• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of freeze-dried pH-responsive dextrin nanogels containing doxorubicin

    2017-01-20 01:28:32SomkamolManchunCrispinDassPornsakSriamornsak
    關(guān)鍵詞:示意圖理論

    Somkamol Manchun,Crispin R.Dass,Pornsak Sriamornsak,*

    aDepartment of Pharmaceutical Technology,Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    bPharmaceutical Biopolymer Group(PBiG),Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    cSchool of Pharmacy,Faculty of Health Sciences,Curtin University,Perth 6845,Australia

    dCurtin Health Innovation Research Institute of Ageing and Chronic Disease,Bentley 6102,Australia

    Stability of freeze-dried pH-responsive dextrin nanogels containing doxorubicin

    Somkamol Manchuna,b,Crispin R.Dassc,d,Pornsak Sriamornsaka,b,*

    aDepartment of Pharmaceutical Technology,Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    bPharmaceutical Biopolymer Group(PBiG),Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    cSchool of Pharmacy,Faculty of Health Sciences,Curtin University,Perth 6845,Australia

    dCurtin Health Innovation Research Institute of Ageing and Chronic Disease,Bentley 6102,Australia

    A R T I C L EI N F O

    Article history:

    Received 13 August 2015

    Received in revised form 20

    September 2015

    Accepted 28 September 2015

    Available online 9 October 2015Keywords:

    Stability

    Nanogels

    Dextrin

    Induction of non-specifc toxicities by doxorubicin(DOX)has restricted conventional DOX-based chemotherapy.pH-responsive dextrin nanogels(DNGs)have been fabricated in order to incorporate and deliver DOX to specifc(targeted)sites.However,adequate stability studies of DOX-loaded DNGs are required for selection of storage conditions.The aim of this study was therefore to evaluate the accelerated(25°C/60%RH)and long-term(5°C)stability of DNGs prepared with formaldehyde(FDNGs)and glyoxal(GDNGs)as cross-linker by determining the change in their physicochemical properties.The mean diameter decreased with time during long-term storage.The drug content between freshly prepared(initial day)and after storage at 5°C for 180 days of DOX-loaded FDNGs and DOX-loaded GDNGs was not signifcantly different(p>0.05),but decreased after storage under the accelerated condition.The release of DOX from all DNGs was pH-dependent.However,DNGs kept under the accelerated condition showed higher amount of DOX release than those stored at 5°C and the freshly prepared ones.The results indicate that the stability of DNGs could be improved by their storage at 5°C.

    ?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Cancer is a major cause of mortality worldwide with 8.2 million people being affected in 2012[1].Major clinical treatments for cancer include surgery,radiation,and chemotherapy, with chemotherapy being the major form.However,chemotherapy is a major form of management of cancer patients enlisting the used drugs to kill cancer cells.Among such drugs,the anthraquinonedoxorubicin(DOX)is a frontlinechemotherapeutic agent used for treatment of several forms of cancer.Its mechanism of action is to inhibit DNA polymerases and topoisomerases and block the cell cycle,usually resulting in the induction of apoptosis in tumor cells[2,3]. Despite its effcacy,the clinical use of unformulated(free)DOX is limited due to development of progressive cardiomyopathy with apoptosis induction in cardiomyocytes by activation of p53 protein and reactive oxygen species leading to congestive heart failure[4].In addressing this problem,a variety of innovative approaches to entrap this drug in nanocarriers and hopefully achieve site-specifc delivery has been developed.

    Among these approaches,pH-responsive nanocarriers have been previously exploited for targeted delivery of drugs.Due to its biocompatibility and degradability[5],dextrin is frequently chosen for nanogels formulating in order to circumvent carrier toxicity.It is a saccharide-based polymer containing D-glucose units linked by α-(1→4)glycosidic bonds,and considerable quantities of hydroxyl groups that are readily modifed. Regarding biomedical application,dextrin is employed as a drug delivery system[5–9]and as a scaffold material[10,11].pH-responsive dextrin nanogels(DNGs)are cross-linked dextrin networks fabricated by incorporating pH-responsive bonds, namely acetal bonds,into their structure.These bonds are used as linkers to immobilize anti-tumor drugs within the carrier matrix.In this system,DNGs are delivered to the tumor siteviathe enhanced permeability and retention(EPR)phenomenon[12,13].DNGs are stable at physiological pH but could be destabilized and release the drug under mild acidic conditions at the target neoplastic site,resulting in enhanced therapeutic effcacy and reduced side-effects to normal tissue. Despite DNGs providing many benefts,the challenge remains in producing highly stable forms of encapsulated DOX and maintaining the long-term pH-responsive behavior.Knowledge of the stability helps in selecting appropriate formulation and packaging as well as providing suitable storage conditions and shelf-life,which is essential for regulatory documentation[14].

