江春玉劉 萍,2劉 明吳 萌李忠佩?
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008)(2 中國(guó)科學(xué)院大學(xué),北京 100049)
不同肥力紅壤水稻土根際團(tuán)聚體組成和碳氮分布動(dòng)態(tài)*
江春玉1劉 萍1,2劉 明1吳 萌1李忠佩1?
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京 210008)(2 中國(guó)科學(xué)院大學(xué),北京 100049)
研究水稻種植期間表層土壤團(tuán)聚體數(shù)量及其有機(jī)碳、全氮含量的變化,對(duì)揭示人為耕作的影響、認(rèn)知土壤肥力的演變規(guī)律具有重要意義。選擇兩種不同肥力的紅壤性水稻土進(jìn)行田間根袋試驗(yàn),分別于水稻插秧前、分蘗期、孕穗期和成熟期采樣,分析了水稻生長(zhǎng)過(guò)程中根際和非根際土壤團(tuán)聚體組成、穩(wěn)定性以及有機(jī)碳、全氮分布的動(dòng)態(tài)變化。結(jié)果表明,低肥力土壤團(tuán)聚體以>0.25 mm大團(tuán)聚體為主(56.2%~64.0%),0.25~1 mm粒級(jí)團(tuán)聚體含量最高;除1~2 mm粒級(jí)外,水稻生育期內(nèi)根際土壤各粒級(jí)團(tuán)聚體含量均有顯著變化;取樣時(shí)期、根際作用與取樣時(shí)期的交互效應(yīng)對(duì)0.25~1 mm和0.053~0.25 mm粒級(jí)含量有顯著影響。高肥力土壤中以<0.25 mm微團(tuán)聚體為主(59.8%~72.0%),0.053~0.25 mm粒級(jí)團(tuán)聚體比例最高,取樣時(shí)期顯著影響>0.25 mm大團(tuán)聚體含量,根際作用與取樣時(shí)期的交互效應(yīng)對(duì)>2 mm粒級(jí)含量有極顯著影響。與非根際相比,根際土壤大團(tuán)聚體的破壞率較低,平均重量直徑(MWD)較高,種植水稻有助于提高根際土壤的穩(wěn)定性。兩種肥力土壤團(tuán)聚體中有機(jī)碳和全氮含量均表現(xiàn)為1~2 mm粒級(jí)最高,0.053~0.25 mm粒級(jí)最低,大團(tuán)聚體中顯著高于微團(tuán)聚體。根際土壤中,水稻成熟期各粒級(jí)團(tuán)聚體有機(jī)碳含量與插秧前無(wú)顯著差異,而分蘗期和孕穗期有明顯波動(dòng);水稻的生長(zhǎng)降低了大團(tuán)聚體中的全氮含量,對(duì)高肥力土壤的影響更為顯著。總體而言,低肥力土壤中,根際作用主要影響團(tuán)聚體組成和穩(wěn)定性,取樣時(shí)期影響團(tuán)聚體碳氮含量;高肥力土壤中,團(tuán)聚體組成和碳氮分布受根際作用和取樣時(shí)期的共同影響。
紅壤水稻土;團(tuán)聚體;生育期;有機(jī)碳;全氮
土壤團(tuán)聚體是土壤結(jié)構(gòu)的重要物質(zhì)基礎(chǔ)和肥力的重要載體,其組成和穩(wěn)定性直接影響了土壤理化性質(zhì),進(jìn)而影響農(nóng)作物生長(zhǎng)。以250 μm 為界限,團(tuán)聚體被分為大團(tuán)聚體(Macroaggregates)和微團(tuán)聚體(Microaggregates)。不同粒級(jí)團(tuán)聚體在養(yǎng)分的保持、供應(yīng)及轉(zhuǎn)化能力等方面發(fā)揮著不同的作用[1]。紅壤性水稻土發(fā)育于紅壤,質(zhì)地黏重,酸度較高,是我國(guó)南方稻作區(qū)主要土壤類型。但是相同母質(zhì)和種植制度下,水熱條件接近,紅壤水稻土團(tuán)聚體組成和碳氮分布卻存在較大差異。鷹潭和桃源生態(tài)試驗(yàn)站長(zhǎng)期定位試驗(yàn)的紅壤水稻土以大團(tuán)聚體為主,有機(jī)碳氮主要分布在較大粒級(jí)團(tuán)聚體上[2-3];千煙洲生態(tài)試驗(yàn)站紅壤水稻土團(tuán)聚體分布以<63 μm的粉砂和黏粒為主[4],湖南省望城縣長(zhǎng)期定位試驗(yàn)紅壤水稻土團(tuán)聚體內(nèi)有機(jī)碳含量隨團(tuán)聚體粒徑減小而增加[5]。水稻土是長(zhǎng)期人為水耕熟化、淹水種稻而形成的一種特殊土壤類型,土壤利用年限和人為管理措施差異引起的土壤肥力性狀變化可能是造成這一現(xiàn)象的原因之一,但具體的形成機(jī)制尚不明確。
根際(rhizosphere)是作物、土壤和微生物相互作用的中心,是作物和土壤環(huán)境之間物質(zhì)和能量交換最活躍的區(qū)域。因?yàn)橹参锏母H沉積效應(yīng),根際土壤的許多物理化學(xué)條件和生物化學(xué)過(guò)程不同于普通土體[6],進(jìn)而影響土壤團(tuán)聚化作用。有機(jī)物質(zhì)的連續(xù)供給和微生物生物量的增加,使得根際土壤及黏土和細(xì)粉組分中碳含量更高[7]。但是,已有報(bào)道主要采集非栽培期的土壤進(jìn)行土壤團(tuán)聚體有機(jī)碳分布研究,而且主要針對(duì)有機(jī)肥施用和耕作管理等外部調(diào)控措施的影響,很少關(guān)注作物生育期內(nèi)根際土壤中團(tuán)聚體組成的動(dòng)態(tài)變化和差異。比較水稻生長(zhǎng)過(guò)程中根際和非根際土壤團(tuán)聚體組成和有機(jī)碳氮分布的變化,將有助于深入認(rèn)識(shí)植物―土壤的互作關(guān)系和農(nóng)田土壤質(zhì)量變化。
本研究選擇南方典型地帶性土壤——紅壤水稻土為研究對(duì)象,探討土壤肥力水平和水稻生長(zhǎng)過(guò)程對(duì)根際和非根際土壤團(tuán)聚體組成和有機(jī)碳氮分布的影響,以期為揭示土壤肥力形成和變化的規(guī)律提供重要的理論依據(jù)。
1.1 供試土壤
供試土壤采自鷹潭農(nóng)田生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站附近的典型稻田,采樣田塊地理坐標(biāo)分別為28°12′01″N、116°56′02″E和28°12′02″N、116°55′50″E。2012年3月在選定的田塊上通過(guò)多點(diǎn)混合采集0~15 cm 耕層土樣,樣品經(jīng)風(fēng)干,挑去細(xì)根和石塊等,過(guò)10 mm篩備用。供試土壤均為第四紀(jì)紅色黏土發(fā)育的水稻土,屬于簡(jiǎn)育水耕人為土,基本理化性狀如表1所示。土樣S1的有機(jī)碳和養(yǎng)分含量均低于土樣S2,水稻種植年限為15年左右,肥力水平較低;土樣S2水稻種植年限超過(guò)50年,水肥管理較好,為當(dāng)?shù)刂懈叻柿Φ募t壤水稻土。
表1 供試紅壤水稻土的基本理化性狀Table 1 Physical and chemical properties of the studied red paddy soils
1.2 實(shí)驗(yàn)設(shè)計(jì)
