 1 and 2 suggest that S2 should have a higher In content in the MQW than S1 due to the lower growth temperature, and thus causing a more significant component fluctuation-induced potential fluctuation and a stronger well/barrier lattice mismatch-induced QCSE for S2,which eventually results in the aforementioned stronger excitation-power-dependent carrier scattering effect and Coulomb screening effect(Fig.2),respectively.

    Figure 3 shows the excitation-power-dependent PL peak energy and linewidth of the two samples in a range of 0.001 mW–75 mW at 300 K. With the excitation power increasing, the PL peak energy and linewidth for each of the two samples exhibit an excitation-power-dependent approximately “V-shape” (decreasing-increasing) and an approximately “N-shape” (broadening-narrowing-broadening), respectively. These behaviors are often observed in similar InGaN/GaN-based structures,[21,27]and can be explained as follows. Under the 300-K high temperature measuring conditions, the defect-related non-radiative centers are thermally activated,with excitation power increasing in the initial excitation power range below a critical value(Pc),the non-radiative recombination dominates the emission process in the MQW,thus leading the peak energy to decrease and the linewidth to broaden as shown in Fig.3. Here,Pcis about 0.05 mW for S1 and about 0.2 mW for S2. In the case for the excitation power higher than Pc, as an increasing excitation power makes the non-radiative centers saturated,the Coulomb screening of the QCSE followed by the band-filling of high-energy localized states dominates the emission process of the MQWs for both samples. Moreover, it can also be seen from Fig.3 that the excitation-power-dependent behaviors of the peak energy and linewidth in the initial non-radiative recombination process and in the subsequent Coulomb screening process, are more significant for S2 than for S1. These results,together with the larger Pc(0.2 mW)of S2 than that of S1(0.05 mW)mentioned above,indicate that S2 should have more non-radiative centers and stronger QCSE in the MQW than S1,which is consistent with those obtained from Figs.1 and 2.

    Fig.3. Excitation-power-dependent peak energy and FWHM for(a)S1 and(b)S2 measured at 300 K.

    To examine and compare the carrier localization effects of the two MQW structures, figure 4 shows the curves of peak energy shift versus temperature for these two samples at 0.005 mW and 75 mW, respectively. At 0.005 mW(see Fig.4(a)), the peak energy of sample S1 exhibits an“S-shaped” (decreasing-increasing-decreasing) temperaturedependent behavior, while that of S2 demonstrates an approximately“V-shaped”(decreasing-increasing-remaining almost constant) relationship. These behaviors are often observed in similar InGaN/GaN-based structures, and ascribed to the potential fluctuation and localized nature of carrier recombination caused by compositional fluctuation in the In-GaN well layers.[19,21,30–33]However, these behaviors shown in Fig.4(a) also indicate that S2 has a stronger carrier localization effect than S1,since the carrier thermalization process following what is predicted by Varshni’s equation in the hightemperature range as observed in sample S1, is not seen in sample S2.[34,35]

    Fig.4. Temperature-dependent peak energy shift for S1 and S2 measured at(a)0.005 mW and(b)75 mW.

    Furthermore, as the excitation power increases from 0.005 mW to 75 mW,it is found that both the“S-shaped”behavior for S1 and the “V-shaped” behavior for S2 as shown in Fig.4(a) evolve into an inverted “V-shaped” (increasingdecreasing)relationship(Fig.4(b))due to the carrier localization effect decreasing markedly.[31,36]Nevertheless,as a comparison, one can see from Fig.4(b) that the critical temperature corresponding to the maximum of the peak energy shift,is greater(160 K)for S2 than for S1(140 K);also, the depth of the localized states, which is estimated from the discrepancy between the curve of the peak energy shift versus temperature and the Varshni’s curve at low temperatures,[6,26]is greater(~32.8 meV)for S2 than for S1(~24.2 meV).These results indicate that S2 has a stronger carrier localization effect than S1, which is in good agreement with the aforementioned result. Moreover, it is also found from Figs. 1–4 that S2 has a stronger localization effect and QCSE than S1, but its linewidth is only slightly larger. The reason is not clear. It may be because S2 has a better homogeneity in the depth of the localized state than S1,[36]and this partially compensates for its stronger QCSE-induced linewidth broadening.

