周麗麗 李婧楠 米彩紅范昊明 馬世偉 邵婧宇
(沈陽(yáng)農(nóng)業(yè)大學(xué)水利學(xué)院,沈陽(yáng) 110866)
秸稈生物炭輸入對(duì)凍融期棕壤磷有效性的影響*
周麗麗 李婧楠 米彩紅?范昊明 馬世偉 邵婧宇
(沈陽(yáng)農(nóng)業(yè)大學(xué)水利學(xué)院,沈陽(yáng) 110866)
凍融交替是東北地區(qū)土壤常見的溫度變化現(xiàn)象。通過室內(nèi)模擬凍融循環(huán)方法,分析秸稈生物炭輸入對(duì)凍融期東北地區(qū)棕壤有效磷影響規(guī)律及機(jī)理,探討生物炭還田對(duì)東北春季作物生長(zhǎng)初期土壤養(yǎng)分供應(yīng)狀況的影響。結(jié)果表明:(1)除在0~5次凍融循環(huán)中凍融次數(shù)對(duì)有效磷含量無顯著影響外,凍融循環(huán)次數(shù)、生物炭施加量以及二者交互作用對(duì)土壤有效磷含量在各凍融階段(0~5次、5~30次、0~30次)均有極顯著影響。(2)培養(yǎng)結(jié)束后施加生物炭量2%、4%和6%處理,有效磷含量隨生物炭施入量增大而依次增加,且均明顯高于對(duì)照處理20%以上。各處理在第5次凍融左右達(dá)到峰值,有效磷含量增加幅度隨生物炭施加量增加而減小。在第20次凍融循環(huán)后各處理有效磷含量達(dá)到相對(duì)谷值,此時(shí)施加生物炭處理有效磷含量較未凍融時(shí)有明顯降低。說明,生物炭在常溫培養(yǎng)時(shí)可以增加土壤有效磷含量,但是,在凍融過程中,相對(duì)于對(duì)照處理可以較好固持土壤磷素,減小磷素隨融雪過程流失的風(fēng)險(xiǎn)。(3)通過分析生物炭輸入后棕壤pH、電導(dǎo)率、有機(jī)質(zhì)和中性磷酸酶活性等生物化學(xué)性質(zhì)對(duì)凍融循環(huán)過程響應(yīng),以及不同凍融循環(huán)階段與土壤有效磷相關(guān)分析,發(fā)現(xiàn)有機(jī)質(zhì)含量在凍融循環(huán)過程中變化顯著且與有效磷含量具有顯著相關(guān)性。生物炭通過增強(qiáng)團(tuán)聚體穩(wěn)定性,減少有機(jī)質(zhì)釋放來固持土壤磷素。
生物炭;凍融作用;棕壤;有效磷;有機(jī)質(zhì)
我國(guó)秸稈資源豐富,但目前其利用率尚處于較低水平。秸稈生物炭由作物秸稈在高溫絕氧作用下熱解制備而成,具有提升耕地質(zhì)量、實(shí)現(xiàn)碳封存等作用。生物炭因其較大的孔隙度和比表面積,可以改變土壤理化性質(zhì)[1-2],提高土壤肥力。此外,生物炭可以對(duì)土壤環(huán)境進(jìn)行改變進(jìn)而影響微生物,使得其對(duì)磷元素的吸收、釋放和有效性進(jìn)行間接的影響[3]。DeLuca等[4]研究得出,由于生物碳具有一定交換陰陽(yáng)離子的能力,施加生物炭后,通過其與磷元素之間相互作用可以提高土壤中磷的有效性。Chintala等[5]研究發(fā)現(xiàn)生物炭對(duì)磷有吸附作用,且其吸附能力的大小視原料而定??梢姡锾靠梢酝ㄟ^改變土壤理化性質(zhì)或土壤環(huán)境直接或間接影響土壤磷有效性。
以往研究多針對(duì)作物生長(zhǎng)期,關(guān)于中高緯度地區(qū)凍融期生物炭對(duì)有效磷影響的研究則較為少見。在我國(guó)東北地區(qū),凍融交替是春季典型的氣候特征。反復(fù)的“晝?nèi)谝箖觥弊饔脤?dǎo)致土壤結(jié)構(gòu)被破壞,團(tuán)聚體穩(wěn)定性發(fā)生改變,有機(jī)質(zhì)礦化速率高,一些金屬離子濃度和形態(tài)發(fā)生轉(zhuǎn)化[6]。土壤中有效磷因團(tuán)聚體破碎而釋放,而一些金屬離子與有效磷的結(jié)合,又會(huì)直接導(dǎo)致有效磷含量的降低。由于凍融作用使得土壤中有效磷含量極不穩(wěn)定[7-9],進(jìn)而影響作物生長(zhǎng)初期的土壤有效養(yǎng)分供給。生物炭可以通過改變土壤理化性質(zhì)或土壤環(huán)境直接或間接影響土壤磷有效性,但是在東北凍融期,秸稈生物炭輸入是否能夠增加土壤磷素有效性?在反復(fù)凍融作用下,生物炭影響有效磷的機(jī)理是什么?目前尚缺少相關(guān)研究。因此,本研究選取遼寧地區(qū)典型土壤——棕壤為研究對(duì)象,通過室內(nèi)模擬凍融循環(huán)試驗(yàn),研究秸稈生物炭輸入對(duì)凍融期有效磷含量及其相關(guān)指標(biāo)的影響。旨在探明秸稈生物炭還田對(duì)凍融期土壤有效磷的影響及機(jī)理,研究結(jié)果對(duì)東北地區(qū)生物炭還田實(shí)踐和理論方面有一定的意義。
1.1 供試材料
2015年秋收后在沈陽(yáng)農(nóng)業(yè)大學(xué)水利綜合試驗(yàn)基地玉米大田采集土壤。試驗(yàn)區(qū)域位于北緯41°44′,東經(jīng)123°27′,海拔44.7 m,位于沈陽(yáng)市東部。研究地年平均氣溫8.1,冬季平均氣溫-9.6 ℃。多年平均降水量680.3 mm,年無霜期為149 d。冬季土壤最大凍結(jié)深度為148 cm。土壤類型為潮棕壤,成土母質(zhì)為黃土性黏土及淤積物。取土?xí)r地表有部分秸稈覆蓋,取土前一周有少量降雨,土壤含水率為20.31%。在取土處的玉米大田均勻設(shè)置5個(gè)1 m× 1 m的樣方,清理表層作物殘茬后收集每個(gè)樣方的0~10 cm表層土壤,然后將5個(gè)樣方的土壤充分混合后取部分裝袋帶回室內(nèi)。將除去作物葉子、根系和石塊等雜物后的鮮土過孔徑5 mm的土壤篩備用。經(jīng)測(cè)定,供試土壤的田間持水量為37.89%,容重1.28 g cm-3,pH 6.36,有機(jī)質(zhì)13.25 g kg-1,電導(dǎo)率209 S m-1,有效磷15.9 mg kg-1,中性磷酸酶活性(以下簡(jiǎn)稱磷酸酶)94 μg g-1。
