馬倫,白巖,2,劉太元,馬瀟越,2,竇社偉,王梅云,2,3*
腦膠質(zhì)瘤是成人顱內(nèi)最常見(jiàn)的原發(fā)性腫瘤, 其中惡性膠質(zhì)瘤約占所有膠質(zhì)瘤患者的45%,5年生存率小于5%[1]。腦膿腫是一種可由多種致病菌引起的嚴(yán)重的顱內(nèi)感染性疾病,死亡率約為10%[2]。常規(guī)磁共振成像中,壞死性腦膠質(zhì)瘤和腦膿腫均可表現(xiàn)為伴有周?chē)M織水腫的環(huán)形強(qiáng)化病灶[3],因此難以將二者區(qū)分開(kāi)來(lái)。磁敏感加權(quán)成像(susceptibility weighted imaging,SWI)是利用不同物質(zhì)磁敏感性不同而成像的磁共振技術(shù),可敏感地顯示病灶內(nèi)部的出血和鐵沉積等,已被證實(shí)在多種神經(jīng)系統(tǒng)疾病的診斷中具有很大價(jià)值[4-6]。本研究探討SWI在壞死性腦膠質(zhì)瘤與腦膿腫鑒別診斷中的價(jià)值。
選取2015年1月至2016年12月間在我院就診的腦膠質(zhì)瘤和腦膿腫患者為研究對(duì)象。納入標(biāo)準(zhǔn):(1)經(jīng)手術(shù)病理證實(shí)為腦膠質(zhì)瘤或腦膿腫;(2)術(shù)前行頭部平掃、增強(qiáng)3.0 T MRI及3D-SWI序列檢查。排除標(biāo)準(zhǔn):(1)病變部位增強(qiáng)MRI檢查為非環(huán)形強(qiáng)化;(2)入院前經(jīng)過(guò)針對(duì)腦膠質(zhì)瘤和腦膿腫的治療。最終納入腦膠質(zhì)瘤患者23例,納入腦膿腫患者16例。23例腦膠質(zhì)瘤患者中,男17例,女6例,年齡23~73歲,平均年齡(51.4±15.4)歲。16例腦膿腫患者中,男9例,女7例,年齡18~71歲,平均年齡(45.3±15.6)歲。
所有患者均采用3.0 T MRI成像儀(德國(guó)Siemens公司Trio Tim)和8通道顱腦線圈在治療前行常規(guī)MRI和SWI成像。常規(guī)MRI成像序列包括軸位T1加權(quán)成像(T1 weighted imaging,T1WI)、T2加權(quán)成像(T2 weighted imaging,T2WI)、液體衰減反轉(zhuǎn)恢復(fù)和軸位增強(qiáng)T1WI,增強(qiáng)掃描對(duì)比劑為Gd-DTPA (馬根維顯),劑量為每公斤體重0.1 mmol,經(jīng)前臂靜脈推注。3D-SWI序列掃描在增強(qiáng)掃描前完成,掃描參數(shù)如下:視野240 mm×240 mm,TR 29 ms,TE 20 ms,反轉(zhuǎn)角為15°,層厚為3 mm,掃描時(shí)間為2 min 18 s。
圖像分析采用雙盲法,由我院2名中級(jí)職稱的影像診斷醫(yī)師分別對(duì)SWI圖像進(jìn)行分析,判斷SWI圖像上是否有病灶內(nèi)磁敏感信號(hào)(intralesional susceptibility signal,ILSS),如2名醫(yī)師的判定結(jié)果不一致,以第三名高級(jí)職稱影像診斷醫(yī)師的判斷為準(zhǔn)。
采用SPSS 22.0統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。采用Logistic回歸模型對(duì)腦膠質(zhì)瘤組和腦膿腫組進(jìn)行統(tǒng)計(jì)學(xué)分析,分析腦膠質(zhì)瘤和腦膿腫患者ILSS檢出的陽(yáng)性率、靈敏度和特異度。