田間根袋試驗(yàn)在鷹潭農(nóng)田生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站內(nèi)進(jìn)行。根袋由內(nèi)外2層300目的尼龍布制成,內(nèi)袋直徑12 cm,用以區(qū)分根際土和非根際土;外袋直徑20 cm,用以區(qū)分供試土壤和田間土壤;袋高22 cm,袋口由尼龍繩收口(圖1所示)。將兩種不同肥力的土壤分別裝入根袋中,內(nèi)袋裝土2.4 kg,外袋裝土3.6 kg,裝土高度為15 cm,然后將根袋埋入田間,與田間土壤一起淹水處理。選擇高度、粗細(xì)較一致的水稻秧苗(水稻品種為金早47)插入內(nèi)袋中,每袋種一穴兩株。施肥量參照當(dāng)?shù)氐某R?guī)施肥量(每公頃施N 115 kg,P2O568 kg和K2O 42 kg),每袋按占地面積0.04 m2計(jì),施底肥尿素0.53 g、鈣鎂磷肥2.27 g、氯化鉀0.27 g,分蘗期追肥尿素0.47 g。分別于插秧前(P1)、分蘗期(P2)、孕穗期(P3)和成熟期(P4)進(jìn)行采樣,每次每種土壤采集3個(gè)根袋。采集的根袋運(yùn)回室內(nèi)后剪開(kāi),內(nèi)外兩層中的土壤分別晾干至不粘手狀態(tài),然后用手將土樣沿自然結(jié)構(gòu)面掰成直徑約1 cm的小塊,使土樣能通過(guò)10 mm 的篩孔。
圖1 根袋示意圖Fig. 1 Sketch of the root bag used in the experiment
1.3 土壤團(tuán)聚體分級(jí)
土壤團(tuán)聚體的分級(jí)采用干篩與濕篩相結(jié)合的方法。干篩參照中國(guó)科學(xué)院南京土壤研究所土壤物理研究室方法[8],土樣風(fēng)干后用不銹鋼套篩振蕩進(jìn)行干篩,分別得到>5 mm、2~5 mm、1~2 mm、0.5~1 mm、0.25~0.5 mm 和 <0.25 mm 的六級(jí)機(jī)械穩(wěn)定性土壤團(tuán)聚體。根據(jù)干篩獲得的各級(jí)團(tuán)聚體百分比,配成質(zhì)量為100 g(精確至0.01 g)的土樣用于濕篩分析。濕篩參照Elliott[9]的方法:土樣放置于孔徑為2 mm的不銹鋼篩上,室溫下蒸餾水浸泡10 min,然后分別通過(guò)1 mm、0.25 mm和0.053 mm的不銹鋼篩,豎直上下振蕩50次,收集各級(jí)土篩上的土壤,獲得>2 mm、1~2 mm、0.25~1 mm和0.053~0.25 mm的水穩(wěn)性土壤團(tuán)聚體,<0.053 mm的團(tuán)聚體通過(guò)將溶液沉降、離心獲得。將各級(jí)篩層中的土粒轉(zhuǎn)移至燒杯中,自然晾干后測(cè)定有機(jī)碳和全氮含量,部分烘干稱重計(jì)算各粒徑團(tuán)聚體的比例和團(tuán)聚體破壞率(PAD,%)。
1.4 測(cè)定方法及計(jì)算
土壤有機(jī)碳測(cè)定用高溫外加熱重鉻酸鉀氧化-容量法,全氮用半微量凱氏法測(cè)定[10]。
各級(jí)團(tuán)聚體的百分含量=各處理中該級(jí)團(tuán)聚體質(zhì)量/各處理土壤樣品總質(zhì)量×100%。采用>0.25 mm水穩(wěn)性團(tuán)聚體、團(tuán)聚體平均質(zhì)量直徑(Mean weight diameter,MWD)和團(tuán)聚體破壞率來(lái)衡量團(tuán)聚體穩(wěn)定性。
團(tuán)聚體破壞率(PAD,%)=(>0.25 mm機(jī)械穩(wěn)定性團(tuán)聚體->0.25 mm水穩(wěn)性團(tuán)聚體)/>0.25 mm機(jī)械穩(wěn)定性團(tuán)聚體×100
團(tuán)聚體對(duì)土壤碳氮的貢獻(xiàn)率(%)=(該級(jí)團(tuán)聚體中碳氮含量×該級(jí)團(tuán)聚體的百分含量)/ 全土中碳氮含量×100。
采用 Microsoft Excel 軟件對(duì)數(shù)據(jù)進(jìn)行處理,SPSS 19.0 數(shù)據(jù)分析系統(tǒng)進(jìn)行統(tǒng)計(jì)分析,采用單因素方差分析(one-way ANOVA)測(cè)驗(yàn)處理間差異顯著性(p<0.05),重復(fù)測(cè)量方差分析(repeated measures ANOVA)檢驗(yàn)取樣時(shí)期對(duì)處理的影響。
2.1 水穩(wěn)性團(tuán)聚體的分布動(dòng)態(tài)
土壤團(tuán)聚體的數(shù)量和大小分布影響著土壤質(zhì)量。圖2為不同生育期水稻根際和非根際土壤中水穩(wěn)性團(tuán)聚體的質(zhì)量分?jǐn)?shù)。低肥力土壤(S1)中,>2 mm、1~2 mm、0.25~1 mm、0.053~0.25 m m及<0.0 5 3 m m粒級(jí)團(tuán)聚體含量分別為19.2%~29.7%、7.3%~10.4%、24.2%~32.0%、20.7%~26.8%和15.1%~20.6%,1~2 mm粒級(jí)的團(tuán)聚體比例較低。內(nèi)袋根際土中,>2 mm粒級(jí)團(tuán)聚體在水稻生育期表現(xiàn)為先增后減,孕穗期比插秧前增加53.1%,0.25~1 mm粒級(jí)團(tuán)聚體在分蘗期降低后至成熟期無(wú)顯著變化;與插秧前相比,水稻成熟期>2 mm、0.25~1 mm和0.053~0.25 mm粒級(jí)團(tuán)聚體含量均有顯著變化。外袋非根際土中,水稻生育期間各粒級(jí)團(tuán)聚體含量基本保持不變。分蘗期、孕穗期和成熟期,根際土壤>2 mm粒級(jí)含量顯著高于非根際土壤,1~2 mm和0.25~1 mm含量顯著低于非根際土壤。重復(fù)測(cè)量方差分析結(jié)果表明,取樣時(shí)期、根際作用與取樣時(shí)期的交互效應(yīng)對(duì)0.25~1 mm和0.053~0.25 mm粒級(jí)含量有顯著影響(p<0.05),對(duì)其他粒級(jí)影響不顯著。
高肥力土壤(S2)中,由大到小各粒級(jí)團(tuán)聚體含量分別為1.3%~3.5%、2.5%~4.4%、22.8%~33.8%、34.6%~48.1%和23.6%~25.2%,0.053~0.25 mm粒級(jí)的團(tuán)聚體比例最高,>2 mm 和1~2 mm粒級(jí)的團(tuán)聚體含量最低。水稻生長(zhǎng)期間,內(nèi)外根袋中>2 mm和1~2 mm粒級(jí)均表現(xiàn)為先增后減,種植一季水稻后比種植前顯著提高;分蘗期0.053~0.25 mm粒級(jí)團(tuán)聚體向大團(tuán)聚體轉(zhuǎn)移,孕穗期其比例顯著升高(p <0.05)。根際土壤中,>2 mm粒級(jí)團(tuán)聚體含量在分蘗期、孕穗期和成熟期均顯著高于非根際土壤;0.25~1 mm和0.053~0.25 mm粒級(jí)團(tuán)聚體含量在孕穗期顯著高于非根際土壤(p <0.05),其他粒級(jí)差異不顯著。重復(fù)測(cè)量方差分析結(jié)果表明,取樣時(shí)期對(duì)>2 mm 和1~2 mm粒級(jí)含量有極顯著影響(p <0.01),對(duì)0.25~1 mm含量有顯著影響(p <0.05);根際作用和取樣時(shí)期的交互效應(yīng)對(duì)>2 mm粒級(jí)含量有極顯著影響(p <0.01)。
