鄒朝霞,李均
(遵義醫(yī)學(xué)院珠海校區(qū),廣東 珠海 519090)
內(nèi)質(zhì)網(wǎng)應(yīng)激與腎臟纖維化
鄒朝霞,李均
(遵義醫(yī)學(xué)院珠海校區(qū),廣東 珠海 519090)
內(nèi)質(zhì)網(wǎng)應(yīng)激是機(jī)體對(duì)各種病理生理刺激的一種自身應(yīng)答機(jī)制,適度的內(nèi)質(zhì)網(wǎng)應(yīng)激可以恢復(fù)內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)以維持細(xì)胞生存;而持久或嚴(yán)重的內(nèi)質(zhì)網(wǎng)應(yīng)激則可能導(dǎo)致細(xì)胞程序性死亡或凋亡,造成器官損害。研究已證實(shí)內(nèi)質(zhì)網(wǎng)應(yīng)激與多種腎臟疾病如糖尿病腎病、膜性腎病、急性腎小管-間質(zhì)損害、腎臟衰老、腎間質(zhì)纖維化等密切相關(guān);本文將主要對(duì)內(nèi)質(zhì)網(wǎng)應(yīng)激在腎臟纖維化進(jìn)展中的作用作一綜述。
內(nèi)質(zhì)網(wǎng);應(yīng)激;腎臟;纖維化
內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)是真核細(xì)胞內(nèi)的一種重要細(xì)胞器,參與真核細(xì)胞內(nèi)蛋白質(zhì)的合成翻譯、加工運(yùn)輸和分泌,還是鈣離子儲(chǔ)存及脂質(zhì)合成的重要場(chǎng)所。各種病理生理?xiàng)l件下如缺氧、氧化應(yīng)激、營(yíng)養(yǎng)不足、感染等可導(dǎo)致內(nèi)質(zhì)網(wǎng)內(nèi)鈣離子平衡紊亂、各種異常蛋白質(zhì)和未完成加工的蛋白質(zhì)(如錯(cuò)誤蛋白和未折疊蛋白)在內(nèi)質(zhì)網(wǎng)腔內(nèi)聚集,最終引發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)狀態(tài)。以往研究證明適度的內(nèi)質(zhì)網(wǎng)應(yīng)激是真核細(xì)胞受到有害刺激時(shí)的一種自我保護(hù)性反應(yīng),而持久的或嚴(yán)重的內(nèi)質(zhì)網(wǎng)應(yīng)激則可能導(dǎo)致細(xì)胞程序性死亡或凋亡[1],進(jìn)一步造成相應(yīng)器官、組織的損害。已有大量研究證實(shí)內(nèi)質(zhì)網(wǎng)應(yīng)激與多種腎臟疾病如糖尿病腎病、膜性腎病、急性腎小管-間質(zhì)損害、腎臟衰老、腎間質(zhì)纖維化等密切相關(guān)[2-3]。
內(nèi)質(zhì)網(wǎng)是有極強(qiáng)穩(wěn)態(tài)系統(tǒng)的、對(duì)細(xì)胞內(nèi)外環(huán)境極為敏感的、動(dòng)態(tài)平衡的膜性細(xì)胞器。