• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of surface ligand density on cytotoxicity and pharmacokinetic profle of docetaxel loaded liposomes

    2017-01-20 01:28:32

    Shenyang Pharmaceutical University,Shenyang,China

    Effect of surface ligand density on cytotoxicity and pharmacokinetic profle of docetaxel loaded liposomes

    Chun Chu,Ping Xu,Haoyue Zhao,Qing Chen,Dawei Chen, Haiyang Hu,Xiuli Zhao,Mingxi Qiao*

    Shenyang Pharmaceutical University,Shenyang,China

    A R T I C L EI N F O

    Article history:

    Received 16 March 2016

    Received in revised form 21 April 2016

    Accepted 22 April 2016

    Available online 10 May 2016

    Docetaxel

    Liposomes

    Biotin

    Ligand density

    Tumor targeting

    Various biotin-modifed liposomes incorporated with docetaxel(DTX)were prepared to study the effect of surface biotin density on the pharmacokinetic profle of the liposome.Four types of liposomes such as PEG modifed liposome(PDL),0.5%(mol)biotin modifed liposome (0.5BDL),1%(mol)biotin modifed liposome(1BDL)and 2%(mol)biotin modifed liposome (2BDL)were prepared using thin flm dispersion method.The prepared liposomes were characterized by measuring encapsulation effciency(EE),particle size,Zeta-potential,physical stability and drug release proflesin vitro.MTT assay was performed to elevate the cytotoxicity of liposomes on MCF-7 cells.In vivoevaluation was further performed to investigate the effect of biotin surface density on the pharmacokinetic profles.All the prepared liposomes exhibited high encapsulation effciency,small particle size,narrow particle distribution and sustained release proflesin vitro.In MTT assay,0.5BDL showed largest tumor cell toxicity,compared with DTX solution.All liposomes containing DTX showed prolonged blood circulationin vivo,and 0.5BDL showed the longest circulation time among the biotin modifed liposome.Surface modifcation of liposome had a negative impact on the circulation of liposomes in the blood,which needs to be considered when designing the ligand mediated targeting delivery systems.A proper amount of biotin liposome with 0.5%molar ratio is expected to produce the best anti-tumor effect.

    ?2016 Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Docetaxel,a second-generation semi-synthetic taxane derivative has shown dramatic antitumor activities,mostly against various human cancers such as ovarian carcinoma,advanced breast cancer,lung cancer and head/neck cancer[1].Currently,docetaxel is formulated using Tween80 and ethanol (50:50,v/v)as solvent;however,its clinical use is limited due to its side effects related to formulation,such as neutropenia,peripheral neuropathy and hypersensitivity reactions[1,2]. Therefore,there is a strong rationale for reformulating docetaxel using a safer vehicle than Tween80.

    Recently,many carriers have been studied,such as nanoparticle-aptamer,bioconjugates[3],DTX loaded liposomes[4],pegylated liposomes[4,5],N-palmitoyl chitosan anchored DTX liposomes[6],and pegylated immunoliposomes [7].Liposomes with spherical lipid bilayer structures are one of the most successful drug carriers in drug delivery systems; however,they are prone to be taken up by reticuloendothelial system(RES)cells in liver and spleen[8,9].As is well known that PEG modifed liposomes exhibit a long circulation property in the blood and accumulate in tumorviapassive targeting [4,10,11],increasing evidence has suggested that the selectivity of PEG modifed liposomes is far from satisfaction.Therefore, many researchers have been focusing on developing active targeting drug delivery systems,in which many ligands have been introduced to the surface of drug carrier,such as folic acid[12], antibody[13]and integrin αvβ3[14].Biotin,a member of the vitamin family(vitamin H),is a growth promoter of cells.Its ligand in cancerous tumors is higher than in normal tissue[15] because rapid proliferation of cancer cells requires extra biotin. Some cancer cells including JC,Colo-26,P815 and MCF-7 overexpress biotin-specifc receptors[16,17],which are responsible for the uptake of essential nutrients such as biotin,lipoate,pantothenate[18]and peptides[19].Biotin has been considered as a promising ligand for active targeting[16,20–22];Yang et al. prepared biotin–dendrimer conjugate,which exhibited much higher cellular uptake into Hela cells than the dendrimer without biotin modifcation[23].Biotinylated pullulan acetate nanoparticles was prepared by Na,which has been shown strong adsorption to the HepG2 cells[24].Biotin-conjugated polymeric micelles could effectively release doxorubicin in acidic tumor cells compared to that without biotin[25].

    However,the effect of biotin modifcation and density on cytotoxicity and pharmacokinetic profles of the carriers has not been explored to date.Previous studies have shown that the cellular uptake increased with the increase of ligand density on the surface of particles[26–28].However,dense surface coverage of ligand may not produce expected improvements in cellular uptake[29,30].Moreover,some studies have shown that the insertion of ligand resulted in faster clearance of liposomes from plasma,which compromised the accumulation of liposomes in tumor via EPR effect[31,32].It was reported that the 2.56 mol%NGR(asparagine–glycine–arginine amino acid sequence)resulted in lower total tumor accumulation than the formulation with only 0.64 mol%NGR[33].

    As known,the success of an active targeting strategy relied heavily on the accumulation of the carriers at tumor site via passive targeting.If the drug loaded carriers were quickly eliminatedin vivo,the total tumor accumulation of carriers will be decreased.The pharmacokinetic profles of the active targeting formulation are important factors that need to be considered to achieve successive active targeting.

    The researches on the effect of biotin density of liposome on cytotoxicity and pharmacokinetic profles were absent.In this study,biotin was conjugated to PEG chains on the surface of liposomes containing DTX,in an attempt to improve cancer targeting.DTX loaded liposomes modifed with different biotin density were prepared to investigate the effect of biotin density on the cytotoxicity and the pharmacokinetic profles of liposomes in blood.This study will lay a foundation for optimization of liposome formulation for furtherin vivoevaluation.

