• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of surface ligand density on cytotoxicity and pharmacokinetic profle of docetaxel loaded liposomes

    2017-01-20 01:28:32

    Shenyang Pharmaceutical University,Shenyang,China

    Effect of surface ligand density on cytotoxicity and pharmacokinetic profle of docetaxel loaded liposomes

    Chun Chu,Ping Xu,Haoyue Zhao,Qing Chen,Dawei Chen, Haiyang Hu,Xiuli Zhao,Mingxi Qiao*

    Shenyang Pharmaceutical University,Shenyang,China

    A R T I C L EI N F O

    Article history:

    Received 16 March 2016

    Received in revised form 21 April 2016

    Accepted 22 April 2016

    Available online 10 May 2016

    Docetaxel

    Liposomes

    Biotin

    Ligand density

    Tumor targeting

    Various biotin-modifed liposomes incorporated with docetaxel(DTX)were prepared to study the effect of surface biotin density on the pharmacokinetic profle of the liposome.Four types of liposomes such as PEG modifed liposome(PDL),0.5%(mol)biotin modifed liposome (0.5BDL),1%(mol)biotin modifed liposome(1BDL)and 2%(mol)biotin modifed liposome (2BDL)were prepared using thin flm dispersion method.The prepared liposomes were characterized by measuring encapsulation effciency(EE),particle size,Zeta-potential,physical stability and drug release proflesin vitro.MTT assay was performed to elevate the cytotoxicity of liposomes on MCF-7 cells.In vivoevaluation was further performed to investigate the effect of biotin surface density on the pharmacokinetic profles.All the prepared liposomes exhibited high encapsulation effciency,small particle size,narrow particle distribution and sustained release proflesin vitro.In MTT assay,0.5BDL showed largest tumor cell toxicity,compared with DTX solution.All liposomes containing DTX showed prolonged blood circulationin vivo,and 0.5BDL showed the longest circulation time among the biotin modifed liposome.Surface modifcation of liposome had a negative impact on the circulation of liposomes in the blood,which needs to be considered when designing the ligand mediated targeting delivery systems.A proper amount of biotin liposome with 0.5%molar ratio is expected to produce the best anti-tumor effect.

    ?2016 Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Docetaxel,a second-generation semi-synthetic taxane derivative has shown dramatic antitumor activities,mostly against various human cancers such as ovarian carcinoma,advanced breast cancer,lung cancer and head/neck cancer[1].Currently,docetaxel is formulated using Tween80 and ethanol (50:50,v/v)as solvent;however,its clinical use is limited due to its side effects related to formulation,such as neutropenia,peripheral neuropathy and hypersensitivity reactions[1,2]. Therefore,there is a strong rationale for reformulating docetaxel using a safer vehicle than Tween80.

    Recently,many carriers have been studied,such as nanoparticle-aptamer,bioconjugates[3],DTX loaded liposomes[4],pegylated liposomes[4,5],N-palmitoyl chitosan anchored DTX liposomes[6],and pegylated immunoliposomes [7].Liposomes with spherical lipid bilayer structures are one of the most successful drug carriers in drug delivery systems; however,they are prone to be taken up by reticuloendothelial system(RES)cells in liver and spleen[8,9].As is well known that PEG modifed liposomes exhibit a long circulation property in the blood and accumulate in tumorviapassive targeting [4,10,11],increasing evidence has suggested that the selectivity of PEG modifed liposomes is far from satisfaction.Therefore, many researchers have been focusing on developing active targeting drug delivery systems,in which many ligands have been introduced to the surface of drug carrier,such as folic acid[12], antibody[13]and integrin αvβ3[14].Biotin,a member of the vitamin family(vitamin H),is a growth promoter of cells.Its ligand in cancerous tumors is higher than in normal tissue[15] because rapid proliferation of cancer cells requires extra biotin. Some cancer cells including JC,Colo-26,P815 and MCF-7 overexpress biotin-specifc receptors[16,17],which are responsible for the uptake of essential nutrients such as biotin,lipoate,pantothenate[18]and peptides[19].Biotin has been considered as a promising ligand for active targeting[16,20–22];Yang et al. prepared biotin–dendrimer conjugate,which exhibited much higher cellular uptake into Hela cells than the dendrimer without biotin modifcation[23].Biotinylated pullulan acetate nanoparticles was prepared by Na,which has been shown strong adsorption to the HepG2 cells[24].Biotin-conjugated polymeric micelles could effectively release doxorubicin in acidic tumor cells compared to that without biotin[25].

    However,the effect of biotin modifcation and density on cytotoxicity and pharmacokinetic profles of the carriers has not been explored to date.Previous studies have shown that the cellular uptake increased with the increase of ligand density on the surface of particles[26–28].However,dense surface coverage of ligand may not produce expected improvements in cellular uptake[29,30].Moreover,some studies have shown that the insertion of ligand resulted in faster clearance of liposomes from plasma,which compromised the accumulation of liposomes in tumor via EPR effect[31,32].It was reported that the 2.56 mol%NGR(asparagine–glycine–arginine amino acid sequence)resulted in lower total tumor accumulation than the formulation with only 0.64 mol%NGR[33].

    As known,the success of an active targeting strategy relied heavily on the accumulation of the carriers at tumor site via passive targeting.If the drug loaded carriers were quickly eliminatedin vivo,the total tumor accumulation of carriers will be decreased.The pharmacokinetic profles of the active targeting formulation are important factors that need to be considered to achieve successive active targeting.

    The researches on the effect of biotin density of liposome on cytotoxicity and pharmacokinetic profles were absent.In this study,biotin was conjugated to PEG chains on the surface of liposomes containing DTX,in an attempt to improve cancer targeting.DTX loaded liposomes modifed with different biotin density were prepared to investigate the effect of biotin density on the cytotoxicity and the pharmacokinetic profles of liposomes in blood.This study will lay a foundation for optimization of liposome formulation for furtherin vivoevaluation.