本實(shí)驗(yàn)生物炭以東北地區(qū)主要農(nóng)作物廢棄物玉米秸稈為原材料,委托遼寧省生物炭技術(shù)研究中心制備。采用適用地域廣、操作簡(jiǎn)便的專利炭化爐[10]以亞高溫缺氧干餾為原理,于裂解溫度為450℃生產(chǎn)制備。因本實(shí)驗(yàn)為機(jī)理性實(shí)驗(yàn),為使秸稈生物炭更加均勻地與土壤混合,充分發(fā)揮生物炭作用,選取過1 mm篩后的較細(xì)顆粒生物炭作為實(shí)驗(yàn)材料。經(jīng)測(cè)定,生物炭比表面積為0.85 m2g-1,pH 7.74,電導(dǎo)率179.6 S m-1,有效磷19.3 mg kg-1。
1.2 實(shí)驗(yàn)方法
1.2.1 室內(nèi)培養(yǎng)實(shí)驗(yàn) 將生物炭與風(fēng)干后的土壤按炭土比0%(空白對(duì)照)、2%、4%、6%進(jìn)行充分混合,根據(jù)田間0~10 cm土壤容重計(jì)算出以上比例相當(dāng)于田間施用量0、25.6、51.2、76.8 t hm-2(生物炭施加量主要參考近期國(guó)內(nèi)外相關(guān)生物炭和土壤性質(zhì)研究中常用比例[11-14])。將風(fēng)干過篩后按比例添加生物炭的土壤用去離子水調(diào)節(jié)含水率為田間持水量的50%(與采集的鮮土含水率保持一致)。將制備好的土樣2.5 kg放入20 cm× 20 cm×15 cm有機(jī)玻璃培養(yǎng)盒中,于常溫下培養(yǎng)60 d,期間每周定期稱重補(bǔ)水使其含水量保持不變。每個(gè)施加量為一個(gè)處理,每處理設(shè)置三個(gè)重復(fù)。
1.2.2 凍融循環(huán)實(shí)驗(yàn) 培養(yǎng)期結(jié)束后,將土樣置于自制凍融循環(huán)儀(精度為±0.3℃)中進(jìn)行凍融實(shí)驗(yàn)。自然界中表層土壤夜晚會(huì)出現(xiàn)凍結(jié),白天出現(xiàn)消融,所以將凍融循環(huán)設(shè)定為凍結(jié)12 h,融解12 h。根據(jù)2010年以來沈陽(yáng)農(nóng)業(yè)大學(xué)水利學(xué)院綜合實(shí)驗(yàn)基地氣象站監(jiān)測(cè)凍融期持續(xù)時(shí)間以及凍融溫度等數(shù)據(jù),選取30次作為凍融循環(huán)次數(shù),凍融溫差-10~7℃為實(shí)驗(yàn)控制溫度,基本接近田間實(shí)際狀況。為探明凍融過程中土壤磷及其相關(guān)指標(biāo)的變化,在0、1、3、5、10、20、30次凍融循環(huán)結(jié)束后從培養(yǎng)盒中均勻取出一定量土樣進(jìn)行指標(biāo)測(cè)定。凍融實(shí)驗(yàn)過程中將培養(yǎng)盒表面用塑料膜密封以確保含水率不變。
1.3 測(cè)定方法
有效磷采用0.5 mol L-1NaHCO3提取―鉬銻抗比色法測(cè)定[15];pH采用電位法測(cè)定,水土比為2.5∶1[15];電導(dǎo)率采用電導(dǎo)法測(cè)定,水土比為5∶1[15];有機(jī)質(zhì)采用直接加熱消解法測(cè)定[16],是重鉻酸鉀容量法(外加熱法)的一種,將傳統(tǒng)油浴加熱改為在消解裝置中加熱消解。磷酸酶活性采用磷酸苯二鈉比色法測(cè)定,測(cè)定結(jié)果以培養(yǎng)24 h后1 g土壤釋放出酚的質(zhì)量表示[17]。生物炭比表面積采用氣體吸附BET(Brunauer-Emmett-Teller)比表面積檢測(cè)法[18];生物炭pH測(cè)定參照木質(zhì)活性炭pH的測(cè)定方法[19];生物炭電導(dǎo)率測(cè)定參照粉狀活性炭電導(dǎo)率測(cè)定方法[20]。
1.4 數(shù)據(jù)分析
測(cè)定結(jié)果均采用3次重復(fù)(誤差不超過5%)平均值,應(yīng)用Excel 2003和SPSS 18.0軟件進(jìn)行數(shù)據(jù)處理及作圖分析,采用單因素方差分析(oneway ANOVA)對(duì)數(shù)據(jù)進(jìn)行顯著性檢驗(yàn),用皮爾森(Pearson)法分析其相關(guān)性。
2.1 秸稈生物炭輸入對(duì)凍融期棕壤有效磷含量的影響
施加不同量生物炭處理有效磷含量隨凍融循環(huán)次數(shù)變化結(jié)果見表1??傮w而言,0~30次凍融循環(huán)中各處理有效磷含量表現(xiàn)為先增加后減少,而到30次凍融循環(huán)時(shí)又有一定幅度增加的趨勢(shì)。培養(yǎng)結(jié)束后,施加生物炭量2%、4%和6%處理有效磷含量隨生物炭施入量增大而依次增加,且均明顯高于對(duì)照處理20%以上。生物炭本身含有較豐富的磷元素,施入土壤后可以改善土壤養(yǎng)分供應(yīng)[21]。生物炭的多孔性能夠?yàn)槲⑸锷嫣峁┹^大空間,提高微生物分解能力,增加土壤養(yǎng)分含量[12]。各處理0~5次凍融循環(huán)有效磷含量變化不穩(wěn)定,并且在第5次左右達(dá)到最高值。對(duì)照處理以及施加生物炭量2% 和4%處理在第5次凍融循環(huán)后有效磷含量分別為20.54、22.83、23.18 mg kg-1,較各處理未凍融時(shí)分別提高了24%、11.1%和11.2%。施加6%處理前5次凍融循環(huán)間有效磷含量并無顯著性變化。
將生物炭施加水平和凍融循環(huán)次數(shù)對(duì)土壤有效磷含量影響進(jìn)行方差分析,結(jié)果見表2。除在0~5次凍融循環(huán)中凍融次數(shù)對(duì)有效磷含量無顯著性影響外,凍融循環(huán)次數(shù)、生物炭施加量以及二者交互作用對(duì)土壤有效磷含量在各凍融階段(0~5次、5~30次、0~30次)均有極顯著影響。
由此可見,在前期凍融過程中,生物炭輸入并未大幅度提高有效磷含量,甚至將各處理進(jìn)行總體方差分析時(shí),得出凍融作用對(duì)有效磷含量無顯著影響的結(jié)論。分析其原因,主要與土壤團(tuán)聚體有關(guān)。由于凍融作用,團(tuán)聚體受冰晶壓縮而破碎,團(tuán)聚體作為土壤養(yǎng)料庫(kù),包含其中的有效磷因團(tuán)聚體破碎而釋放出來。生物炭在室溫培養(yǎng)時(shí),能增強(qiáng)微生物活性,形成多糖從而增強(qiáng)團(tuán)聚體穩(wěn)定性,所以,在凍融過程中因團(tuán)聚體破碎釋放的有效磷減少[22]。生物炭在凍融初期對(duì)土壤磷素起到固持和保護(hù)作用,減少因解凍期積雪融化而產(chǎn)生的有效磷損失。在第20次凍融循環(huán)后,除對(duì)照處理較未凍融時(shí)無顯著性變化,其他各處理有效磷含量均達(dá)到最低值,較未凍融時(shí)分別降低了18.9%、8.2%和9.5%。土壤經(jīng)過多次凍融后,大部分團(tuán)聚體已經(jīng)破碎,其中可溶性有機(jī)質(zhì)釋放量下降,微生物的分解速率減慢,有效磷含量下降[23]。在30次循環(huán)時(shí),土壤溶液中的養(yǎng)分元素與有機(jī)質(zhì)、微生物體之間保持平衡,土壤有效磷含量基本穩(wěn)定。