    2.Materials and methods

    2.1.Materials

    Docetaxel was purchased from Jiansu Hengrui Medicinal Co., Ltd(Jiangsu,China).Cholesterol(Chol)was purchased from Tianjin Bodi Chemical Industry Co.(Tianjin,China).Soy phosphatidylcholine(Spc)was purchased from Shanghai Taiwei Pharmacetical Co.(Shanghai,China).Dichloromethane was purchased from Tianjin Jingxi Chemical Industry Co.(Tianjin, China).Disteroylphophatidyl ethanolamine methoxypolyethylene glycol conjugate(DSPE-PEG2000)was purchased from Nippon Fine Chemical Co.,Ltd(Kobe,Japan)and Biotin-PEG2000-DSPE was purchased from Creative PEG Works Co.(Winston-Salem,NC,USA).Methanol,acetonitrile and tert-butyl methyl ether were of high-performance liquid chromatography(HPLC) grade,all other regents and solvents used were of analytical grade.Sprague–Dawley rats(200±20 g)were supplied by the Laboratory Animal Center of Shenyang Pharmaceutical University(Shenyang,China).All animal procedures were approved by the Animal Ethics Committee of Shenyang Pharmaceutical University.

    2.2.Preparation of liposomes

    Liposomes were prepared by thin-flm hydration method.Briefy, to prepare PEG modifed liposome(PDL),Spc Chol(Spc:Chol, 9:2,molar ratio)and DSPE-PEG(4%mol)as well as DTX(1:18, mass ratio)were frst dissolved in dichloromethane solutions.The mixture was placed in a round-bottomed fask and the solvent was removed by rotary evaporation at 37°C under vacuum to obtain the dry flm.Afterward,the flm was hydrated with pH 7.4 PBS buffer in a water bath at 40°C with stirring for 20 min until a homogenous liposome suspension was obtained.The suspension was then sonicated with a ultrasonic cell disruptor,and the pulse function was 220w,on 1 s and off 1 s for 2 min.Polycarbonate flters,with a pore size of 220 nm were used to decrease the size of liposomes.The liposomes were purifed by centrifugating at 15 000×gfor 15 min.Biotin modifed liposomes(0.5BDL,1BDL,2BDL)were prepared using the same method mentioned above except that 0.5%,1%and 2%(mol)of DSPE-PEG2000were used respectively.

    2.3.Characterization of liposomes

    The DTX concentration was determined by high performance liquid chromatography(HPLC).In detail,the analysis was performed with a Hitachi HPLC system(UV Detector L-2400, Pump L-2130,Hitachi,Tokyo,Japan),equipped with a 20 μl loop and a reversed-phase column(Hypersil,ODS,4.6×250 mm, 5 μm).The mobile phase was made up of acetonitrile and water (60:40;v/v)at a fow rate of 1 ml/min,and the DTX was detected at a wavelength of 228 nm.Methanol was used before analysis as a demulsifer.The encapsulation effciency(EE%)and drug loading content(LC%)were calculated using equation 1 and equation 2:

    where,Weis the amount of drug encapsulated,Waddis the amount of drug used andWtis total amount of encapsulated drug and liposome.

    The diameter and Zeta potential of the liposomes were determined by Zetasizer3000(Malven Instruments Ltd.,UK). Intensity autocorrelation was measured at a scattering angle of 90 degrees at room temperature.

    The morphological feature of the liposomes was observed with a transmission electron microscope(TEM)(JEM-1200EX, JEOL Ltd.,Japan)at 80 kV.A drop of liposomal sample was placed on a copper grid,excess water was blotted with a piece of flter paper and a drop of 1%phosphotungstic acid was added for negative staining.

    Initial stability of liposomes was evaluated by detecting leakage of DTX from liposomes at 4°C.Encapsulation effciency of four liposomes was detected by HPLC at 1,2,3,4,5, 7,10,13 and 15 days after preparation.The leakage rate(LR%) was calculated using equation 3:

    whereEEnis the encapsulation effciency detected at n day,andEE1is the encapsulation effciency detected at the frst day.

    In vitrorelease of DTX from liposomes was determined using dialysis method with a pharmaceutical dissolution tester at 37°C.The samples were put into dialysis bags(COMW:8000–14,000),and PBS(80 ml,PH7.4)containing 0.5%(v/v)Tween80 was used as the release medium.Tween80 was added to ensure the sink condition.The stirring speed is 50 rpm.At each time point,2 ml release medium was withdrawn and replaced with fresh PBS.The concentration of DTX in the release medium was determined using HPLC.The mobile phase was made up of acetonitrile and water(52:48,v/v)at a fow rate of 1 ml/min.

    2.4.Cytotoxicityin vitro

    The human breast cell line MCF-7(purchased from Shanghai Fuleibao Bio-Tech Co.,Ltd)was maintained in Dulbecco’s modifed Eagle’s medium(DMEM)containing 10%fetal bovine serum and 0.1%antibiotics(penicillin streptomycin)in a 5%CO2humidifed atmosphere at 37°C.The MTT assay was used to test the cytotoxicityin vitro;the cells were seeded at 8×103cells/ well in 96 well plates and incubated for 24 h.The cells were then incubated in 96 well plates at 37°C for 24 h,48 h,and 72 h in the presence of a series of concentration of formulations, including DTX solution(FD),PDL,0.5BDL,1BDL,and 2BDL.The cells incubated in medium without any drug or liposomes were used as controls.20 μl of MTT(5 mg/ml)were added at the end of incubation period.The plates were incubated for an additional 4 h.DMSO(150 μl)were added to dissolve the formazan crystals and the absorbance value was determined at wavelengths of 490 nm.

    2.5.Pharmacokinetic studies

    SD rats were divided into fve groups randomly(three rats per group).PDL,0.5BDL,1BDL,and 2BDL were i.v.administration at a dose of 10 mg/kg and DTX in tween80(FD)was chosen as control group.Blood samples were collected at 5 min,10 min, 15 min,30 min,45 min,1 h,2 h,4 h,8 h,12 h and 24 h.The samples were then centrifuged at 5000 rpm for 10 min to separate the plasma;10 μl of paclitaxel(10 μg/ml)used as internal standard was added into 200 μl of plasma.The mixture was vortexed for 30 s twice to mix well,and then 2 ml of tertbutyl methyl ether was added.Then the mixture was sonicated for 3 min,and vortexed for 5 min.Clear supernatant was obtained by centrifugating at 10,000 rpm for 5 min.The supernatant was dried with nitrogen gas and reconstituted in 100 μl of methanol.The concentration of DTX in blood was measured using HPLC.A reversed-phase column(Hypersil,ODS, 4.6×250 mm,5 μm)was used.The mobile phase was made up of acetonitrile and water(57:43,v/v)at a fow rate of 1 ml/min. The DTX detection was performed at a wavelength of 228 nm. Pharmacokinetic parameters were determined using the software DAS2.0.The signifcance of the difference was analyzed by ANOVA models with Statistical Program for Social Sciences(SPSS 11.0)and the signifcant level was set at 0.05.