圖2 水稻種植期間土壤水穩(wěn)性團(tuán)聚體組成變化Fig. 2 Change of water-stable aggregates in composition during the rice cultivation season
2.2 土壤肥力和水稻種植對(duì)土壤團(tuán)聚體穩(wěn)定性的影響
通常認(rèn)為>0.25 mm 的大團(tuán)聚體是土壤團(tuán)粒結(jié)構(gòu)體,其數(shù)量與土壤肥力狀況呈正相關(guān)。水稻種植期間水穩(wěn)性大團(tuán)聚體的含量變化如表2所示,低肥力土壤中大團(tuán)聚體含量為56.2%~64.3%,顯著高于高肥力土壤(p <0.05)。孕穗期根際土中大團(tuán)聚體含量顯著高于非根際土,根際作用影響水稻生長(zhǎng)中后期土壤大團(tuán)聚體含量。兩種非根際土壤中大團(tuán)聚體含量變化規(guī)律并不相同,低肥力土壤中基本保持不變,高肥力土壤中隨季節(jié)變化較大。
團(tuán)聚體破壞率和MWD值表征團(tuán)聚體對(duì)水的穩(wěn)定性。由表3可以看出,低肥力土壤中大團(tuán)聚體的破壞率為34.2%~42.1%,顯著低于高肥力土壤(p <0.05)。根際土壤中大團(tuán)聚體的破壞率低于非根際土壤,在孕穗期達(dá)極顯著水平,根系的生長(zhǎng)有利于灌水條件下團(tuán)聚體的穩(wěn)定。
由表4可以看出,低肥力土壤中團(tuán)聚體MWD值顯著高于高肥力土壤(p<0.05)。插秧前,內(nèi)外袋中兩種土壤的團(tuán)聚體MWD值均無(wú)顯著差異;水稻分蘗期、孕穗期和成熟期,內(nèi)袋根際土壤團(tuán)聚體MWD值均顯著高于外袋非根際土壤(p<0.05)。種植水稻有助于提高土壤的穩(wěn)定性。
表2 水稻種植期間水穩(wěn)性大團(tuán)聚體含量Table 2 Content of water-stable macro-aggregate in the paddy soils relative to growth stage of the crop(%)
表3 水稻種植期間大團(tuán)聚體破壞率變化Table 3 Percentage of macro-aggregate destruction in the paddy soils relative to rice growth stage(%)
表4 水稻種植期間團(tuán)聚體MWD值變化Table 4 Aggregate MWD in the paddy soils relative to rice growth stage(mm)
2.3 團(tuán)聚體中有機(jī)碳、全氮含量的變化
由圖3可知,不同粒徑團(tuán)聚體中的有機(jī)碳含量具有明顯的差異,高肥力和低肥力土壤中有機(jī)碳含量均表現(xiàn)為1~2 mm粒級(jí)最高,0.25~1 mm和>2 mm粒級(jí)次之,0.053~0.25 mm粒級(jí)最低,大團(tuán)聚體中有機(jī)碳含量顯著高于微團(tuán)聚體,高肥力土壤團(tuán)聚體有機(jī)碳含量顯著高于低肥力土壤(p<0.05)。
低肥力水稻根際土中,分蘗期和孕穗期>2 mm粒級(jí)團(tuán)聚體有機(jī)碳含量顯著高于插秧前和成熟期(p<0.05),而0.25~1 mm粒級(jí)團(tuán)聚體有機(jī)碳含量顯著低于插秧前和成熟期(p<0.05)。除0.053~0.25 mm粒級(jí)外,其他粒級(jí)團(tuán)聚體中水稻成熟期有機(jī)碳含量與插秧前無(wú)顯著變化。根際土和非根際土中各粒級(jí)團(tuán)聚體有機(jī)碳含量均無(wú)顯著差異。
高肥力水稻根際土中,分蘗期>2 mm粒級(jí)團(tuán)聚體有機(jī)碳含量顯著低于插秧前和成熟期(p <0.05),分蘗期和孕穗期0.053~0.25 mm粒級(jí)團(tuán)聚體有機(jī)碳含量顯著低于成熟期(p<0.05),水稻生長(zhǎng)促進(jìn)了>2 mm和0.053~0.25 mm 粒級(jí)中有機(jī)碳的吸收利用和分解轉(zhuǎn)化;<0.053 mm粒級(jí)團(tuán)聚體有機(jī)碳含量在分蘗期和孕穗期顯著高于插秧前和成熟期(p<0.05),0.25~1 mm粒級(jí)團(tuán)聚體有機(jī)碳含量在分蘗期顯著增加,孕穗期最低??傮w而言,水稻成熟期各粒級(jí)團(tuán)聚體中有機(jī)碳含量與插秧前無(wú)顯著變化,而分蘗期和孕穗期有明顯波動(dòng)。根際土中,分蘗期>2 mm粒級(jí)、孕穗期1~2 mm粒級(jí)、成熟期0.053~0.25 mm和<0.053 mm粒級(jí)中有機(jī)碳含量顯著低于非根際土。
重復(fù)測(cè)量方差分析結(jié)果表明,取樣時(shí)期對(duì)0.053~0.25 mm粒級(jí)團(tuán)聚體有機(jī)碳含量有顯著影響(p<0.05),根際作用和取樣時(shí)期的交互效應(yīng)對(duì)低肥力土壤1~2 mm粒級(jí)團(tuán)聚體有機(jī)碳含量有顯著影響(p<0.05)。
由圖4可以看出,供試紅壤水稻土團(tuán)聚體全氮含量在水稻種植期間也發(fā)生了很大變化。與有機(jī)碳的分布相似,團(tuán)聚體全氮含量也表現(xiàn)為1~2 mm粒級(jí)最高,0.25~1 mm和>2 mm粒級(jí)次之,0.053~0.25 mm粒級(jí)最低,大團(tuán)聚體中全氮含量顯著高于微團(tuán)聚體中,高肥力土壤團(tuán)聚體全氮含量顯著高于低肥力土壤(p<0.05)。
圖3 水稻種植期間土壤團(tuán)聚體中有機(jī)碳含量變化Fig. 3 Variation of organic carbon contents in soil aggregates during the rice cultivation season
低肥力根際土中,成熟期>2 mm粒級(jí)團(tuán)聚體全氮含量顯著低于插秧前和分蘗期,孕穗期0.25~1 mm粒級(jí)團(tuán)聚體全氮含量顯著低于插秧前和成熟期,<0.053 mm粒級(jí)團(tuán)聚體全氮含量在分蘗期顯著高于其他取樣時(shí)期(p<0.05)。成熟期>2 mm粒級(jí)團(tuán)聚體全氮含量顯著低于非根際土。
高肥力根際土中,>2 mm、1~2 mm和0.25~1 mm粒級(jí)大團(tuán)聚體的全氮含量在插秧前顯著高于孕穗期和成熟期(p<0.05),>2 mm粒級(jí)團(tuán)聚體中全氮含量在孕穗期最低,1~2 mm粒級(jí)團(tuán)聚體中在分蘗期最低,而0.25~1 mm粒級(jí)團(tuán)聚體中在成熟期最低;0.053~0.25 mm粒級(jí)全氮含量在分蘗期顯著降低,成熟期回升;<0.053 mm粒級(jí)團(tuán)聚體全氮含量在分蘗期和孕穗期顯著高于插秧前和成熟期(p<0.05)。非根際土壤中各團(tuán)聚體全氮含量與插秧前無(wú)顯著差異。除1~2 mm粒級(jí)外,成熟期根際土團(tuán)聚體全氮含量顯著低于非根際土。