各施加量處理間進(jìn)行比較發(fā)現(xiàn):隨著生物炭施加量增多有效磷含量也隨之增大。施加量為2%、4%和6%的土壤中有效磷含量均值分別較對(duì)照增加了10.9%、15.66%和19.62%。所以,生物炭在室溫培養(yǎng)時(shí)可以增加土壤有效態(tài)磷素含量,在凍融過程中又可以相對(duì)減少有效磷素釋放,阻控磷素因積雪融化而造成的淋溶及徑流損失。
表1 不同生物炭施加水平棕壤有效磷含量隨凍融循環(huán)次數(shù)變化Table 1 Variation of soil available P content with freeze-thaw cycles relative to application rate of biochar(mg kg-1)
表2 生物炭施加量與凍融循環(huán)次數(shù)對(duì)有效磷含量的影響(方差分析結(jié)果)Table 2 Effects of biochar application rate and freeze-thaw cycles on the content of available P in the soil(Result of ANOVA)
2.2 秸稈生物炭對(duì)凍融期棕壤pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶的影響
本實(shí)驗(yàn)通過研究生物炭輸入后棕壤pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性等生物化學(xué)性質(zhì)在凍融過程中的變化,分析生物炭對(duì)凍融期土壤有效磷含量影響機(jī)理。培養(yǎng)結(jié)束未進(jìn)行凍融時(shí)各施加水平土壤相關(guān)性質(zhì)見圖1。各施加生物炭處理pH較對(duì)照處理均有明顯提高,但施炭處理間無顯著差異。3個(gè)施加生物炭處理土壤電導(dǎo)率與對(duì)照相比分別增加了19.7%、20.2%和26.8%。各施加處理有機(jī)質(zhì)含量明顯高于對(duì)照處理,但4%與6%施加處理間無顯著差異。3種施加量土壤磷酸酶活性分別較對(duì)照增大了16.3%、62.2%和134%。由此可見,在常溫培養(yǎng)時(shí),生物炭輸入對(duì)pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性均有顯著影響。
凍融作用以及生物炭施加水平對(duì)相關(guān)土壤性質(zhì)影響的方差分析結(jié)果見表3。從表3可以看出,生物炭施加除對(duì)5~30次凍融循環(huán)階段土壤有機(jī)質(zhì)含量無顯著性影響外,對(duì)各凍融階段其他指標(biāo)均有顯著性影響。凍融作用對(duì)土壤酸堿度和有機(jī)質(zhì)含量影響較顯著,但是對(duì)電導(dǎo)率、磷酸酶活性影響不顯著。凍融作用會(huì)引起土壤中碳酸鈉和碳酸氫鈉等強(qiáng)堿弱酸鹽類的遷移,這些鹽類水解會(huì)產(chǎn)生OH-,改變土壤酸堿度[24]。土壤團(tuán)聚體受凍融作用影響而破碎,其中包含的有機(jī)質(zhì)得以釋放出來,所以有機(jī)質(zhì)受凍融作用影響明顯[25]。土壤有機(jī)質(zhì)分解物是土壤酶類的主要來源,隨著有機(jī)質(zhì)含量的變化,磷酸酶含量也發(fā)生變化。但是在設(shè)定30次凍融循環(huán)中,由于設(shè)置凍融溫度上限為7℃,低于磷酸酶發(fā)揮作用的最適溫度,所以磷酸酶活性并未隨凍融循環(huán)發(fā)生顯著變化[26]。
2.3 凍融期棕壤有效磷與pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶的相關(guān)性
不同凍融循環(huán)階段土壤有效磷含量與pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性相關(guān)分析結(jié)果見表4。從表4可以看出,在室溫培養(yǎng)時(shí),土壤pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性與有效磷含量均呈現(xiàn)顯著相關(guān)關(guān)系;但是在開始凍融后,各土壤性質(zhì)與土壤有效磷含量相關(guān)性并非一直保持顯著水平。
在凍融循環(huán)各階段,有機(jī)質(zhì)含量與有效磷含量均呈顯著正相關(guān)關(guān)系。在1~5次凍融循環(huán)階段,土壤溫度、通氣性和水分等土壤性質(zhì)由于凍融循環(huán)的作用發(fā)生突然性的改變。土壤水分由固態(tài)到液態(tài)反復(fù)轉(zhuǎn)化,增加了土壤通氣性。由于通氣狀況改善,微生物活性迅速恢復(fù),降解凍結(jié)過程中已死亡細(xì)菌中的有機(jī)質(zhì),轉(zhuǎn)化為可利用磷素[27]。此外,凍融過程中團(tuán)聚體破碎釋放有機(jī)質(zhì)。有機(jī)質(zhì)作為磷素的主要載體及微生物生長(zhǎng)繁殖的重要能源物質(zhì),促使微生物的分解能力增強(qiáng),有效磷含量增加。在5~30次凍融循環(huán)中,大部分團(tuán)聚體已經(jīng)破碎,其中可溶性有機(jī)質(zhì)釋放量下降,而原有有機(jī)質(zhì)一直被微生物利用分解。隨著有機(jī)質(zhì)含量的持續(xù)減少,微生物的分解速率減慢,有效磷含量下降[28]??梢钥闯觯谡麄€(gè)凍融過程中,有機(jī)質(zhì)是影響有效磷變化的一個(gè)重要指標(biāo)。
