李明明,亓延峰,牛 剛
(杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018)
關(guān)于3重量的二元線性碼的一個注記
李明明,亓延峰,牛 剛
(杭州電子科技大學(xué)理學(xué)院,浙江 杭州 310018)
布爾函數(shù)在密碼學(xué)和編碼理論中都有著重要的應(yīng)用,由布爾函數(shù)構(gòu)造的兩類著名的二元碼是Reed-Muller碼和Kerdock碼.該文考慮使用布爾函數(shù)來構(gòu)造二元線性碼,得到3重量的二元線性碼,確定了此類二元碼的參數(shù)和重量分布,此類小重量的線性碼可以用于認(rèn)證碼、密碼共享方案、結(jié)合方案和強(qiáng)正則圖等.
線性碼;重量分布;認(rèn)證碼;秘密共享方案;指數(shù)和
給出基本符號定義,并給出線性碼和指數(shù)和的相關(guān)結(jié)論,這些結(jié)論用于二元線性的參數(shù)和重量分布的確定.
為了更好地計(jì)算構(gòu)造的線性碼參數(shù),定義如下指數(shù)和
下面幾個引理是關(guān)于指數(shù)和Sh(a,b)的一些結(jié)論.
下面定理給出了線性碼CD的具體參數(shù)和重量分布.
表1 線性碼CD的重量分布
證明 為了得到線性碼CD的參數(shù)和重量分布,定義如下參數(shù)
則碼字cb=(Tr(d1x),Tr(d2x),…,Tr(dnx))的重量為n0-nb.
n0-nb=2m-2-Sh(1,1)/4+Sh(1,1+b)/4∈
當(dāng)m/l為偶數(shù)時,令m=2e.若m≡2 mod 4,由引理1.4知,Sh(1,1)=0,則線性碼CD的碼長為n=n0=2m-1.由引理1.1和引理1.4知,碼字cb=(Tr(d1x),Tr(d2x),…,Tr(dnx))的重量為
若m≡0 mod 4,由引理1.4知,Sh(1,1)=-(-1)m/2l2m/2+l,則線性碼CD的碼長為n=n0=2m-1-Sh(1,1)/2=2m-1+(-1)m/2l2m/2+l-1.由引理1.1和引理1.4知,碼字cb=(Tr(d1x),Tr(d2x),…,Tr(dnx))的重量為
n0-nb=2m-2-Sh(1,1)/4+Sh(1,1+b)/4∈
例2.1 設(shè)(m,h)=(5,1),則l=1,m/l=5,由定理2.1得到線性碼CD是參數(shù)為[20,5,8]的二元線性碼,其重量計(jì)數(shù)為1+5z8+16z10+10z12.
例2.2 設(shè)(m,l)=(6,1),則l=1,m/l=6,m≡2 mod 4,由定理2.1得到線性碼CD是參數(shù)為[32,6,12]的二元線性碼,其重量計(jì)數(shù)為1+6z12+47z16+10z20.
例2.3 設(shè)(m,h)=(8,1),則l=1,m/l=8,m≡0 mod 4,由定理2.1得到線性碼CD是參數(shù)為[144,8,64]的二元線性碼,其重量計(jì)數(shù)為1+27z64+192z72+36z80.
本文結(jié)合文獻(xiàn)[6]中線性碼的構(gòu)造方法,給出了一類3重量的二元線性碼,并給出了二元線性碼的相關(guān)參數(shù)和重量分布.文中的3重量二元線性碼可用于結(jié)合方案的構(gòu)造.未來的主要研究工作是尋找更多一般的函數(shù)構(gòu)建好的小重量線性碼并給出相關(guān)參數(shù).
[1]DINGCS.Aconstructionofbinarylinearcodesfrombooleanfunctions[J/OL].ArXiv:1511.00321.2015,[2016-03-23].http://de.arxiv.org/pdf/1511.00321.