23例腦膠質(zhì)瘤患者和16例腦膿腫患者ILSS檢出情況和MRI表現(xiàn)見(jiàn)表1和圖1,2。SWI診斷敏感度為96%,特異度為63%,腦膠質(zhì)瘤患者ILSS檢出率多于腦膿腫患者(OR=36.67,P=0.002)。
表1 膠質(zhì)瘤組和腦膿腫組檢出ILSS結(jié)果Tab. 1 Detection results of ILSSs between glioblastomas and brain abscesses
本研究回顧性分析SWI在壞死性膠質(zhì)瘤與腦膿腫鑒別診斷中的價(jià)值,結(jié)果顯示壞死性腦膠質(zhì)瘤的ILSS檢出率顯著高于腦膿腫,表明SWI可有效鑒別壞死性腦膠質(zhì)瘤和腦膿腫。既往有研究通過(guò)采用SWI技術(shù)檢出壞死性膠質(zhì)瘤和腦膿腫病灶周?chē)沫h(huán)狀低信號(hào)影來(lái)對(duì)二者進(jìn)行鑒別診斷,顯示SWI可有效鑒別壞死性膠質(zhì)瘤和腦膿腫[7],本研究中采用SWI技術(shù)進(jìn)一步對(duì)壞死性膠質(zhì)瘤和腦膿腫病灶內(nèi)的低信號(hào)進(jìn)行分析,結(jié)果表明SWI檢測(cè)出的ILSS在壞死性膠質(zhì)瘤和腦膿腫的鑒別診斷中具有重要價(jià)值。
圖1 男,52歲,左側(cè)顳葉腦膿腫。A、B:左側(cè)顳葉囊性占位性病變,周?chē)梢?jiàn)水腫區(qū);C:T1WI增強(qiáng)掃描示病變環(huán)形強(qiáng)化;D:SWI未檢出ILSS;E:病理結(jié)果為腦膿腫(HE ×20) 圖2 男,70歲,左側(cè)頂葉膠質(zhì)母細(xì)胞瘤。A、B:左側(cè)頂葉囊性占位性病變,周?chē)梢?jiàn)水腫區(qū);C:T1WI增強(qiáng)掃描示病變環(huán)形強(qiáng)化;D:SWI檢出ILSS。E:病理結(jié)果為膠質(zhì)母細(xì)胞瘤(WHO 4級(jí)) (HE ×20)Fig.1 A 52-year-old man with a brain abscess in the left temporal lobe. A, B:Cystic space-occupying lesion in left temporal lobe with surrounding edema. C:Gadolinium-based contrast material-enhanced T1WI showed ring enhancement.D: There was no ILSS in SWI. E: A brain abscess was confirmed by the pathological results (HE ×20). Fig. 2 A 70-year-old man with glioblastoma in left parietal. A, B: Cystic space-occupying lesion in left parietal with surrounding edema. C: Gadolinium-based enhanced scan showed ring enhancement. D:Detected ILSS with SWI. E: A glioblastoma was confirmed by the pathological results (HE ×20).