圖1 未進(jìn)行凍融循環(huán)時(shí)生物炭施加對(duì)pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性影響Fig. 1 Effect of biochar on pH value,EC,organic matter and phosphatase activity in soils without undergoing freeze-thaw cycles
表3 凍融作用與生物炭施加對(duì)不同凍融階段pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性影響(方差分析結(jié)果)Table 3 Effects of freeze-thaw cycles and biochar application rate on pH,EC,organic matter and phosphatase activity during different stage of freezing and thawing period(Result of ANOVA)
表4 不同凍融循環(huán)階段土壤有效磷與pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性間的相關(guān)系數(shù)Table 4 Correlation coefficients of soil available phosphatase with soil pH,EC,organic matter and phosphatase activity in the soil relative to phase of the freezing and thawing cycles
土壤電導(dǎo)率表示土壤浸出液中各種陰離子和陽(yáng)離子的總和[29]。由表4可知,在各凍融期土壤電導(dǎo)率與有效磷含量也均呈顯著正相關(guān)關(guān)系。其原因也與凍融過程中團(tuán)聚體破壞有關(guān)。凍融初期大部分團(tuán)聚體破壞致使各種離子從團(tuán)聚體中釋放出來,土壤電導(dǎo)率以及有效磷含量增大;凍融后期大部分團(tuán)聚體已經(jīng)破壞,各種離子濃度趨于穩(wěn)定[28]。此外電導(dǎo)率升高,水中離子總濃度增加,水溶液中的陰離子與膠體吸附的磷相互競(jìng)爭(zhēng)吸附位置,使膠體吸附的磷被解吸下來而進(jìn)入水溶液中,因而水溶液中磷素的濃度升高[30]。但是,由于電導(dǎo)率在凍融循環(huán)過程中變化并未表現(xiàn)出明顯規(guī)律,所以凍融作用對(duì)其并無顯著影響。在常溫培養(yǎng)時(shí),磷酸酶可催化磷酸脂類或磷酸酐的水解,其活性的高低直接影響著土壤有機(jī)磷的分解轉(zhuǎn)化及其生物有效性。但是由于凍融期溫度較低,磷酸酶活性與有效磷在凍融期并無顯著相關(guān)關(guān)系。
秸稈生物炭輸入可以明顯提高凍融前棕壤有效磷的含量。有效磷含量隨生物炭施入量增加而提高。在0~5次凍融過程中,生物炭輸入并未大幅度提高有效磷含量;在第20次凍融循環(huán)后,除對(duì)照處理較未凍融時(shí)無顯著性變化,其他各處理有效磷含量均達(dá)到最低值;在30次循環(huán)時(shí),土壤溶液中的養(yǎng)分元素與有機(jī)質(zhì)和微生物體之間保持平衡,土壤有效磷含量基本穩(wěn)定。分析生物炭輸入后棕壤pH、電導(dǎo)率、有機(jī)質(zhì)和磷酸酶活性等相關(guān)生物化學(xué)性質(zhì)在凍融過程中的變化,可知,有機(jī)質(zhì)含量在凍融循環(huán)過程中變化顯著且與有效磷含量具有顯著相關(guān)性。綜上,在凍融期生物炭主要通過增強(qiáng)棕壤團(tuán)聚體穩(wěn)定性,減少有機(jī)質(zhì)釋放來固持土壤磷素,減少磷素在融雪期的淋溶及徑流損失。
[1]Soinne H,Hovi J,Tammeorg P,et al. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma,2014,219/220∶162—167
[2]劉園,Jamal Khan M,靳海洋,等. 秸稈生物炭對(duì)潮土作物產(chǎn)量和土壤性狀的影響. 土壤學(xué)報(bào),2015,52 (4):849—858
Liu Y,Jamal Khan M,Jin H Y,et al. Effects of successive application of crop-straw biochar on crop yield and soil properties in Cambosols(In Chinese). Acta Pedologica Sinica,2015,52(4):849—858
[3]Atkinson C J,F(xiàn)itzgerald J D,Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:A review. Plant and Soil,2010,337(1/2):1—18
[4]DeLuca T H,MacKenzie M D,Gundale M J,et al. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal,2006,70(2):448—453
[5]Chintala R,Schumacher T E,McDonald L M,et al. Phosphorus sorption and availability from biochars and soil / biochar mixtures. Clean-Soil,Air,Water,2014,42(5):626—634
[6]孫躍嘉,田甜,何娜,等. 凍融周期對(duì)棕壤性質(zhì)及砷吸附解吸特性的影響. 生態(tài)環(huán)境學(xué)報(bào),2016,25(4):724—728
Sun Y J,Tian T,He N,et al. Effects of freeze-thaw on soil characters and arsenate adsorption and desorption (In Chinese). Ecology and Environmental Sciences,2016,25(4):724—728