總體而言,水稻的生長(zhǎng)降低了大團(tuán)聚體中的全氮含量,對(duì)高肥力土壤的影響更為顯著。
2.4 各粒級(jí)團(tuán)聚體對(duì)土壤有機(jī)碳、全氮含量的貢獻(xiàn)
圖5 A表明各級(jí)團(tuán)聚體對(duì)土壤有機(jī)碳含量的貢獻(xiàn)率,低肥力土壤中表現(xiàn)為0.2 5~1 mm最高(28.0%~38.1%),>2 mm次之(2 1.1%~3 3.7%),其他粒級(jí)差別不明顯(8.9%~19.7%),大團(tuán)聚體的有機(jī)碳貢獻(xiàn)率達(dá)到66.7%~71.8%。高肥力土壤中,0.25~1 mm(28.5%~39.4%)和0.053~0.25 mm(23.6~38.5%)粒級(jí)貢獻(xiàn)率較高,大團(tuán)聚體的有機(jī)碳貢獻(xiàn)率為35.2%~49.9%。各粒級(jí)團(tuán)聚體對(duì)全氮的貢獻(xiàn)率與有機(jī)碳規(guī)律一致(圖5B),高肥力和低肥力土壤中大團(tuán)聚體的全氮貢獻(xiàn)率分別為36.6%~50.5%和65.8%~71.9%。
圖4 水稻種植期間土壤團(tuán)聚體中全氮含量變化Fig. 4 Variation of total nitrogen contents in soil aggregates during the rice cultivation season
圖5 各粒級(jí)團(tuán)聚體對(duì)土壤有機(jī)碳和全氮的貢獻(xiàn)率Fig. 5 Contribution rate of soil aggregates to organic carbon and total nitrogen in the soil relative to fraction of the aggregates
低肥力土壤中,水稻生育期內(nèi)根際各粒級(jí)團(tuán)聚體對(duì)有機(jī)碳和全氮的貢獻(xiàn)率有明顯的波動(dòng),而非根際土壤中無(wú)顯著變化,根際作用影響了有機(jī)碳氮在團(tuán)聚體中的分配。高肥力土壤中,插秧前和分蘗期0.25~1 mm粒級(jí)對(duì)有機(jī)碳和全氮的貢獻(xiàn)率最大,而孕穗期和成熟期0.25~1 mm粒級(jí)貢獻(xiàn)率顯著下降,0.053~0.25 mm粒級(jí)對(duì)有機(jī)碳和全氮的貢獻(xiàn)率顯著增加,非根際土壤中增加更為明顯(p <0.05)。各粒級(jí)團(tuán)聚體對(duì)有機(jī)碳和全氮的貢獻(xiàn)率與土壤團(tuán)聚體的分布呈極顯著正相關(guān),相關(guān)系數(shù)r分別為0.92 和0.86,團(tuán)聚體含量是影響其貢獻(xiàn)率的主導(dǎo)因子。
3.1 不同肥力水平對(duì)紅壤水稻土團(tuán)聚體組成和碳氮分布的影響
土壤團(tuán)聚體是維持土壤質(zhì)量的重要物質(zhì)基礎(chǔ),通常認(rèn)為有機(jī)質(zhì)是土壤團(tuán)聚體形成的重要膠結(jié)物,有機(jī)碳較高的土壤團(tuán)聚體更為穩(wěn)定[11-12]。但本研究中高肥力土壤大團(tuán)聚體含量和穩(wěn)定性均低于低肥力土壤(表2~表4),分析可能是與紅壤水稻土特殊的土壤性質(zhì)有關(guān)。供試土壤母質(zhì)屬于第四紀(jì)紅色黏土,含有較多的膠結(jié)力很強(qiáng)的鐵鋁氧化物。Oades和Waters[13]發(fā)現(xiàn),團(tuán)聚體等級(jí)理論只適用于描述有機(jī)質(zhì)主導(dǎo)團(tuán)聚體形成與穩(wěn)定的土壤,而在氧化物豐富的土壤中,氧化物替代有機(jī)質(zhì)成為團(tuán)聚體形成的主要膠結(jié)劑。李朝霞等[14]對(duì)第四紀(jì)紅黏土發(fā)育紅壤的研究表明,當(dāng)土壤中有機(jī)質(zhì)含量較少且黏粒和氧化鐵鋁含量較高時(shí),黏粒的內(nèi)聚力及鐵鋁氧化物的膠結(jié)作用在維持土壤團(tuán)聚體的穩(wěn)定性方面起主導(dǎo)作用。Peng等[15]指出倍半氧化物是紅壤不同粒級(jí)團(tuán)聚體中主要黏合劑。因此,在開(kāi)墾時(shí)間較短、有機(jī)質(zhì)含量不高、養(yǎng)分不太豐富的低肥力紅壤水稻土中,鐵鋁氧化物對(duì)大團(tuán)聚體的形成和穩(wěn)定起主要作用,但由此形成的團(tuán)聚體并不是理想的團(tuán)粒結(jié)構(gòu)。隨著水稻種植年限的延長(zhǎng),水田土壤熟化程度和肥力水平提高,土壤中有機(jī)膠結(jié)物質(zhì)逐步積累,鐵鋁氧化物含量降低,有機(jī)碳成為各粒級(jí)團(tuán)聚體穩(wěn)定的主要膠結(jié)劑[16]。Linquist等[17]發(fā)現(xiàn)土壤開(kāi)墾后隨著黏?;疃鹊脑黾雍蜔o(wú)機(jī)膠結(jié)物含量的降低,土壤團(tuán)聚體的水穩(wěn)性會(huì)逐漸降低,團(tuán)聚體有從較大粒徑向小粒徑轉(zhuǎn)變的趨勢(shì)。劉曉利和何園球[18]也發(fā)現(xiàn)荒地土壤開(kāi)墾后0.053~0.25 mm 的水穩(wěn)性微團(tuán)聚體含量升高。因此,在判斷紅壤水稻土團(tuán)粒結(jié)構(gòu)是否良好時(shí),不僅要關(guān)注大團(tuán)聚體的數(shù)量和粒徑分配,還應(yīng)衡量團(tuán)聚體的質(zhì)量和團(tuán)聚形式。
不同粒徑土壤團(tuán)聚體中有機(jī)質(zhì)的分布是土壤有機(jī)質(zhì)平衡與礦化速率的微觀表征。本研究中不同肥力水平的土壤團(tuán)聚體中有機(jī)碳和全氮含量均表現(xiàn)為1~2 mm粒級(jí)最高,0.25~1 mm和>2 mm粒級(jí)次之,0.053~0.25 mm粒級(jí)最低,這與陳曉芬等[2]在鷹潭生態(tài)試驗(yàn)站長(zhǎng)期定位試驗(yàn)小區(qū)中得到的研究結(jié)果一致。<0.053 mm 團(tuán)聚體有機(jī)碳含量高于0.053~0.25 mm粒級(jí),這可能是因?yàn)樵摿<?jí)團(tuán)聚體黏粒含量較高,有機(jī)碳易吸附到黏土礦物表面形成穩(wěn)定的復(fù)合體[19],成為土壤有機(jī)碳中極穩(wěn)定的碳庫(kù)。0.053~0.25 mm粒級(jí)可能因?yàn)樯傲:枯^高,對(duì)有機(jī)碳和養(yǎng)分的固持能力較弱。大團(tuán)聚體中有機(jī)碳含量顯著高于微團(tuán)聚體,這一結(jié)果與Six等[20]和Mikha等[21]研究結(jié)果相似,與團(tuán)聚體等級(jí)發(fā)育模型理論[22]相吻合,一方面有機(jī)質(zhì)把微團(tuán)聚體膠結(jié)成大團(tuán)聚體,另一方面處于分解狀態(tài)的植物根系和微生物菌絲可以通過(guò)纏繞作用直接形成大團(tuán)聚體,并增加其中有機(jī)碳的濃度。在低肥力土壤中,由于大團(tuán)聚體數(shù)量較高,66.7%~71.8%的有機(jī)碳和65.8%~71.9%的全氮分布在大團(tuán)聚體中。可見(jiàn)在開(kāi)墾年限較短(<30年)的紅壤水稻土中,大團(tuán)聚體數(shù)量占主導(dǎo)地位,水穩(wěn)性大團(tuán)聚體是有機(jī)碳和全氮的主要載體[2,5,23]。高肥力土壤中,因大團(tuán)聚體含量較低,大團(tuán)聚體的有機(jī)碳和全氮貢獻(xiàn)率僅為35.2%~49.9%和36.6%~50.5%,這與竇森等[24]和唐曉紅等[25]對(duì)溫帶土壤團(tuán)聚體有機(jī)碳分布的認(rèn)識(shí)一致。