當(dāng)各種內(nèi)源性和外源性的生理病理因素,如缺氧、病毒感染、營(yíng)養(yǎng)不足、化學(xué)藥物、自由基侵襲及鈣離子平衡失調(diào)等打破內(nèi)質(zhì)網(wǎng)的穩(wěn)態(tài),使內(nèi)質(zhì)網(wǎng)腔內(nèi)異常蛋白質(zhì)(如錯(cuò)誤折疊蛋白、未折疊蛋白)的增加或鈣離子平衡改變時(shí),可誘導(dǎo)ERS;真核細(xì)胞為了緩解內(nèi)質(zhì)網(wǎng)應(yīng)激而激活一系列自身保護(hù)機(jī)制,稱為內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),其機(jī)制主要為:①誘導(dǎo)內(nèi)質(zhì)網(wǎng)多種分子伴侶蛋白的表達(dá),進(jìn)而使內(nèi)質(zhì)網(wǎng)對(duì)蛋白質(zhì)的折疊功能增強(qiáng);②減少內(nèi)質(zhì)網(wǎng)內(nèi)蛋白質(zhì)合成,使錯(cuò)誤折疊蛋白和未折疊蛋白的聚集減少;③使內(nèi)質(zhì)網(wǎng)相關(guān)降解基因的表達(dá)量增加,從而使錯(cuò)誤折疊或未折疊蛋白的降解增加[4-5];誘導(dǎo)功能受損細(xì)胞的凋亡。ERS的表現(xiàn)包括整合應(yīng)激反應(yīng)、非折疊蛋白反應(yīng)(unfolded protein response,UPR)和內(nèi)質(zhì)網(wǎng)相關(guān)性死亡這3個(gè)密切相關(guān)的動(dòng)態(tài)過程[6],其中主要為UPR。UPR的主要功能是恢復(fù)內(nèi)質(zhì)網(wǎng)的功能并且減少內(nèi)外環(huán)境變化對(duì)內(nèi)質(zhì)網(wǎng)的刺激,是細(xì)胞對(duì)外界刺激的適應(yīng)性反應(yīng),包括減少蛋白質(zhì)的合成、促進(jìn)異常蛋白質(zhì)發(fā)生降解、參與蛋白質(zhì)的正確折疊[7]。但ERS一旦強(qiáng)度過強(qiáng)或持續(xù)時(shí)間較長(zhǎng),則會(huì)使細(xì)胞受損或通過觸發(fā)細(xì)胞凋亡信號(hào)途徑誘導(dǎo)細(xì)胞的凋亡。根據(jù)內(nèi)質(zhì)網(wǎng)膜上感知和介導(dǎo)信號(hào)傳導(dǎo)的感受器不同,可分別為激活蛋白激酶的內(nèi)質(zhì)網(wǎng)類似激酶[prote in kinase R(PKR)-like endoplasmic reticulum kinase,PERK]、肌醇酶1(inositol-requiring enzyme 1,IRE-1)、激活轉(zhuǎn)錄因子6(activating transcription factor 6,ATF6)[6]。當(dāng)內(nèi)質(zhì)網(wǎng)處于穩(wěn)態(tài)時(shí),3種感受器蛋白都與分子伴侶葡萄糖調(diào)節(jié)蛋白78/免疫球蛋白重鏈結(jié)合蛋白(GRP78/Bip)結(jié)合而處于無活性的狀態(tài)。當(dāng)發(fā)生內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)失衡誘發(fā)ERS時(shí),3種感受蛋白則和GRP78/Bip分離,導(dǎo)致感受器蛋白的激活,而激活后的IRE-1、PERK、ATF6又分別激活I(lǐng)REl/XBPl通路、PERK/elF2a/ATF4通路、ATF6通路等3條信號(hào)通路,進(jìn)而誘導(dǎo)細(xì)胞的凋亡[8]。
腎臟纖維化包括腎間質(zhì)纖維化和腎小球硬化,當(dāng)腎臟受到炎癥、缺血缺氧、感染、免疫因素等多種病理生理因素刺激導(dǎo)致相關(guān)細(xì)胞因子過度表達(dá)、腎間質(zhì)細(xì)胞增殖失調(diào)、腎固有細(xì)胞凋亡和細(xì)胞間質(zhì)代謝失調(diào),過多的細(xì)胞外基質(zhì)在腎間質(zhì)積聚,進(jìn)而導(dǎo)致腎臟組織正常結(jié)構(gòu)破壞及功能衰退或喪失,是多種慢性腎臟疾病最終導(dǎo)致腎衰竭的主要病理改變和共同通路,也是所有形式的腎臟慢性衰竭最終轉(zhuǎn)歸[9]。