    3.Results and discussion

    3.1.Characterization of liposomes

    Encapsulation effciency(EE%),drug loading content(LC%), mean diameter with poly dispersion index(PDI)and zeta potential of four liposomes were displayed in Table 1.It could be seen that incorporation of Biotin-PEG2000-DSPE into the membrane increased the mean diameter and slightly decreased the Zeta potential of the liposomes.Morphology of four liposomes observed by TEM is shown in Fig.1.The doublemembrane of the liposomes could be seen clearly and no drug crystal was visible.The leakage rate(Fig.2)of all liposomes was less than 25%at 4°C in the hydrated state for 15 days.The release behavior of DTX from four liposomes and free DTX in the release medium were shown in Fig.3.The four liposomes (PDL,0.5BDL,1BDL,2BDL)released 69.12±9.98%,57.44±0.37%, 54.49±6.58%and 52.37±3.62%of DTX respectively at 96 h in comparison with free DTX(96.15±0.48%at 6 h),indicating that four liposomes had a sustained release profle.

    Table 1–Characterization of four kinds of liposomes(n=3).

    Docetaxel is a potent anticancer drug and its use is restricted by its poor aqueous solubility where addition ofTween80 to enhance DTX solubility was associated with its side effects [1].Liposomes are capable of increasing the aqueous solubility of DTX.Moreover,biotin was used to modify the liposomes with an aim to increase the DTX accumulation in tumor site. All the prepared liposomes had high encapsulation effciency and drug loading rate.Mean diameter of liposomes increased with the incorporation of Biotin-PEG2000-DSPE due to the interaction of Biotin at the end of Biotin-PEG2000-DSPE and the swelling resulting from the hydrophilic property of biotin [24].The particulate carrier systems with a diameter larger than 200 nm are known to induce nonspecifc scavenging by monocytes and the reticuloendothelial system(RES)[34,35].It was reported that some tumor vessels could cause extravasation of particulates with a diameter less than 400 nm[5,36].The liposomes with a diameter around 100 nm extravasated much easier than bigger ones with a diameter ranging from 200 to 400 nm[37,38].The liposomes prepared in this study were found to have a diameter between 97.99±14.32 nm and 145.0±5.015 nm,which were not expected to be removed by the RES.Biotinylation of liposome did not markedly change the Zeta potential;although biotin is known to possess a positive charge,the result is in agreement with an earlier study [39].

    The therapeutic effect of drug in carriers is highly dependent on the release rate of the drug from the carrier.If the drug leaks from the carrier too rapidly,the carrier will lose most of the loaded drug before it reaches the diseased site,leading to the compromised therapeutic effect.In our study,we compared the DTX release behavior of FD and all liposomes.As shown in Fig.3,four liposomes released DTX slower than FD. The sustained release of DTX from liposomes was probably attributed to the encapsulation by the bilayer membrane of liposomes.

    Fig.1–Transmission electron microscopy of PDL(A); 0.5BDL(B);1BDL(C)and 2BDL(D)(×40,000).

    Fig.2–Leakage rate of four kinds of liposomes at 4°C (n=3).

    Fig.3–Drug release from FD and four kinds of liposomes in PBS(PH 7.4)containing 0.5%Tween80(n=3).

    3.2.MTT assay

    Cell viability of 24 h,48 h,and 72 h after adding empty liposome(EL),FD,PDL,0.5BDL,1BDL and 2BDL are shown in Fig.4(A, B,C).IC50was calculated and the results were shown in Table 2. The IC50of liposomes were higher than FD(P<0.01)after 24 h and 48 h incubation.However,0.5BDL showed lower IC50than FD at 72 h(P<0.01).Compared with 0.5BDL,both 1BDL and 2BDL showed signifcantly higher IC50(P<0.01)and there is no signifcant difference between 1BDL and 2BDL(P>0.05).The result suggested that empty liposome has no inhibition effect on cell growth,and cell viability decreased with increasing of the concentration of DTX.For all liposomes and FD,IC50decreased with the increasing of incubation time.

    Fig.4–Viability of MCF-7 after incubation with FD and four kings of liposomes.Data are presented as Mean±SD (n=5–6).

    Itwasfoundthatdrugconcentrationandexposuretimewere closely related to cytotoxicity of all formulations.This result was in agreement with previous research[40,41].The higher cell viability of liposomes than FD at 24 h and 48 h is probably relatedtothedoublemembraneofliposomeandthestericeffect of PEG chains,which,frst,can inhibit the release of drug from carriers,and second,can prevent liposomes from interacting with cells.In addition,liposomes may delay internalization of drug in cells due to the negative charge on the surface of liposomes.Liposomes with negative charge generally exhibit stronger binding than neutral ones because of the existence of a membrane receptor recognizing negatively charged particles[42].Fig.3 suggested that among liposomes,PDL had the highest drug release rate,which induced the highest cytotoxicity at 24 h.The biotin receptor on the surface of MCF-7 may play a role in uptaking the liposomes into the cells and causing thecytotoxicity.ItwasfoundthatIC50of1BDLand2BDLshowed no signifcant difference in the cytotoxicity.But IC50value of 0.5BDL is nearly two times and three times lower.Higher biotin density on the liposomes failed to show higher cytotoxicity. This is consistent with the fndings reported by other research groups[43,44].Thismightbeattributedtotheinternalizedligand molecules leading to a down-regulation or‘shut-off’of the receptorrecyclingsystem.Theligandsconjugatedliposomesmay contributetotheintracellularligandconcentrationandaretherefore responsible for the saturation and‘shut-off’of the receptor uptake pathway.Liposomes with more targeting ligands would lead to more intracellular ligand content than those with less targeting ligands.This could result in a decreased cytotoxicity when more ligands are utilized[43].An alternative explanation is the possible existence of DSPE-PEG2000-Biotin micelles formed at higher number of targeting ligand.The biotin modifed micelles would compete with the receptors and prevent biotin modifed liposomes binding to the receptors.