[7]李壘,孟慶義. 凍融作用對(duì)土壤磷素遷移轉(zhuǎn)化影響研究進(jìn)展. 生態(tài)環(huán)境學(xué)報(bào),2013,22(6):1074—1078
Li L,Meng Q Y. Reviews of phosphorus transport and transformation in soil under freezing and thawing actions (In Chinese). Ecology and Environmental Sciences,2013,22(6):1074—1078
[8]喬思宇,周麗麗,范昊明,等. 凍融條件下黑土無機(jī)磷分級(jí)及有效性研究. 土壤,2016,48(2):259—264
Qiao S Y,Zhou L L,F(xiàn)an H M,et al. Classification and efficiency of inorganic phosphorus in black soil under freezing and thawing conditions(In Chinese). Soils,2016,48(2):259—264
[9]孫輝,秦紀(jì)洪,吳楊. 土壤凍融交替生態(tài)效應(yīng)研究進(jìn)展. 土壤,2008,40(4):505—509
Sun H,Qin J H,Wu Y. Freeze-thaw cycles and their impacts on ecological process:A Review(In Chinese). Soils,2008,40(4):505—509
[10]陳溫福. 簡(jiǎn)易玉米芯顆粒炭化爐及其生產(chǎn)方法. 200710086505.4.2007-10-03
Chen W F. Simple corn cob granule carbonization furnace and its production method(In Chinese). 200710086505.4. 2007-10-03
[11]Novak J M,Busscher W J,Laird D L,et al. Impact of biochar amendment on fertility of a southeastern Coastal Plain soil. Soil Science,2009,174(2):105—112
[12]張文玲,李桂花,高衛(wèi)東. 生物質(zhì)炭對(duì)土壤性狀和作物產(chǎn)量的影響. 中國(guó)農(nóng)學(xué)通報(bào),2009,25(17):153—157
Zhang W L,Li G H,Gao W D. Effect of biomass charcoal on soil character and crop yield(In Chinese). Chinese Agricultural Science Bulletin,2009,25 (17):153—157
[13]Yan G Z,Shima K,F(xiàn)ujiwara S,et al. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition. Journal of the Japanese Society of Revegetation Technology,2004,30(1):33—38
[14]唐光木,葛春輝,徐萬里,等. 施用生物黑炭對(duì)新疆灰漠土肥力與玉米生長(zhǎng)的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(9):1797—1802
Tang G M,Ge C H,Xu W L,et al. Effect of applying biochar on the quality of grey desert soil and maize cropping in Xinjiang,China(In Chinese). Journal of Agro-Environment Science,2011,30(9):1797—1802
[15]鮑士旦. 土壤農(nóng)化分析. 北京:中國(guó)農(nóng)業(yè)出版社,2000
Bao S D. Analysis of soil and agrochemistry(In Chinese). Beijing:China Agriculture Press,2000
[16]楊冬雪,金芳澄. 直接加熱消解法測(cè)定土壤底質(zhì)中的有機(jī)質(zhì). 中國(guó)環(huán)境監(jiān)測(cè),1999(3):38—39
Yang D X,Jin F C. A directly heating method for determining the organism in soils and base-muds(In Chinese). Environmental Monitoring in China,1999 (3):38—39
[17]關(guān)松蔭. 土壤酶及其研究法. 北京:農(nóng)業(yè)出版社,1983
Guan S Y. Soil enzymes and its research methods. Beijing:Agriculture Press,1983
[18]中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局 中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 氣體吸附BET法測(cè)定固態(tài)物質(zhì)比表面積:GB/T19587-2004. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2005
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China(AQSIQ). Standardization Administration of the People’s Republic of China(SIC).Determination of the specific surface area of solids by gas adsorption using the BET method(In Chinese):GB/T19587-2004. Beijing:China Standards Press,2005