    2.Materials and methods

    2.1.Materials

    Docetaxel was purchased from Jiansu Hengrui Medicinal Co., Ltd(Jiangsu,China).Cholesterol(Chol)was purchased from Tianjin Bodi Chemical Industry Co.(Tianjin,China).Soy phosphatidylcholine(Spc)was purchased from Shanghai Taiwei Pharmacetical Co.(Shanghai,China).Dichloromethane was purchased from Tianjin Jingxi Chemical Industry Co.(Tianjin, China).Disteroylphophatidyl ethanolamine methoxypolyethylene glycol conjugate(DSPE-PEG2000)was purchased from Nippon Fine Chemical Co.,Ltd(Kobe,Japan)and Biotin-PEG2000-DSPE was purchased from Creative PEG Works Co.(Winston-Salem,NC,USA).Methanol,acetonitrile and tert-butyl methyl ether were of high-performance liquid chromatography(HPLC) grade,all other regents and solvents used were of analytical grade.Sprague–Dawley rats(200±20 g)were supplied by the Laboratory Animal Center of Shenyang Pharmaceutical University(Shenyang,China).All animal procedures were approved by the Animal Ethics Committee of Shenyang Pharmaceutical University.

    2.2.Preparation of liposomes

    Liposomes were prepared by thin-flm hydration method.Briefy, to prepare PEG modifed liposome(PDL),Spc Chol(Spc:Chol, 9:2,molar ratio)and DSPE-PEG(4%mol)as well as DTX(1:18, mass ratio)were frst dissolved in dichloromethane solutions.The mixture was placed in a round-bottomed fask and the solvent was removed by rotary evaporation at 37°C under vacuum to obtain the dry flm.Afterward,the flm was hydrated with pH 7.4 PBS buffer in a water bath at 40°C with stirring for 20 min until a homogenous liposome suspension was obtained.The suspension was then sonicated with a ultrasonic cell disruptor,and the pulse function was 220w,on 1 s and off 1 s for 2 min.Polycarbonate flters,with a pore size of 220 nm were used to decrease the size of liposomes.The liposomes were purifed by centrifugating at 15 000×gfor 15 min.Biotin modifed liposomes(0.5BDL,1BDL,2BDL)were prepared using the same method mentioned above except that 0.5%,1%and 2%(mol)of DSPE-PEG2000were used respectively.

    2.3.Characterization of liposomes

    The DTX concentration was determined by high performance liquid chromatography(HPLC).In detail,the analysis was performed with a Hitachi HPLC system(UV Detector L-2400, Pump L-2130,Hitachi,Tokyo,Japan),equipped with a 20 μl loop and a reversed-phase column(Hypersil,ODS,4.6×250 mm, 5 μm).The mobile phase was made up of acetonitrile and water (60:40;v/v)at a fow rate of 1 ml/min,and the DTX was detected at a wavelength of 228 nm.Methanol was used before analysis as a demulsifer.The encapsulation effciency(EE%)and drug loading content(LC%)were calculated using equation 1 and equation 2:

    where,Weis the amount of drug encapsulated,Waddis the amount of drug used andWtis total amount of encapsulated drug and liposome.

    The diameter and Zeta potential of the liposomes were determined by Zetasizer3000(Malven Instruments Ltd.,UK). Intensity autocorrelation was measured at a scattering angle of 90 degrees at room temperature.

    The morphological feature of the liposomes was observed with a transmission electron microscope(TEM)(JEM-1200EX, JEOL Ltd.,Japan)at 80 kV.A drop of liposomal sample was placed on a copper grid,excess water was blotted with a piece of flter paper and a drop of 1%phosphotungstic acid was added for negative staining.

    Initial stability of liposomes was evaluated by detecting leakage of DTX from liposomes at 4°C.Encapsulation effciency of four liposomes was detected by HPLC at 1,2,3,4,5, 7,10,13 and 15 days after preparation.The leakage rate(LR%) was calculated using equation 3:

    whereEEnis the encapsulation effciency detected at n day,andEE1is the encapsulation effciency detected at the frst day.

    In vitrorelease of DTX from liposomes was determined using dialysis method with a pharmaceutical dissolution tester at 37°C.The samples were put into dialysis bags(COMW:8000–14,000),and PBS(80 ml,PH7.4)containing 0.5%(v/v)Tween80 was used as the release medium.Tween80 was added to ensure the sink condition.The stirring speed is 50 rpm.At each time point,2 ml release medium was withdrawn and replaced with fresh PBS.The concentration of DTX in the release medium was determined using HPLC.The mobile phase was made up of acetonitrile and water(52:48,v/v)at a fow rate of 1 ml/min.

    2.4.Cytotoxicityin vitro

    The human breast cell line MCF-7(purchased from Shanghai Fuleibao Bio-Tech Co.,Ltd)was maintained in Dulbecco’s modifed Eagle’s medium(DMEM)containing 10%fetal bovine serum and 0.1%antibiotics(penicillin streptomycin)in a 5%CO2humidifed atmosphere at 37°C.The MTT assay was used to test the cytotoxicityin vitro;the cells were seeded at 8×103cells/ well in 96 well plates and incubated for 24 h.The cells were then incubated in 96 well plates at 37°C for 24 h,48 h,and 72 h in the presence of a series of concentration of formulations, including DTX solution(FD),PDL,0.5BDL,1BDL,and 2BDL.The cells incubated in medium without any drug or liposomes were used as controls.20 μl of MTT(5 mg/ml)were added at the end of incubation period.The plates were incubated for an additional 4 h.DMSO(150 μl)were added to dissolve the formazan crystals and the absorbance value was determined at wavelengths of 490 nm.