    3.3.Pharmacokinetic studies

    Mean plasma concentration–time profles of DTX after i.v.administration of DTX solution and four liposomes at a dose of 10 mg/kg was shown in Fig.5.The main pharmacokinetic parameters were summarized in Table 3.When DTX was encapsulated in liposomes,the pharmacokinetic parameters were clearly different from those of FD.The AUC and the MRT were signifcantly increased,and the plasma clearance(CL)was reduced signifcantly.The AUC of liposomes(PDL;0.5BDL;1BDL and 2BDL)were 10.86 times,4.456 times,2.689 times and 3.976 times higher than FD(3.791±1.375 mg/l·h).The MRT of liposomes(PDL,0.5BDL,1BDL and 2BDL)were 14.89 times,4.755 times, 1.973 times and 1.851 times higher than FD(3.573±2.121h).In comparison with FD,CL of liposomes were 0.087 times,0.208 times,0.234 times and 0.352 times smaller.Among liposomes PDL presented the longest MRT,the largest AUC and the lowest CL,indicating a long circulation time.Compared with PDL,the biotin modifed liposomes with different density exhibited a relatively smallerAUC,MRT and larger CL.Among the biotin modifed liposomes,0.5BDL showed best stability in blood circulation and a higher chance to exert biotin mediated endocytosis.

    The pharmacokinetic data are shown in Table 3.It can be observed from Table 3 that the biotin modifed liposomes presented shorter circulation time and smaller AUC and MRT. Among the biotin modifed liposomes,0.5BDL showed relatively longer circulation time,largerAUC and MRT.Biotin-PEG2000-DSPE chains may cover parts of DSPE-PEG2000,leading to less protection effect of PEG.In addition,biotin as a ligand at the endof the PEG chains may be recognized by cell membrane receptor in blood and result in faster elimination from blood. Previous studies suggested that nanoparticles should be small, slightly negatively charged and covered with a protective PEG layer to achieve passive targeting[11].Our study further indicates that the surface density of ligand will have a negative impact on the blood circulation of nanocarriersin vivo.Studies on tumor-bearing rat need to be further investigated to elucidate the active targeting effciency.

    Table 2–IC50value of FD and four kinds of liposomes(n=5–6).

    Table 3–Summary of the pharmacokinetic parameters of FD and four kinds of liposomes after i.v.administration in rats at dosage of 10 mg/kg(n=3).

    Fig.5–Mean plasma concentration–time profles of DTX after i.v.administration of DTX solution and four liposomes at a dose of 10 mg/kg(n=3).

    4.Conclusions

    The biotin ligand density on the surface of liposome has an impact on the cytotoxicity and pharmacokinetic of liposomes.The cytotoxicity of biotin conjugated liposomes decreased with an increase in biotin surface density.The elimination of biotin conjugated liposomes from blood was increased with increasing of biotin surface density.The ligand density of the active targeting liposomes needs to be optimized to achieve successful targeting.

    R E F E R E N C E S

    [1]Rowinsky EK.The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents.Annu Rev Med 1997;48:353–374.

    [2]Weiss RB,Donehower RC,Wiernic PH,et al.Hypersensitivity reactions from taxol.J Clin Oncol 1990;8:1263–1268.

    [3]Ellington AD,Szostak JW.In vitro selection of RNA molecules that bind specifc ligands.Nature 1990;346(6287):818–822.

    [4]Immordino ML,Brusa P,Arpicco S,et al.Preparation, characterization,cytotoxicity and pharmacokinetics of liposomes containing docetaxel.J Control Release 2003;91(3):417–429.

    [5]Maeda H,Wu J,Sawa T,et al.Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review.J Control Release 2000;65(1–2):271–284.

    [6]Ge L,Zhu JB,Xiong F,et al.Preparation,characterization and pharmacokinetics of N-palmitoyl chitosan anchored docetaxel liposomes.J Pharm Pharmacol 2007;59:661–667.

    [7]Wang QW,Lu HL,Song CC,et al.Radiosensitivity of human colon cancer cell enhanced by immunoliposomal docetaxel. World J Gastroenterol.2005;11:4003–4007.

    [8]Allen TM,Hansen C,Martin F,et al.Liposomes containing synthetic lipid derivatives of poly(ethylene glycol)show prolonged circulation half-lives in vivo.Biochim Biophys Acta.1991;1066(1):29–36.

    [9]Lasic DD,Martin FJ,Gabizon A,et al.Sterically stabilized liposomes:a hypothesis on the molecular origin of the extended circulation times.Biochim Biophys Acta. 1991;1070(1):187–192.

    [10]Sadzuka Y,Nakade A,Hirama R,et al.Effects of mixed polyethyleneglycol modifcation on fxed aqueous layer thickness and antitumor activity of doxorubicin containing liposome.Int J Pharm 2002;238(1–2):171–180.

    [11]Dadashzadeh S,Mirahmadi N,Babaei MH,et al.Peritoneal retention of liposomes:effects of lipid composition,PEG coating and liposome charge.J Control Release 2010;148(2):177–186.

    [12]Gosselin MA,Lee RJ.Folate receptor-targeted liposomes as vectors for therapeutic agents.Biotechnol Annu Rev 2002;8: 103–131.

    [13]Allen TM,Brandeis E,Hansen CB,et al.A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in effcient targeting to cancer cells.Biochim Biophys Acta.1995;1237(2):99–108.

    [14]Kibria G,Hatakeyama H,Ohga N,et al.Dual-ligand modifcation of PEGylated liposomes shows better cell selectivity and effcient gene delivery.J Control Release 2011;153(2):141–148.

    [15]Budavari S.The Merck Index,drug development research. 12th ed.Branchburg,NJ:Merck;1996.

    [16]Russell-Jones G,McTavish K,McEwan J,et al.Vitaminmediated targeting as a potential mechanism to increase drug uptake by tumours.J Inorg Biochem 2004;98(10):1625–1633.

    [17]Lee ES,Na K,Bae YH.Super PH-sensitive multifunctional polymeric micelle.Nano Lett 2005;5:325–329.