[2]YUANJ,DINGCS.Secretsharingschemesfromthreeclassesoflinearcodes[J].InformationTheory,IEEETransactionson, 2006, 52(1): 206-212.
[3]XIANGC.Linearcodesfromagenericconstruction[J].Cryptography&Communications,2015: 1-15.
[4]DINGKL,DINGCS.Aclassoftwo-weightandthree-weightcodesandtheirapplicationsinsecretsharing[J].InformationTheory,IEEETransactionson, 2015, 61(11): 5835-5842.
[5]ZHOUZC,LIN,FANCL,etal.Linearcodeswithtwoorthreeweightsfromquadraticbentfunctions[J].DesignsCodes&Cryptography, 2015: 1-13.
[6]TANGCM,LIN,QIYF,etal.Linearcodeswithtwoorthreeweightsfromweaklyregularbentfunctions[J].InformationTheory,IEEETransactionson, 2016,62(3):1166-1176.
[7]DINGCS.Linearcodesfromsome2-designs[J].InformationTheory,IEEETransactionson, 2015, 61(6):3264-3275.
[8]DINGKL,DINGCS.Binarylinearcodeswiththreeweights[J].InformationTheory,IEEETransactionson, 2014,18(11): 1879-1882.
[9]DINGCS,WANGXS.Acodingtheoryconstructionofnewsystematicauthenticationcodes[J].TheoreticalComputerScience, 2005, 330(1): 81-99.
[10]DINGCS,HELLESETHT,KL?VT,etal.Ageneralconstructionofauthenticationcodes[J].InformationTheory,IEEETransactionson, 2007, 53(6): 2229-2235.
[11]ANDERSONR,DINGCS,HELLESeETHT,etal.Howtobuildrobustsharedcontrolsystems[J].DesignsCodes&Cryptography, 1998, 15(2):111-124.
[12]CARLETC,DINGCS,YUANJ.Linearcodesfromperfectnonlinearmappingsandtheirsecretsharingschemes[J].InformationTheory,IEEETransactionson, 2005, 51(6):2089-2102.
[13]CALDERBANKARandGOETHALSJM.Three-weightcodesandassociationschemes[J].PhilipsJournalofResearch, 1984, 39(4):143-152.
[14]SPLLOYD.Hammingassociationschemesandcodesonspheres[J].SiamJournalonMathematicalAnalysis,1980, 1(3): 488-505.
[15]LIDIR,NIEDERREITERH.FiniteFields[M].Cambridge,U.K.:CambridgeUniversityPress, 1997:186-267.
[16]COULTER R S. On the evaluation of a class of Weil sums in characteristic 2[J]. New Zealand Journal of Mathematics, 1999, 28(2): 171-184.
[17]HUFFMAN W C and PLESS V. Fundamentals of Error-correcting Codes[M]. Cambridge, U.K.: Cambridge University Press, 2003: 259-262.
A Note on Three-weight Binary Linear Codes
LI Mingming, QI Yanfeng, NIU Gang
(SchoolofScience,HangzhouDianziUniversity,HangzhouZhejiang310018,China)
Boolean functions have an important role in cryptography and coding theory. Two famous classes of binary codes constructed from Boolean functions are the Reed-Muller codes and Kerdock codes. This paper considers the construction of binary linear codes from Boolean function, presents a class of three-weight binary linear codes, and determines parameters and weight distribution of these codes. Binary linear codes with few weights can be applied in authentication schemes, secret sharing schemes, association schemes and strongly regular graphs.
linear codes; weight distribution; authentication codes; secret sharing schemes; exponential sums
10.13954/j.cnki.hdu.2017.01.021
2016-03-23
國家自然科學(xué)基金資助項(xiàng)目(11531002,11501154)
李明明(1991-),男,山東德州人,碩士研究生,密碼學(xué).通信作者:亓延峰講師,E-mail:qiyanfeng07@163.com.
TN911.22
A
1001-9146(2017)01-0095-04