    2.5.Pharmacokinetic studies

    SD rats were divided into fve groups randomly(three rats per group).PDL,0.5BDL,1BDL,and 2BDL were i.v.administration at a dose of 10 mg/kg and DTX in tween80(FD)was chosen as control group.Blood samples were collected at 5 min,10 min, 15 min,30 min,45 min,1 h,2 h,4 h,8 h,12 h and 24 h.The samples were then centrifuged at 5000 rpm for 10 min to separate the plasma;10 μl of paclitaxel(10 μg/ml)used as internal standard was added into 200 μl of plasma.The mixture was vortexed for 30 s twice to mix well,and then 2 ml of tertbutyl methyl ether was added.Then the mixture was sonicated for 3 min,and vortexed for 5 min.Clear supernatant was obtained by centrifugating at 10,000 rpm for 5 min.The supernatant was dried with nitrogen gas and reconstituted in 100 μl of methanol.The concentration of DTX in blood was measured using HPLC.A reversed-phase column(Hypersil,ODS, 4.6×250 mm,5 μm)was used.The mobile phase was made up of acetonitrile and water(57:43,v/v)at a fow rate of 1 ml/min. The DTX detection was performed at a wavelength of 228 nm. Pharmacokinetic parameters were determined using the software DAS2.0.The signifcance of the difference was analyzed by ANOVA models with Statistical Program for Social Sciences(SPSS 11.0)and the signifcant level was set at 0.05.

    3.Results and discussion

    3.1.Characterization of liposomes

    Encapsulation effciency(EE%),drug loading content(LC%), mean diameter with poly dispersion index(PDI)and zeta potential of four liposomes were displayed in Table 1.It could be seen that incorporation of Biotin-PEG2000-DSPE into the membrane increased the mean diameter and slightly decreased the Zeta potential of the liposomes.Morphology of four liposomes observed by TEM is shown in Fig.1.The doublemembrane of the liposomes could be seen clearly and no drug crystal was visible.The leakage rate(Fig.2)of all liposomes was less than 25%at 4°C in the hydrated state for 15 days.The release behavior of DTX from four liposomes and free DTX in the release medium were shown in Fig.3.The four liposomes (PDL,0.5BDL,1BDL,2BDL)released 69.12±9.98%,57.44±0.37%, 54.49±6.58%and 52.37±3.62%of DTX respectively at 96 h in comparison with free DTX(96.15±0.48%at 6 h),indicating that four liposomes had a sustained release profle.

    Table 1–Characterization of four kinds of liposomes(n=3).

    Docetaxel is a potent anticancer drug and its use is restricted by its poor aqueous solubility where addition ofTween80 to enhance DTX solubility was associated with its side effects [1].Liposomes are capable of increasing the aqueous solubility of DTX.Moreover,biotin was used to modify the liposomes with an aim to increase the DTX accumulation in tumor site. All the prepared liposomes had high encapsulation effciency and drug loading rate.Mean diameter of liposomes increased with the incorporation of Biotin-PEG2000-DSPE due to the interaction of Biotin at the end of Biotin-PEG2000-DSPE and the swelling resulting from the hydrophilic property of biotin [24].The particulate carrier systems with a diameter larger than 200 nm are known to induce nonspecifc scavenging by monocytes and the reticuloendothelial system(RES)[34,35].It was reported that some tumor vessels could cause extravasation of particulates with a diameter less than 400 nm[5,36].The liposomes with a diameter around 100 nm extravasated much easier than bigger ones with a diameter ranging from 200 to 400 nm[37,38].The liposomes prepared in this study were found to have a diameter between 97.99±14.32 nm and 145.0±5.015 nm,which were not expected to be removed by the RES.Biotinylation of liposome did not markedly change the Zeta potential;although biotin is known to possess a positive charge,the result is in agreement with an earlier study [39].

    The therapeutic effect of drug in carriers is highly dependent on the release rate of the drug from the carrier.If the drug leaks from the carrier too rapidly,the carrier will lose most of the loaded drug before it reaches the diseased site,leading to the compromised therapeutic effect.In our study,we compared the DTX release behavior of FD and all liposomes.As shown in Fig.3,four liposomes released DTX slower than FD. The sustained release of DTX from liposomes was probably attributed to the encapsulation by the bilayer membrane of liposomes.

    Fig.1–Transmission electron microscopy of PDL(A); 0.5BDL(B);1BDL(C)and 2BDL(D)(×40,000).

    Fig.2–Leakage rate of four kinds of liposomes at 4°C (n=3).

    Fig.3–Drug release from FD and four kinds of liposomes in PBS(PH 7.4)containing 0.5%Tween80(n=3).

    3.2.MTT assay

    Cell viability of 24 h,48 h,and 72 h after adding empty liposome(EL),FD,PDL,0.5BDL,1BDL and 2BDL are shown in Fig.4(A, B,C).IC50was calculated and the results were shown in Table 2. The IC50of liposomes were higher than FD(P<0.01)after 24 h and 48 h incubation.However,0.5BDL showed lower IC50than FD at 72 h(P<0.01).Compared with 0.5BDL,both 1BDL and 2BDL showed signifcantly higher IC50(P<0.01)and there is no signifcant difference between 1BDL and 2BDL(P>0.05).The result suggested that empty liposome has no inhibition effect on cell growth,and cell viability decreased with increasing of the concentration of DTX.For all liposomes and FD,IC50decreased with the increasing of incubation time.

    Fig.4–Viability of MCF-7 after incubation with FD and four kings of liposomes.Data are presented as Mean±SD (n=5–6).

    Itwasfoundthatdrugconcentrationandexposuretimewere closely related to cytotoxicity of all formulations.This result was in agreement with previous research[40,41].The higher cell viability of liposomes than FD at 24 h and 48 h is probably relatedtothedoublemembraneofliposomeandthestericeffect of PEG chains,which,frst,can inhibit the release of drug from carriers,and second,can prevent liposomes from interacting with cells.In addition,liposomes may delay internalization of drug in cells due to the negative charge on the surface of liposomes.Liposomes with negative charge generally exhibit stronger binding than neutral ones because of the existence of a membrane receptor recognizing negatively charged particles[42].Fig.3 suggested that among liposomes,PDL had the highest drug release rate,which induced the highest cytotoxicity at 24 h.The biotin receptor on the surface of MCF-7 may play a role in uptaking the liposomes into the cells and causing thecytotoxicity.ItwasfoundthatIC50of1BDLand2BDLshowed no signifcant difference in the cytotoxicity.But IC50value of 0.5BDL is nearly two times and three times lower.Higher biotin density on the liposomes failed to show higher cytotoxicity. This is consistent with the fndings reported by other research groups[43,44].Thismightbeattributedtotheinternalizedligand molecules leading to a down-regulation or‘shut-off’of the receptorrecyclingsystem.Theligandsconjugatedliposomesmay contributetotheintracellularligandconcentrationandaretherefore responsible for the saturation and‘shut-off’of the receptor uptake pathway.Liposomes with more targeting ligands would lead to more intracellular ligand content than those with less targeting ligands.This could result in a decreased cytotoxicity when more ligands are utilized[43].An alternative explanation is the possible existence of DSPE-PEG2000-Biotin micelles formed at higher number of targeting ligand.The biotin modifed micelles would compete with the receptors and prevent biotin modifed liposomes binding to the receptors.