[19]國(guó)家質(zhì)量技術(shù)監(jiān)督局. 木質(zhì)活性炭試驗(yàn)方法pH的測(cè)定:GB/t12496.7-1999. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2000
The State Bureau of Quality and Technical Supervision. Test Methods of Wooden Activated Carbon-Determination of pH(In Chinese): GB/t12496.7-1999. Beijing:China Standards Press,2000
[20]中華人民共和國(guó)國(guó)家林業(yè)局. 活性炭水萃取液電導(dǎo)率測(cè)定方法:LY/T 1616-2004. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2004
State Forestry Bureau of the People’s Republic of China. Determination of electric conductivity of aqueous extract from activated carbon(In Chinese):LY/T 1616-2004. Beijing:China Standards Press,2004
[21]袁金華,徐仁扣. 生物質(zhì)炭的性質(zhì)及其對(duì)土壤環(huán)境功能影響的研究進(jìn)展. 生態(tài)環(huán)境學(xué)報(bào),2011,20(4):779—785
Yuan J H,Xu R K. Progress of the research on the properties of biochars and their influence on soil environmental functions(In Chinese). Ecology & Environmental Sciences,2011,20(4):779—785
[22]Herrmann A,Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology & Biochemistry,2002,34(10):1495—1505
[23]周麗麗,黃東浩,范昊明,等. 凍融作用對(duì)東北黑土磷素吸附—解吸過程的影響. 水土保持通報(bào),2014,34 (6):27—31
Zhou L L,Huang D H,F(xiàn)an H M,et al. Effects of freezing-thawing cycles on phosphorus adsorption and desorption characteristics in black soil of NortheastChina(In Chinese). Bulletin of Soil & Water Conservation,2014,34(6):27—31
[24]羅金明,鄧偉,張曉平,等. 凍融季節(jié)蘇打鹽漬土的水鹽變化規(guī)律. 水科學(xué)進(jìn)展,2008,19(4):559—566
Luo J M,Deng W,Zhang X P,et al. Variation of water and salinity in sodic saline soil during frozen-thawing season(In Chinese). Advances in Water Science,2008,19(4):559—566
[25]Hassink J. Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biology & Fertility of Soils,1992,14(2):126—134
[26]楊濱娟,黃國(guó)勤,錢海燕. 秸稈還田配施化肥對(duì)土壤溫度、根際微生物及酶活性的影響. 土壤學(xué)報(bào),2014,51(1):150—157
Yang B J,Huang G Q,Qian H Y. Effects of straw incorporation plus chemical fertilizer on soil temperature,root micro-organisms and enzyme activities(In Chinese). Acta Pedologica Sinica,2014,51(1):150—157
[27]Yanai Y,Toyota K,Okazaki M. Effects of successive soil freeze-thaw cycles on nitrification potential of soils. Soil Science & Plant Nutrition,2004,50(6):831—837
[28]范昊明,靳麗,周麗麗,等. 凍融循環(huán)作用對(duì)黑土有效磷含量變化的影響. 水土保持通報(bào),2015,35(3):18—22
Fan H M,Jin L,Zhou L L,et al. Influence of freezing and thawing on available phosphorus content of black soil(In Chinese). Bulletin of Soil & Water Conservation,2015,35(3):18—22
[29]劉廣明,楊勁松. 土壤含鹽量與土壤電導(dǎo)率及水分含量關(guān)系的試驗(yàn)研究. 土壤通報(bào),2001,32(s1):85—87
Liu G M,Yang J S. Study on the correlation of soil salt content with electric conductivity and soil water content (In Chinese). Chinese Journal of Soil Science,2001,32(s1):85—87