    [18]Stella VJ,Borchardt RT,Hageman MJ,et al.Prodrugs challenges and rewards part 1.Berlin:Springer Ebooks;2007.

    [19]Ramanathan S.Targeting the sodium-dependent multivitamin transport(SMVT)for improving the oral absorption properties of a retro-inverso Tat nonapetide. Pharm Res 2001;18(7):950–956.

    [20]Minko T.Enhancing the anticancer effciency of camptothecin using biotinylated poly(ethylene glycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells.Cancer Chemother Pharmacol. 2002;50(2):143–150.

    [21]Phillips WT,Medina LA,Klipper R,et al.A novel approach for the increased delivery of pharmaceutical agents to peritoneum and associated lymph nodes.J Pharmacol Exp Ther 2002;303(1):11–16.

    [22]Mishra PR,Jain NK.Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake.‘A study on the rat’. Int J Pharm 2002;231(2):145–153.

    [23]Yang W,Cheng Y,Xu T,et al.Targeting cancer cells with biotin–dendrimer conjugates.Eur J Med Chem 2009;44(2):862–868.

    [24]Na K,Bum Lee T,Park K-H,et al.Self-assembled nanoparticles of hydrophobically-modifed polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system.Eur J Med Chem 2003;18(2):165–173.

    [25]Kim JH,Li Y,Kim MS,et al.Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers.Int J Pharm 2012;427(2):435–442.

    [26]Yeeprae W,Kawakami S,Yamashita F,et al.Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages.J Control Release 2006;114(2):193–201.

    [27]Garg A,Tisdale AW,Haidari E.Targeting colon cancer cells using PEGylated liposomes modifed with a fbronectinmimetic peptide.Int J Pharm 2009;366:201–210.

    [28]Gu F,Zhang L,Teply BA,et al.Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers.Proc Natl Acad Sci U S A. 2008;105:2586–2591.

    [29]Fakhari A,Baoum A,Siahaan TJ,et al.Controlling ligand surface density optimized nanoparticles binding to ICAM-1.J Pharm Pharm Sci 2010;100(3):1045–1056.

    [30]Olivier V,Meisen I,Meckelein B,et al.Infuence of targeting ligand fexibility on receptor binding of particulate drug delivery systems.Bioconjug Chem.2003;14:1203–1208.

    [31]Shmeeda H,Amitay Y,Gorin J,et al.Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells.J Control Release 2010;146(1):76–83.

    [32]Gabizon A,Horowitz AT,Goren D,et al.In vivo fate of folatetargeted polyethylene-glycol liposomes in tumor-bearing mice.Clin Cancer Res 2003;9(17):6551–6559.

    [33]Dunne M,Zheng J,Rosenblat J,et al.APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes.J Control Release 2011;154(3):298–305.

    [34]Litzinger DC,Buiting AMJ,van Rooijen N,et al.Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes.Biochim Biophys Acta.1994;1190(1):99–107.

    [35]Gabizon A,Price DC,Hberty J,et al.Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors:biodistribution and imaging studies.Cancer Res 1999;263:6371–6378.

    [36]Yuan F,Dellian M,Fukumura D,et al.Vascular permeability in a human tumor xenograft:molecular size dependence and cutoff size.Cancer Res 1995;55:3752–3756.

    [37]Charrois GJR,Allen TM.Rate of biodistribution of STEALTH?liposomes to tumor and skin:infuence of liposome diameter and implications for toxicity and therapeutic activity.Biochim Biophys Acta.2003;1609(1):102–108.

    [38]Seynhaeve ALB,Hoving S,Schipper D,et al.Tumor necrosis factor α mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response.Cancer Res 2007;67(19):9455–9462.

    [39]Pulkkinen M,Pikkarainen J,Wirth T,et al.Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin–biotin technology:formulation development and in vitro anticancer activity.Eur J Pharm Biopharm 2008;70(1):66–74.

    [40]Crosasso P,Ceruti M,Brusa P,et al.Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes.J Control Release 2000;63:19–30.

    [41]Chervinsky DS,Brecher ML,Hoelcle MJ.Cremophor-EL enhances taxol effcacy in a multi-drug resistant C1300 neuroblastoma cell line.Anticancer Res.1993;13:93–96.

    [42]Woodle MC.Surface-modifed liposomes:assessment and characterization for increased stability and prolonged blood circulation.Chem Phys Lipids 1993;64:249–262.

    [43]Justin MS,Annapragada A,Natarajan JV,et al.Controlled targeting of liposomal doxorubicin via the folate receptor in vitro.J Control Release 2003;92:49–67.

    [44]Tyagi N,Ghosh PC.Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma(KB)cells:effect of monensin intercalated into folate-tagged liposomes.Eur J Pharm Sci 2011;43:343–353.

    *< class="emphasis_italic">Corresponding author.

    .Shenyang Pharmaceutical University,103 WenHua Road,ShenHe District,110016 Shenyang,China.Tel.:+86 24 23986306.

    E-mail address:qiaomingxi@163.com(M.Qiao).