    Fig.5. Excitation-power-dependent IQE for samples S1 and S2.

    To explore the influence mechanism of the well layer growth temperature on recombination efficiency, the IQE,which is defined as the ratio of the PL efficiency at 300 K to the maximum PL efficiency at 6 K,is plotted as a function of excitation power for both S1 and S2(Fig.5). Here,the PL efficiency is defined as the integrated PL intensity divided by the corresponding excitation power density,and the maximum PL efficiency value at 6 K is assumed to be nearly 100% in the present study.[37,38]With the excitation power increasing from 0.005 mW to 75 mW, the IQE value of S1 markedly increases below 10 mW followed by relatively slowly increasing up to 75 mW, implying that the growing of photogenerated carriers can gradually saturate those non-radiative recombination centers thermally activated at 300 K, and this results in the carrier recombination mechanism in the MQWs gradually evolving from one of non-radiative recombination to radiative recombination;[31]in contrast, however, the IQE value of S2 first increases slightly below about 0.02 mW,then decreases slightly until about 0.2 mW, and finally increases markedly up to 75 mW. The excitation-power-dependent increase of the IQE value of S2 both in the initial excitation power range (<0.02 mW) and in the final excitation power range (>0.2 mW) is believed to be related to the dominant non-radiative recombination,similar to the description for S1 in Fig.5, but the excitation-power-dependent decrease of the IQE value of S2 in the intermediate excitation power range of 0.02 mW–0.2 mW, may correspond to the marked weakening of carrier localization effect. The explanations are also supported by the experimental fact that compared with S1,S2 exhibits a high IQE in the initial excitation power range below about 0.05 mW,which may be due to the stronger carrier localization effect as mentioned above,and a lower IQE in the high excitation power range above about 0.05 mW may mainly be because of the presence of more numerous defect-related nonradiative centers as confirmed in Fig.3. Moreover, the claim that there is a larger number of non-radiative centers in S2 than in S1, is also consistent with the experimental result that in contrast to S1,S2 does not exhibit excitation-power-dependent saturation trend of the IQE even in the higher excitation power range above 10 mW(Fig.5).

    4. Conclusions

    Excitation-power-dependent and temperature-dependent PL spectra of two different green InGaN/GaN MQW samples S1 and S2, in which InGaN well layers are separately deposited at a higher temperature of (745?C) for S1 and a lower temperature (730?C) for S2, are investigated. When the excitation power increases in an initial excitation power range below about 0.02 mW at 6 K, the peak energy remains almost unchanged while the linewidth narrows monotonically for both the samples S1 and S2, but the behavior of the excitation-power-dependent linewidth narrowing is more significant for S2 than for S1. The behaviors indicate that in the initial excitation power range, the emission processes of the MQWs for both the samples are dominated simultaneously by the carrier scattering effect and Coulomb screening effect, but both the scattering effect and the screening effect in the process are stronger for S2 than for S1; however,when the excitation power rises in the highest excitation power range above about 10 mW, the peak energy increases monotonically for both the samples, but the peak linewidth markedly broadens for S1 and significantly narrows for S2,indicating that the excitation-power-dependent Coulomb screening effect is stronger for S2 than for S1 in the highest excitation power range. The above results indicate that S2 has a higher amount of In content in the MQWs than S1 due to the lower growth temperature, and this results in the more significant compositional fluctuation-induced potential fluctuation and the stronger well/barrier lattice mismatch-induced QCSE. This explanation is also supported by the measurements of the excitation-power-dependent PL peak energy and linewidth at 300 K, the temperature-dependent peak energy,and the excitation-power-dependent IQE.