3.2 水稻生育期對(duì)團(tuán)聚體組成和碳氮分布的影響
水稻種植期間根系的作用、水熱條件變化、人為的淹水和干濕交替等,使土壤結(jié)構(gòu)(團(tuán)聚體)、有機(jī)質(zhì)和微生物都經(jīng)歷了復(fù)雜的變化。研究水稻不同生育期表層土壤團(tuán)聚體含量及有機(jī)碳和全氮的變化,對(duì)揭示人為干擾對(duì)土壤結(jié)構(gòu)和有機(jī)質(zhì)的影響具有重要意義。一般從年季的角度看,土壤團(tuán)聚體組成相對(duì)比較穩(wěn)定,但本研究結(jié)果顯示在一個(gè)水稻生長(zhǎng)季中團(tuán)聚體組成有明顯的波動(dòng)(圖2)。低肥力土壤中,除1~2 mm粒級(jí)外,水稻生育期內(nèi)根際土壤各粒級(jí)團(tuán)聚體含量有顯著變化;取樣時(shí)期顯著影響0.25~1 mm和0.053~0.25 mm粒級(jí)含量。高肥力土壤中,除<0.053 mm粒級(jí)外各粒級(jí)團(tuán)聚體含量均有顯著變化;取樣時(shí)期顯著影響>2 mm、1~2 mm 和0.25~1 mm粒級(jí)含量。陳強(qiáng)等[26]也發(fā)現(xiàn)不同耕作方式下團(tuán)聚體分布及穩(wěn)定性存在季節(jié)性差異。水稻成熟期團(tuán)聚體有機(jī)碳含量與插秧前無(wú)顯著差異,而分蘗期和孕穗期有明顯波動(dòng),說(shuō)明水稻的種植過(guò)程促使土壤中有機(jī)碳組分的轉(zhuǎn)化和重新分配。水稻的生長(zhǎng)降低了大團(tuán)聚體中的全氮含量,說(shuō)明大團(tuán)聚體中的氮更易于水稻吸收,應(yīng)考慮適當(dāng)施用氮肥以維持根際土壤中的氮素平衡。
3.3 根際效應(yīng)對(duì)團(tuán)聚體組成和碳氮分布的影響
根際是植物與微生物活動(dòng)的重要場(chǎng)所,水稻生長(zhǎng)過(guò)程中向根際土壤釋放或溢泌大量的根系分泌物,這些根系分泌物引起了根際土壤物理、化學(xué)和生物學(xué)性質(zhì)的變化,從而直接或間接地影響根際微區(qū)土壤的結(jié)構(gòu)[27]。本研究結(jié)果顯示:低肥力土壤中,隨著水稻生長(zhǎng),根際土壤>2 mm粒級(jí)含量顯著高于非根際土壤,1~2 mm和0.25~1 mm含量顯著低于非根際土壤,說(shuō)明根系生長(zhǎng)促進(jìn)了1~2 mm 和0.25~1 mm團(tuán)聚體向>2 mm粒級(jí)轉(zhuǎn)變。高肥力土壤中,根際作用主要影響>2 mm粒級(jí)團(tuán)聚體含量。苑亞茹等[28]研究發(fā)現(xiàn)在大田條件下,土壤耕作、干濕交替等因子對(duì)土壤團(tuán)聚體的影響掩蓋了作物根系及其分泌物的作用。本研究采用雙層根袋區(qū)分根際與非根際土壤,可以較好地反映根際效應(yīng)的變化。
作物-土壤系統(tǒng)中,作物根系對(duì)土壤有機(jī)碳的積累和轉(zhuǎn)化具有重要影響。一般認(rèn)為,根際的根系分泌物及組織脫落物較多,在土壤微生物和動(dòng)物的作用下轉(zhuǎn)化成土壤碳,從而使根際土壤有機(jī)碳含量增加[29]。但是在本研究中,低肥力根際和非根際土壤各粒級(jí)團(tuán)聚體有機(jī)碳含量均無(wú)顯著差異,高肥力根際土壤成熟期0.053~0.25 mm和<0.053 mm粒級(jí)中有機(jī)碳含量顯著低于非根際土壤??赡苁且?yàn)楦H沉積碳代謝周轉(zhuǎn)快、結(jié)構(gòu)性碳尚未及時(shí)形成有機(jī)質(zhì)等,加上其固定、周轉(zhuǎn)及遷移過(guò)程的復(fù)雜性和多變性[30],導(dǎo)致了研究結(jié)果的不一致性。氮對(duì)植物的生長(zhǎng)發(fā)育至關(guān)重要,氮素也是植物根系從土壤中吸收最多的元素之一。根系對(duì)氮素的吸收導(dǎo)致根際團(tuán)聚體中全氮含量的降低,低肥力土壤中>2 mm粒級(jí)團(tuán)聚體全氮含量顯著低于非根際土;高肥力土壤中,除1~2 mm粒級(jí)外,成熟期根際土團(tuán)聚體全氮含量顯著低于非根際土。與插秧前相比,低肥力土壤在孕穗期、高肥力土壤在分蘗期全氮含量有較明顯的下降,可考慮針對(duì)性地補(bǔ)施氮肥。
低肥力紅壤水稻土水穩(wěn)性團(tuán)聚體組成以大團(tuán)聚體為主,高肥力水稻土中以微團(tuán)聚體為主。低肥力土壤中團(tuán)聚體的分布和穩(wěn)定性主要受水稻根際作用的影響,高肥力土壤受根際作用和取樣時(shí)期的共同作用,種植水稻有助于提高根際土壤團(tuán)聚結(jié)構(gòu)的穩(wěn)定性。水稻成熟期團(tuán)聚體有機(jī)碳含量與插秧前無(wú)顯著差異,而分蘗期和孕穗期有明顯波動(dòng)。大團(tuán)聚體中全氮含量隨生育期的延長(zhǎng)而降低。種植水稻影響了有機(jī)碳和全氮在團(tuán)聚體中的分配。
[1]Paul B K,Vanlauwe B,Ayuke F,et al. Mediumterm impact of tillage and residue management on soil aggregate stability,soil carbon and crop productivity. Agriculture,Ecosystems & Environment,2013,164 (1):14—22
[2]陳曉芬,李忠佩,劉明,等. 不同施肥處理對(duì)紅壤水稻土團(tuán)聚體有機(jī)碳、氮分布和微生物生物量的影響. 中國(guó)農(nóng)業(yè)科學(xué),2013,46(5):950—960
Chen X F,Li Z P,Liu M,et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China(In Chinese). Scientia Agricultura Sinica,2013,46(5):950—960
[3]陳惟財(cái),王凱榮,謝小立. 長(zhǎng)期不同施肥處理對(duì)紅壤性水稻土團(tuán)聚體中碳、氮分布的影響. 土壤通報(bào),2009,40(3):523—528