    3.3.Pharmacokinetic studies

    Mean plasma concentration–time profles of DTX after i.v.administration of DTX solution and four liposomes at a dose of 10 mg/kg was shown in Fig.5.The main pharmacokinetic parameters were summarized in Table 3.When DTX was encapsulated in liposomes,the pharmacokinetic parameters were clearly different from those of FD.The AUC and the MRT were signifcantly increased,and the plasma clearance(CL)was reduced signifcantly.The AUC of liposomes(PDL;0.5BDL;1BDL and 2BDL)were 10.86 times,4.456 times,2.689 times and 3.976 times higher than FD(3.791±1.375 mg/l·h).The MRT of liposomes(PDL,0.5BDL,1BDL and 2BDL)were 14.89 times,4.755 times, 1.973 times and 1.851 times higher than FD(3.573±2.121h).In comparison with FD,CL of liposomes were 0.087 times,0.208 times,0.234 times and 0.352 times smaller.Among liposomes PDL presented the longest MRT,the largest AUC and the lowest CL,indicating a long circulation time.Compared with PDL,the biotin modifed liposomes with different density exhibited a relatively smallerAUC,MRT and larger CL.Among the biotin modifed liposomes,0.5BDL showed best stability in blood circulation and a higher chance to exert biotin mediated endocytosis.

    The pharmacokinetic data are shown in Table 3.It can be observed from Table 3 that the biotin modifed liposomes presented shorter circulation time and smaller AUC and MRT. Among the biotin modifed liposomes,0.5BDL showed relatively longer circulation time,largerAUC and MRT.Biotin-PEG2000-DSPE chains may cover parts of DSPE-PEG2000,leading to less protection effect of PEG.In addition,biotin as a ligand at the endof the PEG chains may be recognized by cell membrane receptor in blood and result in faster elimination from blood. Previous studies suggested that nanoparticles should be small, slightly negatively charged and covered with a protective PEG layer to achieve passive targeting[11].Our study further indicates that the surface density of ligand will have a negative impact on the blood circulation of nanocarriersin vivo.Studies on tumor-bearing rat need to be further investigated to elucidate the active targeting effciency.

    Table 2–IC50value of FD and four kinds of liposomes(n=5–6).

    Table 3–Summary of the pharmacokinetic parameters of FD and four kinds of liposomes after i.v.administration in rats at dosage of 10 mg/kg(n=3).

    Fig.5–Mean plasma concentration–time profles of DTX after i.v.administration of DTX solution and four liposomes at a dose of 10 mg/kg(n=3).

    4.Conclusions

    The biotin ligand density on the surface of liposome has an impact on the cytotoxicity and pharmacokinetic of liposomes.The cytotoxicity of biotin conjugated liposomes decreased with an increase in biotin surface density.The elimination of biotin conjugated liposomes from blood was increased with increasing of biotin surface density.The ligand density of the active targeting liposomes needs to be optimized to achieve successful targeting.

    R E F E R E N C E S

    [1]Rowinsky EK.The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents.Annu Rev Med 1997;48:353–374.

    [2]Weiss RB,Donehower RC,Wiernic PH,et al.Hypersensitivity reactions from taxol.J Clin Oncol 1990;8:1263–1268.

    [3]Ellington AD,Szostak JW.In vitro selection of RNA molecules that bind specifc ligands.Nature 1990;346(6287):818–822.

    [4]Immordino ML,Brusa P,Arpicco S,et al.Preparation, characterization,cytotoxicity and pharmacokinetics of liposomes containing docetaxel.J Control Release 2003;91(3):417–429.

    [5]Maeda H,Wu J,Sawa T,et al.Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review.J Control Release 2000;65(1–2):271–284.

    [6]Ge L,Zhu JB,Xiong F,et al.Preparation,characterization and pharmacokinetics of N-palmitoyl chitosan anchored docetaxel liposomes.J Pharm Pharmacol 2007;59:661–667.

    [7]Wang QW,Lu HL,Song CC,et al.Radiosensitivity of human colon cancer cell enhanced by immunoliposomal docetaxel. World J Gastroenterol.2005;11:4003–4007.

    [8]Allen TM,Hansen C,Martin F,et al.Liposomes containing synthetic lipid derivatives of poly(ethylene glycol)show prolonged circulation half-lives in vivo.Biochim Biophys Acta.1991;1066(1):29–36.

    [9]Lasic DD,Martin FJ,Gabizon A,et al.Sterically stabilized liposomes:a hypothesis on the molecular origin of the extended circulation times.Biochim Biophys Acta. 1991;1070(1):187–192.

    [10]Sadzuka Y,Nakade A,Hirama R,et al.Effects of mixed polyethyleneglycol modifcation on fxed aqueous layer thickness and antitumor activity of doxorubicin containing liposome.Int J Pharm 2002;238(1–2):171–180.

    [11]Dadashzadeh S,Mirahmadi N,Babaei MH,et al.Peritoneal retention of liposomes:effects of lipid composition,PEG coating and liposome charge.J Control Release 2010;148(2):177–186.

    [12]Gosselin MA,Lee RJ.Folate receptor-targeted liposomes as vectors for therapeutic agents.Biotechnol Annu Rev 2002;8: 103–131.

    [13]Allen TM,Brandeis E,Hansen CB,et al.A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in effcient targeting to cancer cells.Biochim Biophys Acta.1995;1237(2):99–108.

    [14]Kibria G,Hatakeyama H,Ohga N,et al.Dual-ligand modifcation of PEGylated liposomes shows better cell selectivity and effcient gene delivery.J Control Release 2011;153(2):141–148.