    The purpose of this research is to investigate the longterm stability and accelerated stability of two different types of pH-responsive DNGs,that is,FDNGs and GDNGs which were formulated using formaldehyde and glyoxal as a cross-linker, respectively.In addition,the effects of various types and quantities of cross-linker on stability were also studied.The changes of properties namely mean diameter,ζ-potential,chemical structure,drug remaining,pH-responsive behavior and amount of drug release in both DNGs after storage over a period of 6 months were evaluated in order to elucidate the optimal conditions for DNG stability during storage for future application.

    2.Materials and methods

    2.1.Materials

    Dextrin(molecular weight of 1400 Da)was a gift from Siam Modifed Starch Co.,Ltd.(Pathumthani,Thailand).Glyoxal, ethanol and doxorubicin hydrochloride(DOX)were obtained from Sigma-Aldrich Chemie(Steinheim,Germany).Hydrochloric acid,formaldehyde and n-hexane were purchased from RCI Labscan(Bangkok,Thailand).Tween?80 and Span?80 were purchased from P.C.Drug Center Co.,Ltd.(Bangkok,Thailand). Deionized water was used throughout the study.

    2.2.Preparation of dextrin nanogels

    DOX loaded-DNGs were prepared as described previously by our group[15]with some modifcations.Water-in-hexane emulsions were prepared,in order to form a nanoemulsion template, using 7%(w/w)mixture of Span?80/Tween?80 as emulsifer. Dextrin and DOX were dissolved in the water phase to obtain the fnal concentration of 5%(w/w)and 0.2 mg/mL,respectively.The water phase was added to the emulsion template and ultrasonicated for 1 minute to form nanoemulsions.After the nanoemulsions were obtained,different concentrations of cross-linking agent(that is,formaldehyde or glyoxal)were added immediately to achieve mole ratios of dextrin to crosslinking agent of 4:1,10:1,15:1 and 20:1.The mixtures were homogenized via ultrasonication(UP400S,Hielscher,Germany) with 100%amplitude of ultrasound power(400 W,24 KHz)for 30 min.The obtained nanoemulsions were then stirred with a magnetic stirrer for 12 h to continue the cross-linking reaction.DNGs were precipitated from the nanoemulsions by adding 99%(v/v)ethanol and washed 3 times with ethanol and fnally rinsed with deionized water.Subsequently,the DNGs were freeze-dried for 24 h.The dried DNGs obtained from the freezedrying process were packaged in zip-lock bags and kept at 4°C until further analysis.

    2.3.Stability study

    The dried DNGs were kept under two conditions–25°C±2°C/ 60%±5%RH(accelerated conditions;in stability chamber)and 5±3°C(long term condition;in refrigerator),for 6 months before further investigation.

    2.4.Particle size and ζ-potential determination

    2.5.Morphological observation of DNGs

    Morphological analysis of DNGs was carried out on a transmission electron microscope(TEM;model JEM-1230,JOEL Corp., Japan).TEM analyses were performed by sample mounting on a copper glider grid of 3.5 mm with a single aperture,adsorbed with flter paper and dried at ambient temperature,prior to TEM examination.

    2.6.13C nuclear magnetic resonance spectroscopy (13C NMR)

    The samples were dissolved in deuterium oxide.The13C NMR spectra of samples were recorded on NMR spectroscopy(modelADVANCE 300,Bruker,Germany)with deuterium oxide as the solvent.The chemical shifts were given in δ(ppm).