    猜你喜歡
    李睿王成
    美麗的柳樹姑娘
    Dynamics of magnetic microbubble transport in blood vessels
    Low-Velocity Impact Response of Stitched Multi-layer Foam Sandwich Composites
    基于ADAMS的洗衣機減速器多體動力學(xué)仿真
    冬天的蟲子去哪兒了
    Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
    奇妙的大自然
    只往壞處想
    GLOBAL WEAK SOLUTIONS TO A GENERALIZED BENJAMIN-BONA-MAHONY-BURGERS EQUATION?
    春節(jié)的“魚”
    亚洲无线在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美午夜高清在线| 久久久久久人人人人人| 9191精品国产免费久久| 成人三级做爰电影| 午夜成年电影在线免费观看| 国产麻豆成人av免费视频| 亚洲精品中文字幕一二三四区| 久久午夜综合久久蜜桃| 精品欧美国产一区二区三| 99国产精品一区二区蜜桃av| 国产av一区二区精品久久| 2021天堂中文幕一二区在线观| 好男人电影高清在线观看| 精品午夜福利视频在线观看一区| av片东京热男人的天堂| 色播亚洲综合网| 国产精品久久久人人做人人爽| 久久精品aⅴ一区二区三区四区| 两个人的视频大全免费| 国产黄片美女视频| 99久久99久久久精品蜜桃| 日本三级黄在线观看| 亚洲国产精品久久男人天堂| 成人国语在线视频| 成人三级黄色视频| 最好的美女福利视频网| 极品教师在线免费播放| 久久中文字幕人妻熟女| 国产精品久久视频播放| 国产麻豆成人av免费视频| 亚洲欧洲精品一区二区精品久久久| 黑人操中国人逼视频| 国产精品久久久久久久电影 | 三级毛片av免费| 亚洲avbb在线观看| 国产亚洲精品一区二区www| 亚洲专区国产一区二区| 国内揄拍国产精品人妻在线| 免费看美女性在线毛片视频| 国产欧美日韩一区二区精品| 久久国产精品人妻蜜桃| 国产黄片美女视频| 一区福利在线观看| 日本精品一区二区三区蜜桃| 久久天躁狠狠躁夜夜2o2o| 桃色一区二区三区在线观看| 亚洲av片天天在线观看| 精品国产超薄肉色丝袜足j| 欧美av亚洲av综合av国产av| 午夜福利免费观看在线| 久9热在线精品视频| 亚洲成a人片在线一区二区| 非洲黑人性xxxx精品又粗又长| 日本熟妇午夜| 中文字幕最新亚洲高清| 中出人妻视频一区二区| a在线观看视频网站| 大型av网站在线播放| 亚洲国产欧美人成| 免费高清视频大片| 香蕉av资源在线| 亚洲成人中文字幕在线播放| 欧美日本亚洲视频在线播放| 男人舔奶头视频| 老汉色∧v一级毛片| 亚洲自偷自拍图片 自拍| 99国产精品一区二区三区| 久久人妻av系列| 国产又黄又爽又无遮挡在线| 亚洲精品av麻豆狂野| 国产精品电影一区二区三区| 精品高清国产在线一区| 窝窝影院91人妻| 老司机在亚洲福利影院| 巨乳人妻的诱惑在线观看| 男女床上黄色一级片免费看| a在线观看视频网站| 99热这里只有精品一区 | 亚洲七黄色美女视频| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 久久久久久人人人人人| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品久久久久久毛片777| 成人18禁高潮啪啪吃奶动态图| 超碰成人久久| 成人三级黄色视频| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合久久99| 色综合婷婷激情| 久久精品91蜜桃| 在线永久观看黄色视频| 