Chen W C,Wang K R,Xie X L. Effects on distributions of carbon and nitrogen in a reddish paddy soil under long-term different fertilization treatments(In Chinese). Chinese Journal of Soil Science,2009,40 (3):523—528
[4]劉希玉,王忠強(qiáng),張心昱,等. 施肥對(duì)紅壤水稻土團(tuán)聚體分布及其碳氮含量的影響. 生態(tài)學(xué)報(bào),2013,33 (16):4949—4955
Liu X Y,Wang Z Q,Zhang X Y,et al. Effects of longterm fertilization on aggregate dynamics and organic carbon and total nitrogen contents in a reddish paddy soil(In Chinese). Acta Ecologica Sinica,2013,33 (16):4949—4955
[5]向艷文,鄭圣先,廖育林,等. 長(zhǎng)期施肥對(duì)紅壤水稻土水穩(wěn)性團(tuán)聚體有機(jī)碳、氮分布與儲(chǔ)量的影響. 中國(guó)農(nóng)業(yè)科學(xué),2009,42(7):2415—2424
Xiang Y W,Zheng S X,Liao Y L,et al. Effects of long-term fertilization on distribution and storage of organic carbonand nitrogen in water-stable aggregates of red paddy soil(In Chinese). Scientia Agricultura Sinica,2009,42(7):2415—2424
[6]Jones D L,Nguyen C,F(xiàn)inlay R D. Carbon flow in the rhizosphere:Carbon trading at the soil-root interface. Plant and Soil,2009,321(1):5—33
[7]Sokolova T A,Chalova T S,Tolpeshta I I,et al. Specificity of some soil characteristics in the rhizosphere of fir trees in the AEL horizon of podzolic soil. Moscow University Soil Science Bulletin,2015,70(4):139—146
[8]中國(guó)科學(xué)院南京土壤研究所土壤物理研究室. 土壤物理性質(zhì)測(cè)定法. 北京:科學(xué)出版社,1978:1—88
Department of Soil Physics,Institute of Soil Science,Chinese Academy of Sciences. Methods for determination of soil physical property(In Chinese). Beijing:Science Press,1978:1—88
[9]Elliott E T. Aggregate structure and carbon,nitrogen and phosphorus in native and cultivated soils. Soil Science Society of America Journal,1986,50(3):627—633
[10]魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2000
Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing:China Agricultural Science and Technology Press,2000
[11]徐爽,王益權(quán),王浩,等. 不同肥力水平土壤團(tuán)聚體的穩(wěn)定性及對(duì)氮肥鹽溶液的響應(yīng). 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(5):1135—1143
Xu S,Wang Y Q,Wang H,et al. Effects of nitrogen fertilizer solution on stability of soil aggregates under different fertility levels(In Chinese). Plant Nutrition and Fertilizer Science,2012,18(5):1135—1143
[12]Zhou H,Peng X,Perfect E,et al. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma,2013,195 (1):23—30
[13]Oades J M,Waters A G. Aggregate hierarchy in soils. Soil Research,1991,29(6):815—828
[14]李朝霞,蔡崇法,史志華,等. 鄂南第四紀(jì)粘土紅壤團(tuán)聚體的穩(wěn)定性及其穩(wěn)定機(jī)制初探. 水土保持學(xué)報(bào),2004,18(4):69—72
Li Z X,Cai C F,Shi Z H,et al. Aggregate stability and stable mechanism of aggregate derived from quaternary red clay in south of Hubei Province(In Chinese). Journal of Soil and Water Conservation,2004,18(4):69—72
[15]Peng X,Yan X,Zhou H,et al. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil Tillage Research,2015,146:89—98
[16]Zhang Z B,Zhou H,Lin H,et al. Puddling intensity,sesquioxides,and soil organic carbon impacts on crack patterns of two paddy soils. Geoderma,2016,262 (3):155—164
[17]Linquist B A,Singleton P W,Yost R S,et al. Aggregate size effects on the sorption and release of phosphorus in an Ultisol. Soil Science Society of America Journal,1997,61(1):160—166