    [15]Budavari S.The Merck Index,drug development research. 12th ed.Branchburg,NJ:Merck;1996.

    [16]Russell-Jones G,McTavish K,McEwan J,et al.Vitaminmediated targeting as a potential mechanism to increase drug uptake by tumours.J Inorg Biochem 2004;98(10):1625–1633.

    [17]Lee ES,Na K,Bae YH.Super PH-sensitive multifunctional polymeric micelle.Nano Lett 2005;5:325–329.

    [18]Stella VJ,Borchardt RT,Hageman MJ,et al.Prodrugs challenges and rewards part 1.Berlin:Springer Ebooks;2007.

    [19]Ramanathan S.Targeting the sodium-dependent multivitamin transport(SMVT)for improving the oral absorption properties of a retro-inverso Tat nonapetide. Pharm Res 2001;18(7):950–956.

    [20]Minko T.Enhancing the anticancer effciency of camptothecin using biotinylated poly(ethylene glycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells.Cancer Chemother Pharmacol. 2002;50(2):143–150.

    [21]Phillips WT,Medina LA,Klipper R,et al.A novel approach for the increased delivery of pharmaceutical agents to peritoneum and associated lymph nodes.J Pharmacol Exp Ther 2002;303(1):11–16.

    [22]Mishra PR,Jain NK.Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake.‘A study on the rat’. Int J Pharm 2002;231(2):145–153.

    [23]Yang W,Cheng Y,Xu T,et al.Targeting cancer cells with biotin–dendrimer conjugates.Eur J Med Chem 2009;44(2):862–868.

    [24]Na K,Bum Lee T,Park K-H,et al.Self-assembled nanoparticles of hydrophobically-modifed polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system.Eur J Med Chem 2003;18(2):165–173.

    [25]Kim JH,Li Y,Kim MS,et al.Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers.Int J Pharm 2012;427(2):435–442.

    [26]Yeeprae W,Kawakami S,Yamashita F,et al.Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages.J Control Release 2006;114(2):193–201.

    [27]Garg A,Tisdale AW,Haidari E.Targeting colon cancer cells using PEGylated liposomes modifed with a fbronectinmimetic peptide.Int J Pharm 2009;366:201–210.

    [28]Gu F,Zhang L,Teply BA,et al.Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers.Proc Natl Acad Sci U S A. 2008;105:2586–2591.

    [29]Fakhari A,Baoum A,Siahaan TJ,et al.Controlling ligand surface density optimized nanoparticles binding to ICAM-1.J Pharm Pharm Sci 2010;100(3):1045–1056.

    [30]Olivier V,Meisen I,Meckelein B,et al.Infuence of targeting ligand fexibility on receptor binding of particulate drug delivery systems.Bioconjug Chem.2003;14:1203–1208.

    [31]Shmeeda H,Amitay Y,Gorin J,et al.Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells.J Control Release 2010;146(1):76–83.

    [32]Gabizon A,Horowitz AT,Goren D,et al.In vivo fate of folatetargeted polyethylene-glycol liposomes in tumor-bearing mice.Clin Cancer Res 2003;9(17):6551–6559.

    [33]Dunne M,Zheng J,Rosenblat J,et al.APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes.J Control Release 2011;154(3):298–305.

    [34]Litzinger DC,Buiting AMJ,van Rooijen N,et al.Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes.Biochim Biophys Acta.1994;1190(1):99–107.

    [35]Gabizon A,Price DC,Hberty J,et al.Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors:biodistribution and imaging studies.Cancer Res 1999;263:6371–6378.

    [36]Yuan F,Dellian M,Fukumura D,et al.Vascular permeability in a human tumor xenograft:molecular size dependence and cutoff size.Cancer Res 1995;55:3752–3756.

    [37]Charrois GJR,Allen TM.Rate of biodistribution of STEALTH?liposomes to tumor and skin:infuence of liposome diameter and implications for toxicity and therapeutic activity.Biochim Biophys Acta.2003;1609(1):102–108.

    [38]Seynhaeve ALB,Hoving S,Schipper D,et al.Tumor necrosis factor α mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response.Cancer Res 2007;67(19):9455–9462.

    [39]Pulkkinen M,Pikkarainen J,Wirth T,et al.Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin–biotin technology:formulation development and in vitro anticancer activity.Eur J Pharm Biopharm 2008;70(1):66–74.

    [40]Crosasso P,Ceruti M,Brusa P,et al.Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes.J Control Release 2000;63:19–30.

    [41]Chervinsky DS,Brecher ML,Hoelcle MJ.Cremophor-EL enhances taxol effcacy in a multi-drug resistant C1300 neuroblastoma cell line.Anticancer Res.1993;13:93–96.

    [42]Woodle MC.Surface-modifed liposomes:assessment and characterization for increased stability and prolonged blood circulation.Chem Phys Lipids 1993;64:249–262.

    [43]Justin MS,Annapragada A,Natarajan JV,et al.Controlled targeting of liposomal doxorubicin via the folate receptor in vitro.J Control Release 2003;92:49–67.

    [44]Tyagi N,Ghosh PC.Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma(KB)cells:effect of monensin intercalated into folate-tagged liposomes.Eur J Pharm Sci 2011;43:343–353.

    *< class="emphasis_italic">Corresponding author.

    .Shenyang Pharmaceutical University,103 WenHua Road,ShenHe District,110016 Shenyang,China.Tel.:+86 24 23986306.