[30]付春平,鐘成華,鄧春光. 水溶液電導(dǎo)率與三峽庫(kù)區(qū)底泥氮磷釋放關(guān)系研究. 重慶建筑大學(xué)學(xué)報(bào),2006,28 (4):76—78
Fu C P,Zhong C H,Deng C G. Experimental study on the relationship between nitrogen and phosphorus release of the Three Gorges bottom silt and the electrical conductivity of water solution(In Chinese). Journal of Chongqing Jianzhu University,2006,28(4):76—78
Effect of Straw Biochar on Availability of Phosphorus in Brown Soil during the Freezing and Thawing Period
ZHOU Lili LI Jingnan MI Caihong?FAN Haoming MA Shiwei SHAO Jingyu
(College of Water Conservancy,Shenyang Agricultural University,Shenyang 110866,China)
【Objective】Straw biochar is a kind of carbon-rich material prepared through pyrolysis under high temperature in anoxic condition. Its application may directly or indirectly affect availability of soil phosphorus in the soil through altering soil physicochemical properties or soil environment during the crop-growing season. Freezing and thawing alternation is a common climate phenomenon in Northeast China. Frequent occurrence of such a phenomenon in the spring causes changes in soil properties like soil structure,thus leading to drastic variation of soil available phosphorus content. However,so far little has been reported about the effect and mechanism of biochar affecting availability of soil phosphorus during the freeze-thaw season. In this study,an indoor simulation experiment was conducted to explore rule and mechanism of biochar affecting availability of soil phosphorus in the brown earth of Northeast China during the freeze-thaw cycle and its impact on soil nutrient suppling capacity during the early crop growing season in the region. The findings in this study may have some significance to guiding the theoretic study on use of biochar practice of and theoretic study of use of biochar in Northeast China. 【Method】Soil samples were collected from a maize field in the Comprehensive Field Experiment Base of the College of Water Conservancy,Shenyang Agricultural University,after the harvest in 2015,and then air-dried and sifted for future use. Biochar was prepared out of maize stalk and ground to pass a 1 mm sieve. Then the biochar was blended with air-driedsoil samples at a rate of 0%(0﹕100),2%,4% and 6%,separately. The mixtures were them packed,separately,into 20 cm×20 cm×15 cm plexiglass boxes,2.5 g each,constituting four treatments and three replicates each. All the samples in the boxes were incubated under room temperature for 60 days. During the incubation,the samples were kept wet with soil moisture content being 50% of the soil water holding capacity by adding distilled water weekly. After the incubation,the soil samples were subjected to 30 cycles of simulated freezing-thawing with temperature varying between -10℃ and 7℃. A set amount of the soil sample in each box was retrieved after 0,1,3,5,10,20 and 30 cycles of freezing-thawing for determination of soil properties,including content of readily available phosphorus,pH,organic matter,electric conductivity and activity of phosphatase.