国产精品精品国产色婷婷| 一级作爱视频免费观看| 丁香六月欧美| 天天躁夜夜躁狠狠躁躁| 舔av片在线| 午夜精品久久久久久毛片777| 欧美丝袜亚洲另类| 欧美激情在线99| av在线天堂中文字幕| 国产黄片视频在线免费观看| 国产精品久久视频播放| 国产精品久久久久久av不卡| 日韩成人伦理影院| 国产乱人偷精品视频| 欧美丝袜亚洲另类| 亚洲av免费高清在线观看| 观看美女的网站| 五月玫瑰六月丁香| 哪个播放器可以免费观看大片| 神马国产精品三级电影在线观看| 午夜福利在线在线| 国产亚洲精品久久久久久毛片| 看免费成人av毛片| 婷婷亚洲欧美| 日本熟妇午夜| 国产伦一二天堂av在线观看| 久久久欧美国产精品| 赤兔流量卡办理| 啦啦啦韩国在线观看视频| 亚洲三级黄色毛片| 丝袜喷水一区| 色尼玛亚洲综合影院| 别揉我奶头 嗯啊视频| 熟妇人妻久久中文字幕3abv| 黄片无遮挡物在线观看| 一级二级三级毛片免费看| 好男人在线观看高清免费视频| 淫秽高清视频在线观看| 中国国产av一级| 在线免费十八禁| 亚洲av电影不卡..在线观看| 国产黄片美女视频| 国产一区二区在线观看日韩| 性插视频无遮挡在线免费观看| 亚洲va在线va天堂va国产| 成熟少妇高潮喷水视频| 免费看光身美女| 99国产极品粉嫩在线观看| 成年女人永久免费观看视频| 亚洲国产精品成人久久小说 | 村上凉子中文字幕在线| а√天堂www在线а√下载| 欧美丝袜亚洲另类| 午夜免费男女啪啪视频观看| 久久久午夜欧美精品| a级毛片免费高清观看在线播放| 国产淫片久久久久久久久| 久久久精品大字幕| 小说图片视频综合网站| 高清日韩中文字幕在线| 久久久久久国产a免费观看| 午夜福利在线观看吧| av女优亚洲男人天堂| 欧洲精品卡2卡3卡4卡5卡区| 国产探花极品一区二区| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品综合久久99| 97在线视频观看| 国产精品一区二区三区四区久久| 免费看a级黄色片| 久久久午夜欧美精品| 欧美日韩精品成人综合77777| 神马国产精品三级电影在线观看| 永久网站在线| 白带黄色成豆腐渣| 91久久精品电影网| 久久精品久久久久久噜噜老黄 | 男人舔女人下体高潮全视频| 一级二级三级毛片免费看| 热99re8久久精品国产| 人妻制服诱惑在线中文字幕| 国产精品人妻久久久影院| 久久精品国产亚洲网站| 亚洲色图av天堂| 天堂√8在线中文| 乱系列少妇在线播放| 波多野结衣巨乳人妻| 欧美精品一区二区大全| 哪里可以看免费的av片| 乱系列少妇在线播放| 中文字幕av在线有码专区| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 最近的中文字幕免费完整| 欧美变态另类bdsm刘玥| 黄片wwwwww| 狠狠狠狠99中文字幕| 国产精品久久电影中文字幕| 国产极品精品免费视频能看的| 久久人人爽人人爽人人片va| 女人十人毛片免费观看3o分钟| 久久九九热精品免费| 国产亚洲精品久久久com| 我要搜黄色片| 国产黄片视频在线免费观看| 久久人人爽人人片av| 国产日韩欧美在线精品| 国产精品.久久久| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 久久久色成人| 欧美极品一区二区三区四区| 久久久精品大字幕| 国产免费男女视频| 久久热精品热| 亚洲国产欧美在线一区| 日日干狠狠操夜夜爽| 99热6这里只有精品| 成熟少妇高潮喷水视频| 亚洲性久久影院| 99国产极品粉嫩在线观看| 国产国拍精品亚洲av在线观看| 亚洲av一区综合| 在线免费十八禁| 国产 一区 欧美 日韩| 美女脱内裤让男人舔精品视频 | 亚洲成人中文字幕在线播放| 深爱激情五月婷婷| 春色校园在线视频观看| 丝袜喷水一区| 国产成人精品久久久久久| 精品午夜福利在线看| 亚洲高清免费不卡视频| 