腎纖維化是多因素、多環(huán)節(jié)參與的復(fù)雜病理過程,主要涉及炎癥、氧化應(yīng)激、各種相關(guān)細(xì)胞因子的作用、細(xì)胞凋亡、成纖維細(xì)胞異常增殖和活化以及上皮細(xì)胞向成纖維細(xì)胞轉(zhuǎn)化等。主要涉及的幾種機(jī)制有:①炎癥:炎癥是各種慢性腎臟疾病的基本病理生理改變,在腎纖維化過程中主要表現(xiàn)為分泌炎性介質(zhì)和免疫細(xì)胞浸潤(rùn),通常被認(rèn)為是腎纖維化的啟動(dòng)因素[10]。②上皮-間充質(zhì)細(xì)胞轉(zhuǎn)化(epithelial to mesenchymal transition,EMT):EMT是指腎上皮細(xì)胞在各種病理生理因素作用下失去上皮細(xì)胞的特性而獲得間充質(zhì)的特性,轉(zhuǎn)化為成纖維細(xì)胞和成肌纖維細(xì)胞。大量研究表明,EMT是導(dǎo)致大部分間質(zhì)纖維化腎病的主要病理機(jī)制[11-14]。③凋亡:已有研究證明,細(xì)胞凋亡與腎臟纖維化有著密切聯(lián)系,腎纖維化與腎小管上皮細(xì)胞凋亡相互促進(jìn),在間質(zhì)纖維化的進(jìn)展過程中,腎纖維化的程度與腎小管上皮細(xì)胞凋亡數(shù)量呈正相關(guān),凋亡的數(shù)量越多纖維化程度越重;而隨著纖維化的進(jìn)程中腎小管的肥大或萎縮進(jìn)一步導(dǎo)致腎小管上皮細(xì)胞的凋亡[15-17]。④信號(hào)傳導(dǎo)通路:大量研究已明確證明多個(gè)信號(hào)傳導(dǎo)通路參與腎纖維化過程,目前已較明確的包括TGF-β家族、Smad、WNT信號(hào)通路、血小板衍生生長(zhǎng)因子受體家族和Hedgehog信號(hào)通路等[18-23]。⑤其他:如缺氧[24-25]。
近年來研究發(fā)現(xiàn)ERS誘導(dǎo)的細(xì)胞凋亡途徑是獨(dú)立于經(jīng)典的線粒體損傷途徑和死亡受體信號(hào)途徑以外的一種新細(xì)胞凋亡途徑。多種腎病動(dòng)物模型及體外實(shí)驗(yàn)表明,ERS誘導(dǎo)的細(xì)胞凋亡是導(dǎo)致腎纖維化的重要因素。GRP78是ERS反應(yīng)的標(biāo)志性蛋白,半胱氨酸蛋白酶Caspase12途徑也被證明是內(nèi)質(zhì)網(wǎng)特有的凋亡途徑[26-27]。體外實(shí)驗(yàn)證明,CHOP基因缺失的腎小管上皮細(xì)胞能耐受ERS誘導(dǎo)的凋亡[28],說明CHOP參與了ERS介導(dǎo)的細(xì)胞凋亡途徑。Wu等[29]證實(shí)馬兜鈴酸作用于腎小管上皮細(xì)胞,迅速增加胞內(nèi)Ca2+濃度,從而誘導(dǎo)ERS與線粒體應(yīng)激,激活Caspase致腎小管上皮細(xì)胞凋亡。Lorz等[30]通過體外實(shí)驗(yàn)ERS參與對(duì)乙酰氨基酚誘導(dǎo)的細(xì)胞凋亡過程。Justo等[31]在研究環(huán)孢素A誘導(dǎo)LLC-PK1細(xì)胞凋亡機(jī)制時(shí)發(fā)現(xiàn),除線粒體損傷外,CHOP的表達(dá)明顯上調(diào)。