    E-mail address:qiaomingxi@163.com(M.Qiao).

    http://dx.doi.org/10.1016/j.ajps.2016.04.001

    1818-0876/?2016 Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    亚洲精品日韩av片在线观看| 精品一区二区免费观看| 深夜精品福利| 日韩成人av中文字幕在线观看 | 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区免费观看 | 人人妻人人看人人澡| 亚洲av电影不卡..在线观看| 午夜a级毛片| 一区二区三区高清视频在线| 欧美激情国产日韩精品一区| 中出人妻视频一区二区| 久久久色成人| 成人无遮挡网站| 俺也久久电影网| 国产麻豆成人av免费视频| 国产亚洲欧美98| 国产亚洲欧美98| 久久精品国产99精品国产亚洲性色| 99热6这里只有精品| 给我免费播放毛片高清在线观看| 午夜精品在线福利| 美女 人体艺术 gogo| 国产精品久久电影中文字幕| 99久久九九国产精品国产免费| 亚洲乱码一区二区免费版| 国产一区二区在线av高清观看| 午夜精品在线福利| 小蜜桃在线观看免费完整版高清| 日产精品乱码卡一卡2卡三| 亚洲国产欧美人成| 亚洲欧美中文字幕日韩二区| 国产欧美日韩精品一区二区| 日日啪夜夜撸| 亚洲性夜色夜夜综合| 亚洲av第一区精品v没综合| 非洲黑人性xxxx精品又粗又长| 免费观看精品视频网站| 国产精品久久久久久亚洲av鲁大| 成人漫画全彩无遮挡| 中文字幕精品亚洲无线码一区| 国内精品久久久久精免费| 久久久久国产精品人妻aⅴ院| 国产精品福利在线免费观看| 久久久精品94久久精品| 午夜福利视频1000在线观看| 老司机福利观看| 免费人成在线观看视频色| 联通29元200g的流量卡| 欧美最新免费一区二区三区| 黑人高潮一二区| a级毛片a级免费在线| 一本久久中文字幕| 亚洲第一电影网av| 伊人久久精品亚洲午夜| 国产午夜精品久久久久久一区二区三区 | 中国美白少妇内射xxxbb| 日本a在线网址| 丰满乱子伦码专区| 综合色av麻豆| 久久久久久国产a免费观看| 在现免费观看毛片| 淫秽高清视频在线观看| 一级毛片电影观看 | 国产一区二区在线av高清观看| 亚洲内射少妇av| 久久6这里有精品| 亚洲成人久久爱视频| 又爽又黄a免费视频| 欧美激情国产日韩精品一区| 亚洲国产精品sss在线观看| 免费高清视频大片| 亚洲欧美清纯卡通| 色尼玛亚洲综合影院| 婷婷亚洲欧美| 日日啪夜夜撸| 91在线精品国自产拍蜜月| 最近的中文字幕免费完整| 国产在视频线在精品| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 卡戴珊不雅视频在线播放| 少妇人妻精品综合一区二区 | 亚洲四区av| 真实男女啪啪啪动态图| 国产高清不卡午夜福利| 亚洲综合色惰| 黄色视频,在线免费观看| 夜夜夜夜夜久久久久| 啦啦啦观看免费观看视频高清| 国产白丝娇喘喷水9色精品| av中文乱码字幕在线| 天堂√8在线中文| 日日干狠狠操夜夜爽| 免费看日本二区| 亚洲国产日韩欧美精品在线观看| 免费观看在线日韩| 深夜精品福利| 丝袜美腿在线中文| 亚洲第一电影网av| .国产精品久久| av国产免费在线观看| 99热只有精品国产| av卡一久久| 久久久国产成人精品二区| 天堂网av新在线| 成人亚洲欧美一区二区av| 久久久午夜欧美精品| 少妇裸体淫交视频免费看高清| 别揉我奶头~嗯~啊~动态视频| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 久久精品国产清高在天天线| 午夜免费激情av| 亚洲国产精品久久男人天堂| 国产老妇女一区| 3wmmmm亚洲av在线观看| 国产成人a∨麻豆精品| 可以在线观看的亚洲视频| 蜜桃久久精品国产亚洲av| 内射极品少妇av片p| 日韩精品青青久久久久久| 久久久久久久久久黄片| 国内精品宾馆在线| 免费一级毛片在线播放高清视频| 日韩一本色道免费dvd| 国产一区亚洲一区在线观看| 一区二区三区免费毛片| 亚洲美女搞黄在线观看 | 国产三级在线视频| 美女黄网站色视频| av卡一久久| 亚洲av电影不卡..在线观看| 又黄又爽又免费观看的视频| 一进一出好大好爽视频| 免费无遮挡裸体视频| 自拍偷自拍亚洲精品老妇| 亚洲精品国产成人久久av| 老司机影院成人| 在线免费观看不下载黄p国产| 欧美不卡视频在线免费观看| 久久亚洲精品不卡| 女人十人毛片免费观看3o分钟| www日本黄色视频网| 激情 狠狠 欧美| 久久精品夜色国产| 伊人久久精品亚洲午夜| 最新中文字幕久久久久| av视频在线观看入口| 久久九九热精品免费| 久久精品国产亚洲av天美| 看十八女毛片水多多多| 高清日韩中文字幕在线| 黄色视频,在线免费观看| 美女 人体艺术 gogo| 精品99又大又爽又粗少妇毛片| 91狼人影院| 国产男靠女视频免费网站| a级毛片a级免费在线| 99热6这里只有精品| 久久久久久久久中文| 免费在线观看影片大全网站| 久久久精品94久久精品| 免费看av在线观看网站| 91狼人影院| 亚洲精品一区av在线观看| 最新中文字幕久久久久| www.色视频.com| 自拍偷自拍亚洲精品老妇| 97人妻精品一区二区三区麻豆| eeuss影院久久| 男女做爰动态图高潮gif福利片| 色吧在线观看| 变态另类丝袜制服| 狂野欧美激情性xxxx在线观看| 99国产精品一区二区蜜桃av| 一区二区三区免费毛片| 亚洲欧美中文字幕日韩二区| 中文字幕免费在线视频6| 精品一区二区三区av网在线观看| 欧美高清成人免费视频www| 插逼视频在线观看| av免费在线看不卡| 亚洲国产精品成人久久小说 | 久久人妻av系列| 亚洲无线观看免费| 国产亚洲91精品色在线| 在线免费观看不下载黄p国产| 国产亚洲精品综合一区在线观看| 免费看a级黄色片| 亚洲内射少妇av| 美女 人体艺术 gogo| 免费av观看视频| 久久这里只有精品中国| 最后的刺客免费高清国语| 尤物成人国产欧美一区二区三区| 女同久久另类99精品国产91| 天堂动漫精品| 麻豆国产av国片精品| 国产精品野战在线观看| 日产精品乱码卡一卡2卡三| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 免费看光身美女| 国产真实伦视频高清在线观看| 