    2.7.Drug content determination

    The DNG dispersion was mixed with 1.0 N HCl and stirred for 12 h.Subsequently,the suspensions were fltered through 0.45-μm cellulose acetate membrane.The DOX concentration in DNGs was measured using UV absorbance at 495 nm with a UV/vis spectrophotometer(model T60U,PG Instrument Ltd., England).All measurements were performed in triplicate.DOX concentration was then calculated based on a standard curve of known amounts of DOX in 0.1 N HCl.Drug content and drug remaining were defned as:

    2.8.In vitrodrug release study

    Thein vitrorelease of DOX-loaded DNGs were investigated using the dialysis method[15].Briefy,DOX-loaded DNGs were added to a dialysis membrane bag(Cellu-SepT2 MWCO 6–8 kDa;Membrane Filtration Products Inc.,Braine-l’Alleud,Belgium),and then immersed in phosphate buffer(25 mL)and shaken horizontally(100 rpm)at 37°C using an environmental shaker incubator (model ES-20,Orbital Shaker-Incubator,Biosan,Latvia).At certain time points,the outer phase of the dialysis membrane bag was harvested and replaced with fresh buffer.The concentration of DOX in the collected samples was analyzed under UV/vis absorbance mode at 495 nm.

    通過矩陣理論的應用,向量組之間的線性表示的問題可轉(zhuǎn)化為矩陣語言。這樣不僅簡化了問題,且把抽象的向量組轉(zhuǎn)化為具體的矩陣方程,更加直觀。矩陣方程的求解,即線性方程組的解的結(jié)構(gòu)的問題。然而,線性方程組的求解還是要用到矩陣理論中的秩。通過不斷轉(zhuǎn)化,向量組是否能相互表示等價于矩陣方程是否有解。為了更清晰,三者之間的轉(zhuǎn)化可用示意圖表示如下。

    2.9.Statistical analysis

    Data were analyzed using SPSS version 11.5 forWindows(SPSS Inc.,USA).The results were represented as mean±standard deviation(SD).Analysis of variance(One-way ANOVA)with Scheffé or Games–Howellpost hoctest was performed to evaluate difference among the groups.The statistical signifcance was set atp<0.05.

    3.Results and discussion

    As previously reported[16],pH-responsive DNGs were prepared by an emulsion cross-linking technique using glyoxal or formaldehyde as a cross-linker.In this method,nanogels were formed in the nanoemulsion droplet by simultaneously crosslinking and creating 3-dimensional structures.However,it is known that nanogels are prone to aggregation,leading to an increase in particle size and loss of certain properties with time [17].Therefore,the physicochemical properties,amount of encapsulated drug and drug release behavior over the process of storage were used as indicators to evaluate the accelerated and long-term stability of FDNGs and GDNGs,namely 25°C/60%RH and 5°C,respectively.

    3.1.Changes in physicochemical properties

    The ability of DOX-loaded FDNGs and GDNGs to maintain their sizes over a long storage period was evaluated.Fig.1 shows that size and zeta-potential of DOX-loaded FDNGs and GDNGs changed after storage at 25°C/60%RH and 5°C for 180 days. The results indicate that the trends of mean diameter and ζ-potential change were varied;they tended to decrease with time,refecting the different changes during different stages in long-term storage.Minor change in the size of DNGs kept at 5°C was observed,whereas the size of DNGs keeping at 25°C/ 60%RH showed an apparent change over the time period investigated.The change of size was probably due to the unstable linkage that could be broken during storage as a result of exposure to moisture;however,storing at 5°C seemed to increase conservation of size of nanogels.

    3.2.Changes in chemical structure

    Fig.1–(a)Size and(b)ζ-potential of DOX-loaded FDNGs (4∶1),GDNGs(4∶1),(10∶1)and(20∶1)at initial day and after storage at 25°C/60%RH and 5°C for 180 days.

    Fig.2–13C NMR spectra of GDNGs at a molar ratio of dextrin to glyoxal of 4∶1 at(a)initial day,(b)after storage at 5°C,and(c) 25°C/60%RH,compared to(d)native dextrin.

    Fig.3–13C NMR spectra of FDNGs at a molar ratio of dextrin to formaldehyde of 4∶1 at(a)initial day,(b)after storage at 5°C, and(c)25°C/60%RH,compared to(d)native dextrin.