壞死性膠質(zhì)瘤患者中ILSS檢出率較腦膿腫高不僅與腫瘤內(nèi)新生血管增多、血供豐富有關(guān),而且與腫瘤內(nèi)出血或微出血有關(guān)。研究表明,膠質(zhì)瘤內(nèi)部新生血管伴隨腫瘤惡性程度的增高而增多,且新生血管管壁常不完整,血腦屏障破壞嚴(yán)重[8],易發(fā)生出血。另外,惡性腦膠質(zhì)瘤細(xì)胞持續(xù)分裂與增殖速度快,易發(fā)生缺血壞死。出血隨著時(shí)間進(jìn)展,血紅蛋白氧解離形成去氧血紅蛋白,去氧血紅蛋白進(jìn)一步氧化生成正鐵血紅蛋白,最終降解為含鐵血黃素[9]。血紅蛋白四種狀態(tài)除含氧血紅蛋白外,均為順磁性物質(zhì),且去氧血紅蛋白和含鐵血黃素具有較強(qiáng)的磁敏感性,因此出血在SWI圖像上表現(xiàn)為明顯的低信號(hào)[10]。SWI是目前對(duì)出血成分檢出最敏感的影像學(xué)技術(shù)[10-12],SWI檢出的ILSS能夠反映腦膠質(zhì)瘤組織內(nèi)部出血情況。前期研究顯示,SWI作為一種無(wú)創(chuàng)性成像方法可以有效提高膠質(zhì)瘤分級(jí)的準(zhǔn)確性[13-14],且可以為顱內(nèi)占位性病變的鑒別診斷提供重要參考價(jià)值[14-15]。有研究將SWI與灌注加權(quán)成像(perfusion weighted imaging,PWI)對(duì)比應(yīng)用于腦膠質(zhì)瘤診斷中,顯示SWI檢出的ILSS密集程度與腫瘤局部血流量高度相關(guān),表明ILSS可在一定程度上反映膠質(zhì)瘤組織局部血流量情況[16]。
與壞死性膠質(zhì)瘤相比,腦膿腫在SWI上的ILSS表現(xiàn)較少,這可能與腦膿腫病灶內(nèi)缺乏新生血管和出血成分有關(guān)。腦膿腫在T1WI可表現(xiàn)為與壞死性膠質(zhì)瘤類似的環(huán)形強(qiáng)化,這是由于膿腫外周的新生血管細(xì)胞之間連接疏松易造成液體漏出所致[17-18]。但二者在病理特征方面存在顯著差別。腦膿腫由腦炎演化而來(lái),在腦炎時(shí)期,腦內(nèi)病灶組織可因血腦屏障的破壞和壞死區(qū)的產(chǎn)生而形成出血,但隨著腦膿腫的形成,膿腫內(nèi)部壞死物質(zhì)可因炎癥細(xì)胞吞噬、溶解液化從而形成膿腔[17]。另外,病灶周?chē)z原纖維包裹導(dǎo)致新生血管無(wú)法生成,從而使腦膿腫內(nèi)難以出現(xiàn)新的出血成分[18],因此腦膿腫在SWI上通常檢測(cè)不到ILSS。
擴(kuò)散加權(quán)成像(diffusion weighted imaging,DWI)可以反映生物體內(nèi)水?dāng)U散情況。前期研究采用DWI生成的表觀擴(kuò)散系數(shù)(apparent diffusion coefficient,ADC)值對(duì)壞死性腦膠質(zhì)瘤和腦膿腫進(jìn)行鑒別,研究結(jié)果顯示腦膿腫的ADC值通常較低,而壞死性腦膠質(zhì)瘤的ADC值一般較高[19-20]。然而,由于不同時(shí)期腦膿腫內(nèi)膿液成分存在差異,早期腦膿腫為由炎癥細(xì)胞、微生物和蛋白質(zhì)形成黏稠的液體,表現(xiàn)為擴(kuò)散受限,ADC值降低,隨著膿腫進(jìn)展,中心壞死帶縮小并被纖維組織取代,結(jié)合水減少,水分子擴(kuò)散不再受限[21],有研究顯示16%腦膿腫病例DWI表現(xiàn)為非完全受限,易被誤診為腫瘤壞死[22]。另外,壞死性腦膠質(zhì)瘤腔內(nèi)可因殘留細(xì)胞骨架的存在而表現(xiàn)為較低ADC值,有研究顯示11%壞死性膠質(zhì)瘤內(nèi)部DWI可表現(xiàn)為高信號(hào)[23]。因此DWI技術(shù)有時(shí)不能準(zhǔn)確地對(duì)腦膿腫與壞死性腦膠質(zhì)瘤進(jìn)行鑒別。
磁共振波譜成像(magnetic resonance spectroscopy,MRS)可反映組織器官代謝情況,但MRS鑒別診斷價(jià)值可因病變靠近外周或顱骨而受限,前期研究應(yīng)用DWI與MRS同時(shí)應(yīng)用于壞死性腦膠質(zhì)瘤與腦膿腫的鑒別診斷中,發(fā)現(xiàn)MRS反映的代謝信息對(duì)二者鑒別的準(zhǔn)確性不如DWI且掃描時(shí)間較長(zhǎng),因此MRS技術(shù)在區(qū)分壞死性腦膠質(zhì)瘤與腦膿腫方面存在局限性[21,24]。