干丝袜人妻中文字幕| 亚洲图色成人| 亚洲性久久影院| 精品一区二区三区人妻视频| 一区二区三区高清视频在线| www.av在线官网国产| 夜夜看夜夜爽夜夜摸| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲成a人片在线一区二区| 午夜免费男女啪啪视频观看| 国产三级中文精品| 有码 亚洲区| 91在线精品国自产拍蜜月| 亚洲欧美中文字幕日韩二区| 国产成人a区在线观看| 亚洲经典国产精华液单| 国产av在哪里看| 精品久久久久久久久av| 男人的好看免费观看在线视频| 国模一区二区三区四区视频| 日本五十路高清| 自拍偷自拍亚洲精品老妇| 国产高清激情床上av| 欧美精品国产亚洲| 国产一区二区亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 男插女下体视频免费在线播放| 少妇熟女欧美另类| 又爽又黄无遮挡网站| 十八禁国产超污无遮挡网站| 欧美日本视频| 国产老妇女一区| 欧美日韩一区二区视频在线观看视频在线 | 免费不卡的大黄色大毛片视频在线观看 | 97超碰精品成人国产| 精品久久久久久久久亚洲| 一区二区三区免费毛片| 中文字幕久久专区| 26uuu在线亚洲综合色| 色播亚洲综合网| 少妇人妻精品综合一区二区 | 三级经典国产精品| 亚洲一区二区三区色噜噜| 国产精品av视频在线免费观看| 国产麻豆成人av免费视频| 成人特级黄色片久久久久久久| 亚洲av熟女| 免费人成在线观看视频色| 久久久成人免费电影| 青春草国产在线视频 | а√天堂www在线а√下载| 看片在线看免费视频| 97超视频在线观看视频| 尤物成人国产欧美一区二区三区| 男女下面进入的视频免费午夜| 在线免费观看不下载黄p国产| 国产亚洲精品久久久久久毛片| 成人午夜高清在线视频| 内射极品少妇av片p| 成年女人永久免费观看视频| 亚洲人成网站高清观看| 日韩欧美三级三区| 日韩欧美国产在线观看| 国产一区二区在线观看日韩| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| 久久人人爽人人爽人人片va| av女优亚洲男人天堂| 搡女人真爽免费视频火全软件| 久久精品影院6| 亚洲婷婷狠狠爱综合网| av黄色大香蕉| www.av在线官网国产| 久久这里只有精品中国| 欧美xxxx黑人xx丫x性爽| 亚洲天堂国产精品一区在线| 国产免费一级a男人的天堂| 亚洲国产欧美在线一区| 午夜激情欧美在线| 内射极品少妇av片p| 国产 一区精品| 99久久无色码亚洲精品果冻| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| 亚洲最大成人av| 人妻久久中文字幕网| 日本-黄色视频高清免费观看| 国产一区二区三区在线臀色熟女| 亚洲国产精品国产精品| 国产免费一级a男人的天堂| 亚洲五月天丁香| 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 麻豆成人av视频| 久久久久久大精品| 日韩欧美在线乱码| av在线天堂中文字幕| 波多野结衣巨乳人妻| 精品久久久久久久久av| 午夜视频国产福利| 又粗又硬又长又爽又黄的视频 | 国产女主播在线喷水免费视频网站 | 亚洲美女视频黄频| 国内久久婷婷六月综合欲色啪| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 国产精品福利在线免费观看| 性欧美人与动物交配| 插逼视频在线观看| 青青草视频在线视频观看| 国产爱豆传媒在线观看| 五月伊人婷婷丁香| 观看美女的网站| 能在线免费观看的黄片| 中文资源天堂在线| 日日啪夜夜撸| 午夜亚洲福利在线播放| 一卡2卡三卡四卡精品乱码亚洲| 久久精品人妻少妇| 午夜福利视频1000在线观看| 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| 