少妇裸体淫交视频免费看高清| 国产精品久久久久久久久免| 国产老妇女一区| 我要看日韩黄色一级片| 男人狂女人下面高潮的视频| 欧美最新免费一区二区三区| 有码 亚洲区| 在线免费十八禁| 免费看光身美女| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清视频在线播放一区| 九九热线精品视视频播放| 免费在线观看成人毛片| 亚洲国产精品合色在线| 亚洲欧美日韩无卡精品| 国产精品久久久久久av不卡| 精品久久久久久久久久免费视频| 女同久久另类99精品国产91| 久久综合国产亚洲精品| 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| 国产国拍精品亚洲av在线观看| 成年女人毛片免费观看观看9| 婷婷亚洲欧美| 99热只有精品国产| 久久精品国产鲁丝片午夜精品| 精品一区二区三区视频在线观看免费| 免费大片18禁| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| www.色视频.com| 午夜福利视频1000在线观看| 伦精品一区二区三区| 五月伊人婷婷丁香| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 国产私拍福利视频在线观看| 国产精品嫩草影院av在线观看| 亚洲中文日韩欧美视频| 美女免费视频网站| 毛片女人毛片| 午夜日韩欧美国产| 成人毛片a级毛片在线播放| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 麻豆国产av国片精品| 看片在线看免费视频| 亚洲综合色惰| 久99久视频精品免费| 国产亚洲精品av在线| 亚洲乱码一区二区免费版| 美女xxoo啪啪120秒动态图| 亚洲久久久久久中文字幕| 精品熟女少妇av免费看| 国产精品精品国产色婷婷| 直男gayav资源| 我的老师免费观看完整版| 亚洲av一区综合| 午夜精品一区二区三区免费看| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| 国产大屁股一区二区在线视频| 久久精品人妻少妇| 18禁在线无遮挡免费观看视频 | 久久人人爽人人爽人人片va| 亚洲成a人片在线一区二区| 国产黄片美女视频| 五月伊人婷婷丁香| 在线看三级毛片| 久久久久国产精品人妻aⅴ院| 久久久欧美国产精品| 国产精品免费一区二区三区在线| 蜜桃久久精品国产亚洲av| 日本五十路高清| 卡戴珊不雅视频在线播放| 午夜精品一区二区三区免费看| 成人毛片a级毛片在线播放| 日韩高清综合在线| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 国产亚洲91精品色在线| 一个人免费在线观看电影| 国产精品综合久久久久久久免费| 麻豆国产97在线/欧美| 国产精品伦人一区二区| 日本-黄色视频高清免费观看| 久久精品综合一区二区三区| 欧美成人精品欧美一级黄| 精品不卡国产一区二区三区| 免费高清视频大片| 蜜桃亚洲精品一区二区三区| 永久网站在线| 嫩草影院新地址| 亚洲国产精品久久男人天堂| 国产一区二区在线观看日韩| 美女cb高潮喷水在线观看| 欧美不卡视频在线免费观看| 九九热线精品视视频播放| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 亚洲精品影视一区二区三区av| 日本三级黄在线观看| 身体一侧抽搐| 一区二区三区四区激情视频 | 久久精品国产鲁丝片午夜精品| 老熟妇仑乱视频hdxx| 国产黄色小视频在线观看| 国产在视频线在精品| 亚洲精品亚洲一区二区| 一边摸一边抽搐一进一小说| 中国美白少妇内射xxxbb| eeuss影院久久| 欧美色视频一区免费| 成人永久免费在线观看视频| 国产高清视频在线观看网站| 成人亚洲精品av一区二区| 国产午夜福利久久久久久| 舔av片在线| 天堂影院成人在线观看| 国产真实伦视频高清在线观看| 国产亚洲av嫩草精品影院| 亚洲欧美成人精品一区二区| 亚洲av免费在线观看| 美女高潮的动态| 国产老妇女一区| 色哟哟·www| 亚洲一区高清亚洲精品| 欧美日韩综合久久久久久| a级毛片免费高清观看在线播放| 内地一区二区视频在线| 久久久久久九九精品二区国产| 69人妻影院| 丝袜喷水一区| 亚洲av中文av极速乱| 国产成人a∨麻豆精品| 欧美最黄视频在线播放免费| 国产成人91sexporn| 少妇熟女欧美另类| 亚洲电影在线观看av| 中文字幕熟女人妻在线| 久久久精品大字幕| 久久精品夜夜夜夜夜久久蜜豆| 简卡轻食公司| 日韩,欧美,国产一区二区三区 | 欧美三级亚洲精品| 国产精品爽爽va在线观看网站| 亚洲国产精品国产精品| 日本与韩国留学比较| 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单| 亚洲国产精品成人综合色| av黄色大香蕉| 此物有八面人人有两片| 男插女下体视频免费在线播放| 婷婷精品国产亚洲av| 最近视频中文字幕2019在线8| 又爽又黄a免费视频| 97碰自拍视频| 中文字幕精品亚洲无线码一区| 国产视频一区二区在线看| 深爱激情五月婷婷| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 长腿黑丝高跟| 国产大屁股一区二区在线视频| 深夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区三区四区免费观看 | 亚洲最大成人av| 亚洲第一电影网av| 国产真实伦视频高清在线观看| 露出奶头的视频| 国产精品嫩草影院av在线观看| 国产伦一二天堂av在线观看| 色哟哟·www| 日本三级黄在线观看| 又粗又爽又猛毛片免费看| 少妇裸体淫交视频免费看高清| 黄色欧美视频在线观看| 国产伦精品一区二区三区视频9| 久久精品国产自在天天线| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添小说| 少妇丰满av| 欧美xxxx性猛交bbbb| 国产伦在线观看视频一区| 99热只有精品国产| 亚洲美女搞黄在线观看 | 欧美性猛交╳xxx乱大交人| 国产精品久久久久久久久免| 亚洲精品在线观看二区| 亚洲av第一区精品v没综合| 久久草成人影院| 精品一区二区三区av网在线观看| 国产中年淑女户外野战色| 