【Result】(1)The effect of the alternation of freezing and thawing was extremely significant on content of soil available phosphorus during all the phases of the treatment(0~5 cycles,5~30 cycles and 0~30 cycles),relative to number of freeze-thaw cycles,biochar application rate and their interactions,except for the first five cycles.(2)After the incubation,the content of available phosphorus was increased by 24.0%,25.7% and 42.5% in Treatments 2%,4% and 6% as compared with CK separately. Obviously the effect increased with rising biochar application rate. The effect peaked during the 5th cycle,however,the increment declined with rising biochar application rate. Around the 20th cycle,the contents of available phosphorus in all the treatments dropped down to relative valleys,available phosphorus and even lower that that in the treatments applied with biochar and incubated under room temperature,which indicates that biochar increased the content of available phosphous under room temperature,while the freeze-thaw cycles helped boichar fix soil phosphorus,as compared with CK,thus reducing the risk of phosphorus loss with melting snow.(3)The analysis of responses of biochemical properties of the soil,such as soil pH,EC,organic matter and phosphatase activity,to freezing and thawing cycles and relationship of soil available phosphorus with phases of the freeze-thaw cycles reveals that the content of organic matter varied sharply with the freeze-thaw cycle going on and was closely related to soil available phosphorus.【Conclusion】Through enhancing the stability of soil aggregates,biochar helps soil organic matter hold soil phosphorus by reducing its release. During the freeze-thaw cycles,biochar helps fix soil P and reduce P loss with thawing snow.
Biochar;Freezing and thawing;Brown soil;Available P;Organic matter
S158
A
10.11766/trxb201606120232
(責(zé)任編輯:陳榮府)
* 國(guó)家自然科學(xué)基金項(xiàng)目(41471225)、遼寧省農(nóng)業(yè)領(lǐng)域青年科技創(chuàng)新人才培養(yǎng)計(jì)劃(2014054)和遼寧省高等學(xué)校優(yōu)秀人才支持計(jì)劃(LJQ2013074)共同資助 Supported by the National Natural Science Foundation of China(No. 41471225),the Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province(No. 2014054)and the Talents Support Program of Higher Learning Institutions in Liaoning Province of China(No. LJQ2013074)
? 通訊作者 Corresponding author,E-mail:micaihong@126.com
周麗麗(1979—),女,博士,副教授。主要研究方向:流域治理與水土保持。E-mail:zhoulilia@163.com
2016-06-12;
2016-09-25;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-10-12