體外實(shí)驗(yàn)表明,環(huán)孢素(CsA)干預(yù)后可以使腎小管上皮細(xì)胞內(nèi)ERS標(biāo)志物GRP78、Caspase、CHOP的表達(dá)增多[32]。體內(nèi)實(shí)驗(yàn)也表明,長(zhǎng)期使用CsA可以引起CsA大鼠腎組織中CHOP、Caspase-12的表達(dá)上調(diào),腎皮質(zhì)內(nèi)質(zhì)網(wǎng)明顯腫脹[7]。且長(zhǎng)期使用CsA可以導(dǎo)致腎組織的缺氧及產(chǎn)生氧化應(yīng)激,激活ERS相關(guān)凋亡通路,最終導(dǎo)致腎小管上皮細(xì)胞凋亡,從而引起腎小管間質(zhì)的慢性損害。研究表明,ERS可誘導(dǎo)腎小球足細(xì)胞的結(jié)構(gòu)和功能障礙,從而使足細(xì)胞損傷凋亡,數(shù)量減少,進(jìn)一步導(dǎo)致腎小球?yàn)V過屏障破壞,出現(xiàn)蛋白尿,最終導(dǎo)致腎小球硬化[33]。白蛋白可以增加足細(xì)胞內(nèi)GRP78的表達(dá),激活Caspase12,從而引起細(xì)胞凋亡,并且是通過激活瞬時(shí)受體電位陽離子通道蛋白(TRPC6)介導(dǎo)的Ca2+聚集引發(fā)的這一過程[34]。另一研究表明,當(dāng)出現(xiàn)蛋白尿時(shí),足細(xì)胞體內(nèi)CD2相關(guān)蛋白(CD2AP)表達(dá)下調(diào)從而激活ERS最終引起足細(xì)胞凋亡;同時(shí),若轉(zhuǎn)染CD2AP載體到足細(xì)胞將上調(diào)CD2AP,下調(diào)GRP78及半胱氨酶蛋白酶(Caspase12)的表達(dá),則會(huì)減少細(xì)胞凋亡[35]。由此可以看出,ERS不僅在腎小管上皮細(xì)胞凋亡引起的腎間質(zhì)纖維化中起重要作用,也是足細(xì)胞凋亡引起腎小球硬化的重要因素。
ERS誘導(dǎo)的細(xì)胞凋亡途徑,已成為近年來各相關(guān)疾病領(lǐng)域研究的熱點(diǎn),其與腎臟纖維化的關(guān)系值得重視。研究表明,在多種腎纖維化模型中,ERS是被過度激活的,通過干擾ERS的發(fā)生或抑制其介導(dǎo)的凋亡信號(hào)通路轉(zhuǎn)導(dǎo)過程中關(guān)鍵酶的活性,可以減輕腎間質(zhì)纖維化,提示ERS是腎纖維化復(fù)雜網(wǎng)絡(luò)中的一個(gè)新的致纖維化因素。同時(shí),ERS也是足細(xì)胞凋亡數(shù)量減少導(dǎo)致腎小球硬化的重要因素。深入研究ERS的作用及分子機(jī)制,可能成為腎臟質(zhì)纖維化治療的一個(gè)新靶點(diǎn)。
[1]Markan S,Kohli HS,Joshi K,et al.Up regulation of the GRP-78 and GADD-153 and down regulation of Bcl-2 proteins in primary glomerular diseases:a possible involvement of the ER stress pathway in glomerulonephritis[J].Molecular&Cellular Biochemistry,2009, 324(2):131-138.
[2]Tanjore H,Lawson WE,Blackwell TS.Endoplasmic reticulum stress as a pro-fibrotic stimulus[J].Biochimica Et Biophysica Acta,2013, 1832(7):940-947.