欧美最黄视频在线播放免费| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美成人综合另类久久久 | 深爱激情五月婷婷| 午夜激情福利司机影院| 国产精品美女特级片免费视频播放器| 国产伦一二天堂av在线观看| 久久99热这里只有精品18| 精品日产1卡2卡| 午夜影院日韩av| 好男人在线观看高清免费视频| 精品福利观看| 亚洲国产精品成人综合色| 欧美人与善性xxx| 欧美性猛交╳xxx乱大交人| 亚洲丝袜综合中文字幕| 国产精品一区二区三区四区久久| 一本精品99久久精品77| av国产免费在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕日韩| 色播亚洲综合网| av专区在线播放| 日本五十路高清| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看 | 晚上一个人看的免费电影| 亚洲av二区三区四区| 日韩三级伦理在线观看| 在线免费十八禁| 小蜜桃在线观看免费完整版高清| 美女免费视频网站| 久久九九热精品免费| 国产久久久一区二区三区| 天天一区二区日本电影三级| 99热网站在线观看| 亚洲成人久久爱视频| 特级一级黄色大片| 高清日韩中文字幕在线| 午夜激情欧美在线| 欧美高清成人免费视频www| 午夜福利高清视频| 热99re8久久精品国产| 亚洲经典国产精华液单| 欧美zozozo另类| 中国美白少妇内射xxxbb| 亚洲熟妇熟女久久| 校园春色视频在线观看| av天堂在线播放| 精品久久久久久久久亚洲| 麻豆国产97在线/欧美| 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av| АⅤ资源中文在线天堂| 最近的中文字幕免费完整| 在线观看66精品国产| 国产一区二区激情短视频| 九九爱精品视频在线观看| 国产乱人视频| 免费搜索国产男女视频| 看黄色毛片网站| 婷婷色综合大香蕉| 18禁裸乳无遮挡免费网站照片| 日本在线视频免费播放| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 精品午夜福利视频在线观看一区| 在线天堂最新版资源| 有码 亚洲区| 最近视频中文字幕2019在线8| 精品午夜福利视频在线观看一区| 99热这里只有是精品50| 精品久久久久久久人妻蜜臀av| 成人综合一区亚洲| 亚洲国产精品sss在线观看| 日本黄色片子视频| 最好的美女福利视频网| 欧美色欧美亚洲另类二区| 日韩av不卡免费在线播放| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| 性色avwww在线观看| 不卡视频在线观看欧美| 丝袜美腿在线中文| 国产精品乱码一区二三区的特点| 国产精品精品国产色婷婷| 中国美白少妇内射xxxbb| 乱人视频在线观看| 成人综合一区亚洲| 十八禁网站免费在线| 免费观看精品视频网站| 搡女人真爽免费视频火全软件 | 国产高清三级在线| 高清日韩中文字幕在线| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜 | 国产乱人偷精品视频| 小说图片视频综合网站| 一级黄片播放器| 国产不卡一卡二| 性欧美人与动物交配| 男人舔奶头视频| 国产成人影院久久av| 亚洲国产高清在线一区二区三| 18禁在线无遮挡免费观看视频 | 国产色爽女视频免费观看| 国产一区二区激情短视频| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 国产 一区 欧美 日韩| 欧美一区二区国产精品久久精品| 性欧美人与动物交配| 久久中文看片网| 日韩欧美国产在线观看| 黑人高潮一二区| 国产综合懂色| 五月伊人婷婷丁香| 国产精品久久电影中文字幕| 日本与韩国留学比较| 夜夜夜夜夜久久久久| 插逼视频在线观看| 国产精品av视频在线免费观看| 热99在线观看视频| 午夜免费激情av| av.在线天堂| 欧美一区二区亚洲| 精品久久久久久久久久免费视频| 少妇的逼好多水| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久av| 国产久久久一区二区三区| 欧美bdsm另类| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 国产精品伦人一区二区| 最新中文字幕久久久久| 国产精品,欧美在线| 内地一区二区视频在线| 久久久久久伊人网av| 久久久国产成人精品二区| 在线观看免费视频日本深夜| 久久中文看片网| 男女做爰动态图高潮gif福利片| 久99久视频精品免费| 波野结衣二区三区在线| 国产黄色小视频在线观看| 亚洲人成网站高清观看| 久久亚洲精品不卡| 简卡轻食公司| 国产精品99久久久久久久久| 搡老岳熟女国产| 丝袜美腿在线中文| 少妇的逼水好多| 少妇人妻一区二区三区视频| 老司机影院成人| 女同久久另类99精品国产91| av在线播放精品| 人人妻人人看人人澡| 亚洲综合色惰| 欧美中文日本在线观看视频| 免费在线观看影片大全网站| 午夜福利在线观看吧| 中国美白少妇内射xxxbb| 久久久成人免费电影| 成人二区视频| 此物有八面人人有两片| 亚洲欧美中文字幕日韩二区| 1000部很黄的大片| 中文字幕精品亚洲无线码一区| 日产精品乱码卡一卡2卡三| 日本黄色片子视频| 日本 av在线| 久久人妻av系列| 欧美精品国产亚洲| 国产探花极品一区二区| 熟女人妻精品中文字幕| 亚洲综合色惰| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 亚洲无线观看免费| 精品一区二区三区视频在线| 欧美日韩精品成人综合77777| 午夜视频国产福利| 天天躁日日操中文字幕| 亚洲精品日韩在线中文字幕 | 校园春色视频在线观看| 狂野欧美激情性xxxx在线观看| 在线观看免费视频日本深夜| 中出人妻视频一区二区| 色综合站精品国产| 国产老妇女一区| 色视频www国产| 亚洲熟妇中文字幕五十中出| 婷婷精品国产亚洲av| 欧美3d第一页| 国产国拍精品亚洲av在线观看| 在线观看66精品国产| 成年女人毛片免费观看观看9| 国产精品日韩av在线免费观看| 一级黄色大片毛片| 国产精品久久久久久久久免| 丰满乱子伦码专区| 精品一区二区三区视频在线观看免费| 成年av动漫网址| 免费大片18禁| 日韩人妻高清精品专区| 国产在线精品亚洲第一网站| 久久6这里有精品|