[18]劉曉利,何園球. 不同利用方式和開(kāi)墾年限下紅壤水穩(wěn)性團(tuán)聚體及養(yǎng)分變化研究. 土壤,2009,41(1):84—89
Liu X L,He Y Q. Water-stable aggregates and nutrients in red soil under different reclamation years(In Chinese). Soils,2009,41(1):84—89
[19]劉滿強(qiáng),胡鋒,陳小云. 土壤有機(jī)碳穩(wěn)定機(jī)制研究進(jìn)展. 生態(tài)學(xué)報(bào),2007,27(6):2642—2649
Liu M Q,Hu F,Chen X Y. A review on mechanism of soil organic carbon stabilization(In Chinese). Acta Ecologica Sinica,2007,27(6):2642—2649
[20]Six J,Elliott E T,Paustian K. Soil macroaggregate turnover and microaggregate formation:A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry,2000,32(14):2099—2103
[21]Mikha M M,Rice C W,Milliken G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biology & Biochemistry,2005,37(2):339—347
[22]Tisdall J M,Oades J M. Organic matter and waterstable aggregates in soils. Journal of Soil Science,1982,33(2):141—163
[23]李文軍,楊基峰,彭保發(fā),等. 施肥對(duì)洞庭湖平原水稻土團(tuán)聚體特征及其有機(jī)碳分布的影響. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(20):4007—4015
Li W J,Yang J F,Peng B F,et al. Effects of fertilization on aggregate characteristics and organic carbon distribution in a paddy soil in Dongting Lake Plain of China(In Chinese). Scientia Agricultura Sinica,2014,47(20):4007—4015
[24]竇森,李凱,關(guān)松. 土壤團(tuán)聚體中有機(jī)質(zhì)研究進(jìn)展. 土壤學(xué)報(bào),2011,48(2):412—418
Dou S,Li K,Guan S. A review on organic matter in soil aggregates(In Chinese). Acta Pedologica Sinica, 2011,48(2):412—418
[25]唐曉紅,邵景安,黃雪夏,等.壟作免耕下紫色水稻土有機(jī)碳的分布特征.土壤學(xué)報(bào),2007,44(2):235—243
Tang X H,Shao J A,Huang X X,et al. Distibution of soil organic carbon in purple paddy field under longterm non-tillage ridge culture(In Chinese). Acta Pedologica Sinica,2007,44(2):235—243
[26]陳強(qiáng),Yuriy S K,陳帥,等. 不同耕作方式土壤結(jié)構(gòu)季節(jié)變化. 土壤通報(bào),2015,46(1):184—191
Chen Q,Yuriy S K,Chen S,et al. Seasonal variations of soil structures under different tillage systems(In Chinese). Chinese Journal of Soil Science,2015,46 (1):184—191
[27]Rillig M C,Wright S F,Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:Comparing effects of five plant species. Plant and Soil,2002,238(2):325—333
[28]苑亞茹,韓曉增,丁雪麗,等. 不同植物根際土壤團(tuán)聚體穩(wěn)定性及其結(jié)合碳分布特征. 土壤通報(bào),2012,43 (2):320—324
Yuan Y R,Han X Z,Ding X L,et al. Distribution of aggregate-associated organic carbon and aggregate stability in rhizosphere of different plants(In Chinese). Chinese Journal of Soil Science,2012,43 (2):320—324
[29]蒲琴,胡玉福,李亨偉,等. 高寒草地2種固沙灌木根際土壤碳氮特征. 水土保持學(xué)報(bào),2016,30(2):272—276,282
Pu Q,Hu Y F,Li H W,et al. Characteristics of organic carbon and nitrogen in rhizosphere soil under 2 sand-fixation shrub of alpine desertified grassland(In Chinese). Journal of Soil and Water Conservation,2016,30(2):272—276,282
[30]祝貞科,沈冰潔,葛體達(dá),等.農(nóng)田作物同化碳輸入與周轉(zhuǎn)的生物地球化學(xué)過(guò)程. 生態(tài)學(xué)報(bào),2016,36 (19):5987—5997
Zhu Z K,Shen B J,Ge T D,et al. Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland and ecosystems(In Chinese). Acta Ecologica Sinica,2016,36(19):5987—5997
Dynamics of Aggregates Composition and C,N Distribution in Rhizosphere of Rice Plants in Red Paddy Soils Different in Soil Fertility
JIANG Chunyu1LIU Ping1,2LIU Ming1WU Meng1LI Zhongpei1?