人妻夜夜爽99麻豆av| 午夜爱爱视频在线播放| 国产午夜精品一二区理论片| 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看 | 美女高潮的动态| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆| 国内精品宾馆在线| 国产av一区在线观看免费| 熟女电影av网| 国产精品人妻久久久影院| 一进一出抽搐动态| 欧美人与善性xxx| 亚洲国产欧洲综合997久久,| 色视频www国产| 网址你懂的国产日韩在线| a级毛片a级免费在线| 亚洲第一电影网av| 国产一级毛片七仙女欲春2| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 看非洲黑人一级黄片| 亚洲成a人片在线一区二区| 悠悠久久av| 岛国在线免费视频观看| 男女那种视频在线观看| 两个人的视频大全免费| 亚洲最大成人av| 日韩大尺度精品在线看网址| 成人国产麻豆网| 麻豆av噜噜一区二区三区| 久久热精品热| 1024手机看黄色片| 在线a可以看的网站| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 有码 亚洲区| 中文字幕久久专区| 国产成人91sexporn| 日韩一区二区三区影片| 国内精品美女久久久久久| 性色avwww在线观看| 婷婷亚洲欧美| 国产精品爽爽va在线观看网站| 国产 一区 欧美 日韩| www.色视频.com| 成人性生交大片免费视频hd| 少妇高潮的动态图| 深夜精品福利| 老女人水多毛片| 草草在线视频免费看| 日韩一区二区三区影片| 国产爱豆传媒在线观看| 99在线视频只有这里精品首页| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区| 亚洲欧洲日产国产| 久久久a久久爽久久v久久| 最新中文字幕久久久久| 简卡轻食公司| 午夜福利在线观看免费完整高清在 | 51国产日韩欧美| 亚洲成人久久性| 亚洲高清免费不卡视频| 在线播放无遮挡| 国产一区亚洲一区在线观看| 精品久久久久久久久久久久久| 蜜臀久久99精品久久宅男| videossex国产| 女同久久另类99精品国产91| 国产黄片视频在线免费观看| 91精品一卡2卡3卡4卡| 亚洲国产欧美在线一区| 高清毛片免费看| 久久99精品国语久久久| 国产成人影院久久av| 你懂的网址亚洲精品在线观看 | 男女视频在线观看网站免费| 尾随美女入室| 噜噜噜噜噜久久久久久91| 色尼玛亚洲综合影院| 91aial.com中文字幕在线观看| 久久午夜亚洲精品久久| 国产精品.久久久| 中文精品一卡2卡3卡4更新| 免费无遮挡裸体视频| 久久久久久久午夜电影| 国产综合懂色| 五月伊人婷婷丁香| 少妇熟女欧美另类| 两个人的视频大全免费| av卡一久久| 亚洲精华国产精华液的使用体验 | 99热全是精品| 身体一侧抽搐| 能在线免费看毛片的网站| 久久久久久久久久成人| 亚洲av成人av| 久久精品国产99精品国产亚洲性色| 男女啪啪激烈高潮av片| 日韩av在线大香蕉| 亚洲欧美成人精品一区二区| 久久精品影院6| av在线天堂中文字幕| 国产黄色视频一区二区在线观看 | 男女那种视频在线观看| 3wmmmm亚洲av在线观看| 色视频www国产| 日韩欧美 国产精品| 久久午夜福利片| 久久久久久久久久成人| 听说在线观看完整版免费高清| a级一级毛片免费在线观看| 国产av不卡久久| 国产午夜精品论理片| 亚洲精品影视一区二区三区av| 天堂中文最新版在线下载 | 国内精品美女久久久久久| 99热全是精品| 男女做爰动态图高潮gif福利片| 精品久久久久久久久久免费视频| 国产精品精品国产色婷婷| 国产白丝娇喘喷水9色精品| 午夜精品在线福利| av在线观看视频网站免费| 欧洲精品卡2卡3卡4卡5卡区| 床上黄色一级片| 伦精品一区二区三区| 在线观看午夜福利视频| 成人毛片a级毛片在线播放| 成人二区视频| 爱豆传媒免费全集在线观看| 久久久久免费精品人妻一区二区| 中国美女看黄片| 天天躁夜夜躁狠狠久久av| 欧美成人精品欧美一级黄| 国产精品国产三级国产av玫瑰| 国产av麻豆久久久久久久| 我要搜黄色片| av.