[3]Ron D,Walter P.Signal integration in the endoplasmic reticulum unfolded protein response[J].Nature Reviews Molecular Cell Biology, 2007,8(7):519-529.
[4]Chen J,Qin J,Han Y,et al.Nitric oxide and endoplasmic reticulum stress[J].Arteriosclerosis Thrombosis&Vascular Biology,2006,26 (7):1439-1446.
[5]丁巍.內(nèi)質(zhì)網(wǎng)應(yīng)激在腎小管上皮細(xì)胞凋亡中的作用及機(jī)制研究[D].上海:復(fù)旦大學(xué),2012.
[6]陳娜子,姜潮,李校堃.內(nèi)質(zhì)網(wǎng)應(yīng)激與疾病[J].中國(guó)生物工程雜志, 2016,36(1):76-85.
[7]劉其鋒,葉建明.內(nèi)質(zhì)網(wǎng)應(yīng)激與非折疊蛋白反應(yīng)與腎間質(zhì)纖維化[J].國(guó)際泌尿系統(tǒng)雜志,2015,35(1):127-129.
[8]Hetz C,Martinon F,Rodriguez D,et al.The unfolded protein response:integrating stress signals through the stress sensor IRE1α[J]. Physiological Reviews,2011,91(4):1362-1367.
[9]李明亮,杜潔.腎纖維化信號(hào)通路的研究進(jìn)展[J].醫(yī)學(xué)綜述,2013, 19(18):3275-3278.
[10]辛冰牧,楊紅振,胡卓偉.腎纖維化發(fā)病機(jī)制及治療學(xué)研究進(jìn)展[J].國(guó)際藥學(xué)研究雜志,2008,35(5):349-354.
[11]Grgic I,Campanholle G,Bijol V,et al.Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis[J].Kidney International,2012,82(2):172-183.
[12]Strutz FM.EMT and proteinuria as progression factors[J].Kidney International,2009,75(5):475-481.
[13]Burns WC,Kantharidis P,Thomas MC.The role of tubular epithelial-mesenchymal transition in progressive kidney disease[J].Cells Tissues Organs,2007,185(1-3):222-231.
[14]Iwano M,Plieth D,Danoff TM,et al.Evidence that fibroblasts derive from epithelium during tissue fibrosis[J].Journal of Clinical Investigation,2002,110(3):341-350.
[15]Felehgari V,Rahimi Z,Mozafari H,et al.ACE gene polymorphism and serum ACE activity in Iranians typeⅡ diabetic patients with macroalbuminuria[J].Molecular&Cellular Biochemistry,2011,346 (1-2):23-30.
[16]顧銅,李均.腎小管上皮細(xì)胞凋亡與腎纖維化及中藥組分的干預(yù)進(jìn)展[J].中國(guó)老年學(xué)雜志,2014,34(17):5011-5014.
[17]Maoka T,Tokuda H,Suzuki N,et al.Anti-oxidative,anti-tumor-promoting,and anti-carcinogensis activities of nitroastaxanthin and nitrolutein,the reaction products of astaxanthin and lutein with peroxynitrite[J].Marine Drugs,2012,10(6):1391-1399.
[18]Meng XM,Chung AC,Lan HY.Role of the TGF-β/BMP-7/Smad pathways in renal diseases[J].Clinical Science,2013,124(4): 243-54.
[19]Lan HY.Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells[J].Current Opinion in Nephrology& Hypertension,2003,12(1):25-29.
[20]Sato M,Muragaki Y,Saika S,et al.Targeted disruption of TGF-beta1/ Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction[J].J Clin Invest,2003,112 (10):1486-1494.
[21]Zhou L,Fu PX,Liu F,et al.Mechanism of chronic aristolochic acid nephropathy:role of Smad3[J].Ajp Renal Physiology,2010,298(4): 1006-1017.