前期研究顯示,聯(lián)合應(yīng)用DWI和MRS對(duì)顱內(nèi)占位性病變進(jìn)行鑒別診斷,可較DWI或MRS提供更多有價(jià)值的信息[25]。本研究結(jié)果顯示SWI可有效鑒別壞死性腦膠質(zhì)瘤和腦膿腫。SWI、DWI、MRS等技術(shù)可以分別從出血、水?dāng)U散情況、代謝等方面反映組織信息,因此將SWI與DWI、MRS等其他磁共振成像技術(shù)相結(jié)合,能否進(jìn)一步提高壞死性腦膠質(zhì)瘤與腦膿腫鑒別的準(zhǔn)確性值得進(jìn)一步去研究。
本研究存在以下一些局限性:(1)病例樣本數(shù)量較少;(2)未對(duì)腦膿腫致病菌情況進(jìn)行亞組分析。
采用SWI技術(shù)對(duì)壞死性腦膠質(zhì)瘤和腦膿腫進(jìn)行鑒別診斷,結(jié)果顯示壞死性腦膠質(zhì)瘤ILSS檢出率顯著高于腦膿腫,提示SWI可為臨床鑒別壞死性腦膠質(zhì)瘤和腦膿腫提供一種新的影像學(xué)方法。
[References]
[1] Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol, 2014, 16(7):896-913.
[2] Carvalho RM, Nunes SM, Santana AN. Brain abscess. N Engl J Med,2014, 371(18): 1757-1758.
[3] Muccio CF, Caranci F, D'Arco F, et al. Magnetic resonance features of pyogenic brain abscesses and differential diagnosis using morphological and functional imaging studies: a pictorial essay. J Neuroradiol, 2014, 41(3): 153-167.
[4] Liu TY, Bai Y, Ma XY, et al. The value of "swallow tail" appearance of nigrosome on ESWAN at 3.0 T MR in the diagnosis of Parkinson's disease. Chin J Magn Reson Imaging, 2016, 7(4): 265-269.劉太元, 白巖, 馬瀟越, 等. 3.0 T MR非高分辨ESWAN上黑質(zhì) "燕尾征" 在帕金森病診斷中的價(jià)值. 磁共振成像, 2016, 7(4): 265-269.
[5] Li B, Xu ZF, Zhu B. The value of 3.0 T MR-SWI in diagnosis of diffuse axonal injury with non-lesional CT fndings. Chin J Magn Reson Imaging, 2016, 7(10): 759-762.李斌, 徐志鋒, 朱彬. 3.0 T MR-SWI診斷CT陰性急性彌漫性軸索損傷的價(jià)值. 磁共振成像, 2016, 7(10): 759-762.
[6] Jia SL, Wang XM. The diagnosis value of susceptibility-weighted imaging in cerebral ischemic stroke. Chin J Magn Reson Imaging,2015, 6(3): 182-186.賈素蘭, 王曉明. 磁敏感加權(quán)成像對(duì)腦梗死的診斷價(jià)值. 磁共振成像, 2015, 6(3): 182-186.
[7] Toh CH, Wei KC, Chang CN, et al. Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibilityweighted imaging. AJNR Am J Neuroradiol, 2012, 33(8): 1534-1538.
[8] Miyagami M, Katayama Y. Angiogenesis of glioma: evaluation of ultrastructural characteristics of microvessels and tubular bodies(Weibel-Palade) in endothelial cells and immunohistochemical findings with VEGF and p53 protein. Med Mol Morphol, 2005,38(1): 36-42.