    http://dx.doi.org/10.1016/j.ajps.2016.04.001

    1818-0876/?2016 Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    免费不卡的大黄色大毛片视频在线观看 | 国产 一区精品| 国产免费男女视频| 国产精品一区二区免费欧美| 国产乱人偷精品视频| 精品欧美国产一区二区三| 综合色丁香网| 精品午夜福利在线看| 国产精品人妻久久久影院| 嫩草影视91久久| 国产精品综合久久久久久久免费| 国产精品乱码一区二三区的特点| 99热精品在线国产| av黄色大香蕉| 亚洲欧美日韩高清专用| 欧美成人a在线观看| 18禁在线播放成人免费| 色吧在线观看| 日本黄大片高清| 国产熟女欧美一区二区| 国产精品一区二区三区四区免费观看 | av福利片在线观看| 天天一区二区日本电影三级| 久久久欧美国产精品| 亚洲在线自拍视频| 尤物成人国产欧美一区二区三区| 精品人妻一区二区三区麻豆 | 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久久久久久久久| 校园春色视频在线观看| 亚洲av不卡在线观看| 日本撒尿小便嘘嘘汇集6| 可以在线观看的亚洲视频| 男人和女人高潮做爰伦理| 国产精品久久视频播放| 午夜亚洲福利在线播放| 欧美性猛交黑人性爽| 哪里可以看免费的av片| 久久久久久伊人网av| 男人舔女人下体高潮全视频| 精品国产三级普通话版| 精品国产三级普通话版| 亚洲美女视频黄频| 美女免费视频网站| 一级a爱片免费观看的视频| 深夜a级毛片| 3wmmmm亚洲av在线观看| 亚洲精品在线观看二区| 日产精品乱码卡一卡2卡三| 午夜福利高清视频| 国内少妇人妻偷人精品xxx网站| 12—13女人毛片做爰片一| 三级国产精品欧美在线观看| 精品熟女少妇av免费看| 亚洲第一区二区三区不卡| 国产极品精品免费视频能看的| 在线观看av片永久免费下载| 久久热精品热| 久久欧美精品欧美久久欧美| 日韩一本色道免费dvd| 91午夜精品亚洲一区二区三区| 国产精品综合久久久久久久免费| 成人av一区二区三区在线看| 大型黄色视频在线免费观看| 嫩草影视91久久| 自拍偷自拍亚洲精品老妇| 国产午夜精品久久久久久一区二区三区 | 日本黄色视频三级网站网址| 欧美最新免费一区二区三区| 91狼人影院| 精品99又大又爽又粗少妇毛片| 欧美高清性xxxxhd video| 日韩高清综合在线| 欧美性感艳星| 国产一区二区三区av在线 | 欧美性猛交黑人性爽| 久久精品国产清高在天天线| 久久中文看片网| 久久99热这里只有精品18| 高清日韩中文字幕在线| 国产成人91sexporn| 国产一区二区三区av在线 | 国内精品美女久久久久久| 免费观看在线日韩| av在线蜜桃| av.在线天堂| 1000部很黄的大片| 久久久久久九九精品二区国产| 国产精品一区二区性色av| 麻豆久久精品国产亚洲av| 久久精品人妻少妇| 欧美一区二区精品小视频在线| 两个人的视频大全免费| 99久久久亚洲精品蜜臀av| 国产乱人视频| 2021天堂中文幕一二区在线观| 天天躁夜夜躁狠狠久久av| 2021天堂中文幕一二区在线观| 欧美日韩精品成人综合77777| 淫秽高清视频在线观看| 久久久久九九精品影院| 欧美高清性xxxxhd video| 国产大屁股一区二区在线视频| 久久人妻av系列| av专区在线播放| 久久久欧美国产精品| 不卡视频在线观看欧美| 国语自产精品视频在线第100页| av.在线天堂| 91久久精品电影网| 蜜臀久久99精品久久宅男| 欧美日韩在线观看h| 亚洲欧美成人综合另类久久久 | 亚洲人成网站在线播| 直男gayav资源| 精品一区二区三区av网在线观看| av专区在线播放| 亚洲成av人片在线播放无| 色5月婷婷丁香| 黄色配什么色好看| 精品一区二区三区视频在线观看免费| 久久久久久九九精品二区国产| 91午夜精品亚洲一区二区三区| 久久国产乱子免费精品| 99久久中文字幕三级久久日本| 国产精品国产三级国产av玫瑰| 国产男人的电影天堂91| 91久久精品国产一区二区三区| 亚洲最大成人av| 欧美日韩乱码在线| 亚洲av熟女| 18禁在线无遮挡免费观看视频 | 国产伦一二天堂av在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲电影在线观看av| 亚洲精品在线观看二区| 亚洲av中文av极速乱| 亚洲欧美日韩无卡精品| 久久久久久伊人网av| 激情 狠狠 欧美| 超碰av人人做人人爽久久| 少妇裸体淫交视频免费看高清| 性插视频无遮挡在线免费观看| 男人和女人高潮做爰伦理| a级毛色黄片| 老师上课跳d突然被开到最大视频| 成人一区二区视频在线观看| 国产探花极品一区二区| 国语自产精品视频在线第100页| 麻豆久久精品国产亚洲av| 村上凉子中文字幕在线| 亚洲美女视频黄频| 亚洲国产精品sss在线观看| 国产精品免费一区二区三区在线| 国产高清有码在线观看视频| 亚洲四区av| 精品人妻一区二区三区麻豆 | h日本视频在线播放| 成人国产麻豆网| 一区二区三区免费毛片| 国产色爽女视频免费观看| 99久久久亚洲精品蜜臀av| 亚洲综合色惰| 久久天躁狠狠躁夜夜2o2o| 十八禁国产超污无遮挡网站| 在线观看66精品国产| 热99在线观看视频| 18禁在线无遮挡免费观看视频 | 亚洲18禁久久av| 亚洲欧美中文字幕日韩二区| 午夜久久久久精精品| 精品一区二区三区视频在线观看免费| 热99在线观看视频| 毛片一级片免费看久久久久| 国产精品久久电影中文字幕| 日本成人三级电影网站| 美女黄网站色视频| 高清毛片免费观看视频网站| 精品久久久久久久久久久久久| 久久综合国产亚洲精品| 国产精品一区www在线观看| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 听说在线观看完整版免费高清| 欧美3d第一页| 99热精品在线国产| 亚洲精品日韩在线中文字幕 | 国产高清有码在线观看视频| 久99久视频精品免费| 在线国产一区二区在线| 亚洲自拍偷在线| 激情 狠狠 欧美| 久久99热6这里只有精品| 免费av观看视频| 国产三级在线视频| 国产黄a三级三级三级人| 午夜精品在线福利| 女的被弄到高潮叫床怎么办| av在线老鸭窝| 日韩国内少妇激情av| 人妻夜夜爽99麻豆av| 国产不卡一卡二| 国产一区二区在线av高清观看| 99riav亚洲国产免费| 蜜桃亚洲精品一区二区三区| 国产aⅴ精品一区二区三区波| 午夜视频国产福利| 成人特级黄色片久久久久久久| 亚洲真实伦在线观看| 99热网站在线观看| 国产高清有码在线观看视频| 99热6这里只有精品| 亚洲av成人精品一区久久| 欧美日韩国产亚洲二区| 国产高清不卡午夜福利| av天堂在线播放| www.