在线天堂| 欧美色欧美亚洲另类二区| 亚洲欧美成人综合另类久久久 | 国产爱豆传媒在线观看| 女的被弄到高潮叫床怎么办| 国产高清视频在线观看网站| 麻豆成人av视频| 日韩高清综合在线| 最近2019中文字幕mv第一页| 久久99蜜桃精品久久| 级片在线观看| 国产精品爽爽va在线观看网站| 国产白丝娇喘喷水9色精品| 精品一区二区三区视频在线| 91av网一区二区| 尤物成人国产欧美一区二区三区| 少妇的逼好多水| 国产免费男女视频| 午夜精品在线福利| 91aial.com中文字幕在线观看| 国产亚洲av片在线观看秒播厂 | 一区二区三区高清视频在线| 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区久久| 熟妇人妻久久中文字幕3abv| 毛片女人毛片| 亚洲成人中文字幕在线播放| 天堂网av新在线| 欧美一区二区亚洲| 国产高清不卡午夜福利| 亚洲国产色片| 午夜a级毛片| 国产av麻豆久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 边亲边吃奶的免费视频| 老司机福利观看| 亚洲内射少妇av| 色综合色国产| 51国产日韩欧美| 国产精品av视频在线免费观看| 天堂av国产一区二区熟女人妻| 久久韩国三级中文字幕| 国产高清不卡午夜福利| 99riav亚洲国产免费| 亚洲第一区二区三区不卡| 亚洲国产色片| 男女啪啪激烈高潮av片| a级毛色黄片| 免费看a级黄色片| 国产单亲对白刺激| 美女大奶头视频| 校园春色视频在线观看| av国产免费在线观看| 中文字幕免费在线视频6| 色吧在线观看| 午夜视频国产福利| 亚洲最大成人av| 国产免费男女视频| 能在线免费看毛片的网站| 成人毛片a级毛片在线播放| 欧美丝袜亚洲另类| 少妇被粗大猛烈的视频| 亚洲国产精品久久男人天堂| 波多野结衣高清作品| 中文资源天堂在线| 夜夜爽天天搞| 我的老师免费观看完整版| 国产精品一二三区在线看| 亚洲欧美成人综合另类久久久 | 不卡视频在线观看欧美| 18禁裸乳无遮挡免费网站照片| 91久久精品电影网| 免费看av在线观看网站| 亚洲美女视频黄频| 男女那种视频在线观看| 国产成人福利小说| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 免费无遮挡裸体视频| 一级毛片我不卡| 国产高潮美女av| 干丝袜人妻中文字幕| 亚洲综合色惰| 久久这里有精品视频免费| 观看美女的网站| 亚洲中文字幕日韩| 在线免费观看不下载黄p国产| 18禁黄网站禁片免费观看直播| 亚洲图色成人| 国产精品三级大全| 日韩国内少妇激情av| 午夜老司机福利剧场| 99久久久亚洲精品蜜臀av| 麻豆乱淫一区二区| 18禁黄网站禁片免费观看直播| 亚洲国产精品久久男人天堂| 亚州av有码| 97超碰精品成人国产| 日日干狠狠操夜夜爽| 一个人看的www免费观看视频| 最后的刺客免费高清国语| 一级黄色大片毛片| 麻豆成人午夜福利视频| 欧美日本亚洲视频在线播放| 亚洲美女搞黄在线观看| 波多野结衣高清作品| 亚洲无线观看免费| 欧美xxxx黑人xx丫x性爽| 悠悠久久av| 成人二区视频| 亚洲av男天堂| 赤兔流量卡办理| 成人午夜高清在线视频| 精品熟女少妇av免费看| 久久精品国产亚洲网站| 日韩精品有码人妻一区| 国产探花在线观看一区二区| 激情 狠狠 欧美| 少妇高潮的动态图| 成人av在线播放网站| 国产真实伦视频高清在线观看| 亚洲第一电影网av| or卡值多少钱|