[9] Kang BK, Na DG, Ryoo JW, et al. Diffusion-weighted MR imaging of intracerebral hemorrhage. Korean J Radiol, 2001, 2(4): 183-191.
[10] Mittal S, Wu Z, Neelavalli J, et al. Susceptibility-weighted imaging:technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol, 2009, 30(2): 232-252.
[11] Buch S, Cheng YN, Hu J, et al. Determination of detection sensitivity for cerebral microbleeds using susceptibility-weighted imaging.NMR Biomed, 2017, 30(4). [Epub ahead of print]
[12] Ma X, Bai Y, Lin Y, et al. Amide proton transfer magnetic resonance imaging in detecting intracranial hemorrhage at different stages: a comparative study with susceptibility weighted imaging. Sci Rep,2017, 7: 45696.
[13] Pinker K, Noebauer-Huhmann IM, Stavrou I, et al. High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3 T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol,2007, 28(7): 1280-1286.
[14] Di Ieva A, Le Reste PJ, Carsin-Nicol B, et al. Diagnostic value of fractal analysis for the differentiation of brain tumors using 3-tesla magnetic resonance susceptibility-weighted imaging. Neurosurgery,2016, 79(6): 839-846.
[15] Ding Y, Xing Z, Liu B, et al. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastases using susceptibility-weighted imaging. Brain Behav,2014, 4(6): 841-849.
[16] Wang XC, Zhang H, Tan Y, et al. Combined value of susceptibilityweighted and perfusion-weighted imaging in assessing who grade for brain astrocytomas. J Magn Reson Imaging, 2014, 39(6): 1569-1574.
[17] Enzmann DR, Britt RH, Yeager AS. Experimental brain abscess evolution: computed tomographic and neuropathologic correlation.Radiology, 1979, 133(1): 113-122.
[18] Lai PH, Chang HC, Chuang TC, et al. Susceptibility-weighted imaging in patients with pyogenic brain abscesses at 1.5 T:characteristics of the abscess capsule. AJNR Am J Neuroradiol, 2012,33(5): 910-914.
[19] Alam MS, Sajjad Z, Azeemuddin M, et al. Diffusion weighted MR imaging of ring enhancing brain lesions. J Coll Physicians Surg Pak,2012, 22(7): 428-431.
[20] Bhatt N, Gupta N, Soni N, et al. Role of diffusion-weighted imaging in head and neck lesions: Pictorial review. Neuroradiol J. 2017,30(4): 356-369.
[21] Huang MH, Dong XZ, Guo Y, et al. Dynamic changes of MR diffusion-weighted imaging on brain abscecc. Chin J Med Imaging,206,14(4): 256-258.黃敏華, 董秀珍, 郭勇, 等. 腦膿腫磁共振彌散加權(quán)成像動(dòng)態(tài)變化.中國(guó)醫(yī)學(xué)影像學(xué)雜志, 2006, 14(4) : 256-258.
[22] Zhou MH, Lin XW, Hu ZP, et al. Clinical significance of infection mechanism and imaging examination in patients with cerebral abscess. Chin J Nosocomiol, 2017, 27(7): 1550-1553.周明華, 林興旺, 胡振平, 等. 腦膿腫患者的感染機(jī)制及影像學(xué)檢查臨床意義研究. 中華醫(yī)院感染學(xué)雜志, 2017, 27(7): 1550-1553.
[23] Ko CC, Tai MH, Li CF, et al. Differentiation between glioblastoma multiforme and primary cerebral lymphoma: additional benefits of quantitative diffusion-weighted mr imaging. PLoS One, 2016, 11(9): e0162565.
[24] Lai PH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusionweighted imaging. AJNR Am J Neuroradiol, 2002, 23(8): 1369-1377.
[25] Lai PH, Hsu SS, Ding SW, et al. Proton magnetic resonance spectroscopy and diffusion-weighted imaging in intracranial cystic mass lesions. Surg Neurol, 2007, 68(Suppl 1): S25-S36.