(1 State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 University of Chinese Academy of Sciences,Beijing 100049,China)
【Objective】Soil aggregates are an essential material foundation of soil structure and an important carrier of soil nutrients. Rhizosphere is the most active region of matter and energy exchanging between crop and soil,and it differs from the bulk soil in many of physical and chemical conditions and biochemical processes,thereby influencing soil aggregation. A number of studies have been reported paying attention mostly to effects of organic manure application,tillage management and some other regulatory measures on soil aggregates during fallow seasons,rather than to differences of rhizospheric soil from bulk soil in dynamic variation of soil aggregate composition during the rice growing seasons. It is of great significance to study changes in volume of soil aggregates and contents of organic carbon and nitrogen therein in the rhizospheric and non-rhizospheric soils during the rice growing season to revelation of impacts of artificial cultivation on the changes and in-depth understanding of interactions between plant and soil and variation of soil quality.【Method】A field rhizo-bag experiment using two types of red paddy soils different in fertility was conducted in the Yingtan National Field Observation and Research Station of Farmland Ecosystem,Jiangxi Province,China. The soils were collected from the topsoil layers(0~15 cm)of two typical paddy fields near the station in March 2012. Two-layered root bags were used to separate rhizosphere from non-rhizosphere and bulk soil. During the experiment,root bags and the soils around were collected before rice transplanting and at the tillering,booting and maturing stages of rice,separately. The rhizosphere and non-rhizosphere soils were saved individually and separated into five aggregate-size fractions(>2 mm,1~2 mm,0.25~1 mm,0.053~0.25 mm and <0.053 mm)using the wet sieving method. Mass fraction,percentage of aggregate destruction(PAD)and mean weight diameter(MWD)of water-stable macro-aggregates were calculated to determine stability of the aggregates. Organic carbon and total nitrogen in the aggregates were measured. 【Result】 Results show that the aggregates in the low fertility soil were dominated mainly with the fraction of >0.25 mm macro-aggregates(56.2%~64.0%),and the amounts of 0.25~1 mm size was the highest. Except for the aggregates 1~2 mm in size,all the fractions of aggregates in the rhizosphere soil changed significantly in content during the rice growing season. Sampling time and interactions between sampling time and rhizospheric effect remarkably affected the amounts of the fractions of 0.25~1 mm and 0.053~0.25 mm. In the high fertility soil,<0.25 mm micro-aggregates accounted for 59.8%~72.0% of the total soil aggregates,and the 0.053~0.25 mm fraction made up the largest proportion. Sampling time affected the content of >0.25 mm macro-aggregates the most,while interactions between rhizospheric effect and sampling time did the content of >2 mm fraction the most. Compared with non-rhizospheric soils,rhizospheric soils were low in PAD,but high in MWD,which indicates that rice cultivation helps improve stability of rhizosphere soil. Contents of organic carbon(SOC)and total nitrogen(TN)were the highest in the 1~2 mm fraction of aggregates and the lowest in the 0.053~0.25 mm fraction,and obviously much higher in macro-aggregates than in micro-aggregates. The SOC content in rhizosphere aggregates during the crop maturing period did not have much difference from that before rice transplanting. But SOC contents in rhizosphere aggregates did fluctuate significantly during the tillering and booting stages of rice. The SOC content in the 0.053~0.25 mm fraction was significantly influenced by sampling time. In the low fertility soil,there was no significant difference in aggregate-associated SOC contents between rhizosphere and non-rhizosphere soils. But in the high fertility soil,SOC contents in the >2 mm fraction at the tillering stage,in the 1~2 mm fraction at the booting stage and in the 0.053~0.25 mm fraction and <0.053 mm fraction at the maturing stage were significantly lower in the rhizospheric soil than in the non-rhizospheric soil. The growth of rice decreased the content of TN in macro-aggregates. The effect of rice growth was more significant in the high fertility soil. 【Conclusion】In the low fertility soil,rhizospheric effect affects mainly the composition and stability of aggregates,while sampling time does contents of SOC and TN in aggregates. In the high fertility soil,composition of aggregates and distribution of SOC and TN vary under the joint impact of rhizospheric effect and sampling time.
Red paddy soil;Aggregate;Growth period;Soil organic carbon;Total nitrogen
S154.4
A
10.11766/trxb201605060123
(責(zé)任編輯:陳榮府)
* 國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃(973)項(xiàng)目(2015CB150501)和國(guó)家自然科學(xué)基金項(xiàng)目(41171233)資助 Supported by the National Basic Research Program of China(973 Program)(No. 2015CB150501)and the National Natural Science Foundation of China(No. 41171233)
? 通訊作者 Corresponding author,E-mail:zhpli@issas.ac.cn
江春玉(1981—),女,江蘇海門人,博士,助理研究員,主要從事土壤生物與生化方面的研究。 E-mail:chyjiang@ issas.ac.cn
2016-05-06;
2016-07-27;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-08-29