[22]Hao S,He W,Li Y,et al.Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis[J].Journal of the American Society of Nephrology Jasn,2011,22(9):1642-1653.
[23]王金榮,熊洋洋,李斌超,等.腎纖維化的研究進(jìn)展[J].醫(yī)學(xué)研究雜志,2015,44(6):158-160.
[24]Lim JC,Lim SK,Han HJ,et al.Cannabinoid receptor 1 mediates palmitic acid-induced apoptosis via endoplasmic reticulum stress in human renal proximal tubular cells[J].Journal of Cellular Physiology, 2010,225(3):654-663.
[25]汪凱,徐丹楓.梗阻性腎病致腎纖維化的研究進(jìn)展[J].臨床泌尿外科雜志,2012,27(6):474-477.
[26]陳玉鳳,郭獻(xiàn)山,耿秀琴,等.內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)的凋亡在糖尿病大鼠腎臟組織中的作用[J].山東醫(yī)藥,2013,53(4):33-36.
[27]Mouw G,Zechel JL,Gamboa J,et al.Activation of caspase-12,an endoplasmic reticulum resident caspase,after permanent focal ischemia in rat[J].Neuroreport,2003,14(2):183-186.
[28]Hsin YH,Cheng CH,Tzen JTC,et al.Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells[J].Apoptosis,2006,11(12):2167-2177.
[29]Wu J,Zhang R,Torreggiani M,et al.Induction of diabetes in aged C57B6 mice results in severe nephropathy:an association with oxidative stress,endoplasmic reticulum stress,and inflammation[J].American Journal of Pathology,2010,176(5):2163-2176.
[30]Lorz C,Justo P,Sanz A,et al.Paracetamol-induced renal tubular injury:a role for ER stress[J].Journal of the American Society of Nephrology Jasn,2004,15(2):380-389.
[31]Justo P,Lorz C,Sanz A,et al.Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis[J].Journal of the American Society of Nephrology Jasn,2003,14(14):3072-3080.
[32]Pallet N,Bouvier NA,Rabant M,et al.Cyclosporine-Induced Endoplasmic Reticulum Stress Triggers Tubular Phenotypic Changes and Death [J].American Journalof Transplantation,2008,8(11): 2283-2296.
[33]張瑜珊,汪年松,王筱霞.內(nèi)質(zhì)網(wǎng)應(yīng)激在糖尿病腎病中的研究進(jìn)展[J].中國(guó)中西醫(yī)結(jié)合腎病雜志,2014,15(9):840-842.
[34]Chen S,He FF,Wang H,et al.Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes[J].Cell Calcium,2011,50(6):523-529.
[35]He F,Shan C,Hui W,et al.Regulation of CD2-associated protein influences podocyte endoplasmic reticulum stress-mediated apoptosis induced by albumin overload[J].Gene,2011,484(1-2):18-25.
Endoplasmic reticulum stress and renal fibrosis.
ZOU Zhao-xia,LI Jun.Zhuhai Campus,Zunyi Medical College, Zhuhai 519090,Guangdong,CHINA
Endoplasmic reticulum stress(ERS)is a kind of cellular stress response of body itself to various pathophysiological stimuli.Appropriate ERS can make contribution to the restoration of steady state of endoplasmic reticulum,in order to maintain cell survival,and long-term or severe ERS may cause programmed cell death,apoptosis, even organ damage.Studies have confirmed that ERS is closely related to various of diseases such as diabetic related nephropathy,membranous nephropathy,acute tubular-interstitial damage,aging kidney,renal interstitial fibrosis.This review focuses on the role of ERS in the progression of renal fibrosis.
Endoplasmic reticulum;Stress;Kidney;Fibrosis
R692
A
1003-6350(2017)04-0615-03
10.3969/j.issn.1003-6350.2017.04.032
2016-09-07)
國(guó)家自然科學(xué)基金(編號(hào):81260603)
李均。E-mail:lijun69_1214@163.com