色视频.com| 乱人视频在线观看| 国产成人影院久久av| 欧美极品一区二区三区四区| 搡老熟女国产l中国老女人| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 少妇人妻一区二区三区视频| 变态另类丝袜制服| 男人的好看免费观看在线视频| 亚洲精品456在线播放app| 国产av麻豆久久久久久久| 国产高清不卡午夜福利| 久久精品国产自在天天线| 成人特级av手机在线观看| 18禁裸乳无遮挡免费网站照片| 国产日本99.免费观看| 亚洲在线自拍视频| 大香蕉久久网| 91av网一区二区| 噜噜噜噜噜久久久久久91| 一本一本综合久久| 国内久久婷婷六月综合欲色啪| 国产亚洲精品av在线| 永久网站在线| 一级a爱片免费观看的视频| 丰满乱子伦码专区| 男插女下体视频免费在线播放| 亚洲av电影不卡..在线观看| 人人妻人人看人人澡| 欧美日本视频| 人人妻,人人澡人人爽秒播| 深夜精品福利| 成人漫画全彩无遮挡| 能在线免费观看的黄片| 亚洲人成网站高清观看| 在线观看66精品国产| 久久精品国产自在天天线| 我要搜黄色片| 成人av在线播放网站| 国产高清三级在线| 免费av不卡在线播放| 婷婷色综合大香蕉| a级毛片a级免费在线| 亚洲av免费高清在线观看| 国产在视频线在精品| 又黄又爽又免费观看的视频| 亚洲av中文av极速乱| 国产国拍精品亚洲av在线观看| 男插女下体视频免费在线播放| 一卡2卡三卡四卡精品乱码亚洲| 国产激情偷乱视频一区二区| 小说图片视频综合网站| 婷婷色综合大香蕉| 国产精品精品国产色婷婷| 精品无人区乱码1区二区| 美女被艹到高潮喷水动态| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 亚洲四区av| 人妻丰满熟妇av一区二区三区| 久久精品91蜜桃| 91麻豆精品激情在线观看国产| 欧美成人a在线观看| 欧美另类亚洲清纯唯美| 大香蕉久久网| 99热网站在线观看| 午夜免费激情av| 亚洲在线观看片| 亚洲最大成人中文| 精品人妻视频免费看| 欧美性感艳星| 精品日产1卡2卡| 日韩精品中文字幕看吧| 男女下面进入的视频免费午夜| 精品免费久久久久久久清纯| 夜夜夜夜夜久久久久| 在线播放无遮挡| 最好的美女福利视频网| 噜噜噜噜噜久久久久久91| 免费在线观看成人毛片| 国产激情偷乱视频一区二区| 12—13女人毛片做爰片一| av天堂在线播放| 黄片wwwwww| 一区二区三区免费毛片| 美女xxoo啪啪120秒动态图| 嫩草影院新地址| 成人无遮挡网站| 久久久久性生活片| 国产91av在线免费观看| av在线老鸭窝| 亚洲欧美成人精品一区二区| 黄色配什么色好看| 你懂的网址亚洲精品在线观看 | 高清午夜精品一区二区三区 | 黄色欧美视频在线观看| 人人妻人人看人人澡| 欧美激情国产日韩精品一区| 少妇熟女aⅴ在线视频| 亚洲专区国产一区二区| 永久网站在线| 永久网站在线| 免费看a级黄色片| 国产一区二区三区在线臀色熟女| 免费看av在线观看网站| 国产午夜精品论理片| 日本与韩国留学比较| 免费看美女性在线毛片视频| 亚洲成a人片在线一区二区| 色5月婷婷丁香| 亚洲美女黄片视频| 欧美性感艳星| 成人鲁丝片一二三区免费| 免费看光身美女| 日韩精品有码人妻一区| 亚洲高清免费不卡视频| 最近最新中文字幕大全电影3| 一区二区三区高清视频在线| 麻豆国产97在线/欧美| 三级毛片av免费| 亚洲欧美成人精品一区二区| 美女大奶头视频| 女人十人毛片免费观看3o分钟| 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 日本精品一区二区三区蜜桃| 禁无遮挡网站| 国产成人a区在线观看| 不卡一级毛片| 亚洲内射少妇av| av女优亚洲男人天堂| 日韩欧美国产在线观看| 亚洲成人av在线免费| 女生性感内裤真人,穿戴方法视频| 亚洲久久久久久中文字幕| 久久精品人妻少妇| 国产精品嫩草影院av在线观看| 亚洲欧美成人精品一区二区| 国产一区二区三区av在线 | 色综合站精品国产| 三级毛片av免费| 国产伦一二天堂av在线观看| 亚洲精品日韩av片在线观看| 91在线精品国自产拍蜜月| 成熟少妇高潮喷水视频| 亚洲av二区三区四区| 99热只有精品国产| 美女cb高潮喷水在线观看| 久久久精品大字幕| 国产爱豆传媒在线观看| 俄罗斯特黄特色一大片| 亚洲久久久久久中文字幕| av天堂中文字幕网| 国产男人的电影天堂91| 人妻少妇偷人精品九色| 在线播放无遮挡| 精品国产三级普通话版| 男女视频在线观看网站免费| 可以在线观看毛片的网站| 人人妻人人澡人人爽人人夜夜 | 亚洲精品亚洲一区二区| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 欧美日韩一区二区视频在线观看视频在线 | 菩萨蛮人人尽说江南好唐韦庄 | 99久久精品一区二区三区| 国产一区二区三区av在线 | 女人十人毛片免费观看3o分钟| 久久久久久久久久久丰满| 人妻夜夜爽99麻豆av| 观看美女的网站| 日韩欧美国产在线观看| 日日啪夜夜撸| 亚洲五月天丁香| 亚洲丝袜综合中文字幕| 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 乱码一卡2卡4卡精品| 99国产极品粉嫩在线观看| 一边摸一边抽搐一进一小说| 麻豆一二三区av精品| 18禁黄网站禁片免费观看直播| 国产高清有码在线观看视频| 99热这里只有是精品50| 免费看a级黄色片| 欧美xxxx黑人xx丫x性爽| 啦啦啦韩国在线观看视频| 神马国产精品三级电影在线观看| av视频在线观看入口| 精品一区二区三区av网在线观看| 亚洲激情五月婷婷啪啪| 免费人成视频x8x8入口观看| 国产色爽女视频免费观看| 神马国产精品三级电影在线观看| 国产成人a∨麻豆精品| 国产av麻豆久久久久久久| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 午夜免费男女啪啪视频观看 | 免费在线观看成人毛片| 三级经典国产精品| 亚洲精品国产成人久久av| 国产久久久一区二区三区| 乱系列少妇在线播放| 淫妇啪啪啪对白视频| 亚洲av中文av极速乱| 丝袜美腿在线中文| 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看| 亚洲av免费高清在线观看| 久久久欧美国产精品| 亚洲av.av天堂| 桃色一区二区三区在线观看| 亚洲成人av在线免费| 九九热线精品视视频播放| 日本三级黄在线观看| 国产爱豆传媒在线观看| 亚洲欧美日韩卡通动漫| 可以在线观看毛片的网站| 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| 国产成人freesex在线 | 99热这里只有精品一区| 色哟哟哟哟哟哟| 岛国在线免费视频观看| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 欧美色视频一区免费| 天天一区二区日本电影三级| 久久精品影院6| 亚洲久久久久久中文字幕| 2021天堂中文幕一二区在线观| 插阴视频在线观看视频| 91在线观看av| 日日撸夜夜添| 成人鲁丝片一二三区免费| 男女下面进入的视频免费午夜| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人综合色| 国内精品久久久久精免费| 亚洲精品成人久久久久久| 午夜精品在线福利| 三级经典国产精品| 久久久精品欧美日韩精品| 亚洲美女搞黄在线观看 | 一本一本综合久久| 欧美不卡视频在线免费观看| 色综合站精品国产| 久久久久精品国产欧美久久久| 99国产极品粉嫩在线观看| 国产精品爽爽va在线观看网站| 秋霞在线观看毛片| 赤兔流量卡办理| 亚洲成人久久性| 黑人高潮一二区| 亚洲最大成人手机在线| 成人综合一区亚洲| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验 | 亚洲国产精品sss在线观看| 亚洲国产色片| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 久久这里只有精品中国| 成人鲁丝片一二三区免费| 日本免费一区二区三区高清不卡| 久久久久国内视频| 国产精品国产高清国产av| 嫩草影院精品99| 欧美潮喷喷水| 我的女老师完整版在线观看| 校园春色视频在线观看| av中文乱码字幕在线| av女优亚洲男人天堂| 国产老妇女一区| 久久韩国三级中文字幕| 色5月婷婷丁香| 久久久久久大精品| 精品国内亚洲2022精品成人| 国产蜜桃级精品一区二区三区| 亚洲成a人片在线一区二区| 免费观看在线日韩| 欧美成人一区二区免费高清观看| 日韩,欧美,国产一区二区三区 | 特级一级黄色大片| 国产一区二区激情短视频| 成人美女网站在线观看视频| 免费av毛片视频| 亚洲人成网站在线播| 一级a爱片免费观看的视频| 国产美女午夜福利| av在线蜜桃| 男插女下体视频免费在线播放| 黄色日韩在线| 69人妻影院| 亚洲国产日韩欧美精品在线观看| 国产亚洲91精品色在线| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 如何舔出高潮| 搡老岳熟女国产| 男人狂女人下面高潮的视频| 悠悠久久av| 亚洲四区av| 成年女人看的毛片在线观看| 一区二区三区免费毛片| 成年版毛片免费区| 日本爱情动作片www.在线观看 | 麻豆国产97在线/欧美| 国产色爽女视频免费观看| 香蕉av资源在线| 国产在视频线在精品| 国产高清激情床上av| 免费黄网站久久成人精品| 美女大奶头视频| 成年女人毛片免费观看观看9| 人人妻人人澡欧美一区二区| 韩国av在线不卡| 嫩草影视91久久| 欧美xxxx性猛交bbbb| 久久久久国产网址| av在线播放精品| 天天一区二区日本电影三级| 超碰av人人做人人爽久久| 久久亚洲国产成人精品v| 乱人视频在线观看| 中文资源天堂在线| 激情 狠狠 欧美| 国产成人一区二区在线| 亚洲av一区综合| 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看 | a级毛片a级免费在线| 小蜜桃在线观看免费完整版高清| 久久久精品94久久精品| 成人精品一区二区免费| 麻豆国产97在线/欧美| 女的被弄到高潮叫床怎么办| 亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 22中文网久久字幕| 国产美女午夜福利| 寂寞人妻少妇视频99o| 欧美性感艳星| 联通29元200g的流量卡| 十八禁网站免费在线| 久久草成人影院| 一进一出抽搐gif免费好疼| 简卡轻食公司| 久久精品人妻少妇| 麻豆国产av国片精品| 人妻夜夜爽99麻豆av| 午夜爱爱视频在线播放| ponron亚洲| 亚洲成人久久爱视频| 老熟妇仑乱视频hdxx| 国产精品美女特级片免费视频播放器| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 91午夜精品亚洲一区二区三区| 热99re8久久精品国产| 欧美日本亚洲视频在线播放| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 欧美极品一区二区三区四区| 久久精品国产亚洲av香蕉五月| 久久精品国产鲁丝片午夜精品| 免费电影在线观看免费观看| 十八禁国产超污无遮挡网站| 亚洲一级一片aⅴ在线观看| 天堂网av新在线| 亚洲国产欧美人成| 亚洲精华国产精华液的使用体验 | 五月玫瑰六月丁香| 久久久精品大字幕| 亚洲内射少妇av| 午夜免费男女啪啪视频观看 | 波多野结衣巨乳人妻| 一级毛片久久久久久久久女| 黄色配什么色好看| 国模一区二区三区四区视频| 亚洲第一区二区三区不卡| 在线免费十八禁| 婷婷精品国产亚洲av在线| 成年免费大片在线观看| 欧美日韩在线观看h| 晚上一个人看的免费电影| 丰满的人妻完整版| 亚洲av成人精品一区久久| 国产一区二区亚洲精品在线观看| 搡老熟女国产l中国老女人| av视频在线观看入口| 成人亚洲欧美一区二区av| 日韩高清综合在线| 亚洲成人久久性|