    Figs.2 and 3 shows the13C NMR spectra of freshly prepared FDNGs and GDNGs and those after storage at 25°C/60%RH and5°C,fabricated at a mole ratio of dextrin to formaldehyde or glyoxal of 4:1.The chemical shifts at 99.52 ppm(C1),76.62 ppm (C4),73.27–71.10 ppm(C2,C3,C5),and 60.39 ppm(C6)verifed a presence of dextrin molecule as reported previously[18–20]. The signals at 90 ppm(C7)of GDNGs(Fig.2a)and 84 ppm(C8) of FDNGs(Fig.3a)were assigned to the formation of acetal linkage[21].After storage at 25°C/60%RH and 5°C,the characteristic peaks of this acetal linkage of GDNGs(Fig.2c)were decreased when compared to freshly prepared ones,but no signal at 84 ppm of FDNGs(Fig.3c)was observed.The absence of these peaks is probably due to destabilization and degradation of acetal bonds after storage under the accelerated conditions,perhaps by the moisture in the humid condition. However,the NMR signals of GDNGs that were kept at 5°C were similar to freshly prepared ones,indicating that storage at 5°C could retain nanogel stability long-term.On the other hand, the small signal was observed at 84 ppm for FDNGs,indicating that the acetal bonds,which were formed by formaldehyde, were less stable than that formed by glyoxal.

    3.3.Changes in encapsulated drug

    The ability to retain encapsulated drug during storage is also critical to the development of a drug carrier.The drug remaining in nanogels(both FDNGs and GDNGs)was evaluated to determine the long-term stability of these formulations.The stability of DOX-loaded FDNGs and GDNGs is shown in Fig.4. There was no signifcant difference observed in the encapsulation effciency between freshly-prepared(initial day)DOX-loaded FDNGs and DOX-loaded GDNGs and those after storage at 5°C for 180 days(p>0.05).However,the encapsulation effciency decreased after storage at accelerated condition,25°C/ 60%RH(data not shown).According to the literature,DOX is stable in the solid state at 2–8°C(protected from light),and the degradation rate of DOX increases with increasing temperature[22–24].Moreover,the amount of glyoxal also affected DOX stability;DOX was less stable when the dextrin to glyoxal ratio was increased from 4:1 to 20:1.It is possible that DOX cannot be completely entrapped in nanogels with lower quantities of cross-linker;therefore,DOX located at the surface of the nanogels is easily degraded by the environment.

    Fig.4–Drug remaining in DOX-loaded FDNGs(4∶1),GDNGs (4∶1),(10∶1)and(20∶1)at initial day and after storage at 25°C/60%RH and 5°C for 180 days.

    3.4.Changes in pH-responsive behavior and DOX release

    The mechanism controlling the release of DOX incorporated in DNGs is mainly attributed to pH-induced structural changes. This behavior has been ascribed to the hydrolysis of acetal bonds in the DNG structure under mildly acidic conditions,resulting in destabilization of the structural integrity of DNGs that could accelerate DOX release at pH below 7[21].In order to verify the hypothesis that DOX was released due to the destabilization of DNG structure,the morphology of FDNGs and GDNGs at a mole ratio of dextrin to cross-linker of 4:1 at each pH,(5,6.8 and 7.4)was examined by TEM.The TEM images showed deformation and fracture in both FDNG and GDNG structures;the size of DNGs decreased with decreasing pH (Fig.5).These results confrmed that the change of nanogel structure by acid hydrolysis was attributed to the difference in drug release under different pHs.

    Fig.5–TEM micrographs of DOX-loaded FDNGs at a mole ratio of dextrin to formaldehyde of 4∶1 in(a)pH 7.4,(b)pH 6.8,(c)pH 5 phosphate buffer,and DOX-loaded GDNGs at a mole ratio of dextrin to glyoxal of 4∶1 in(d)pH 7.4,(e)pH 6.8,(f)pH 5 phosphate buffer.

    The change in pH dependency of both FDNGs and GDNGs after storage was investigated.Fig.6 shows the amount of DOX released at different pHs,within 24 h,from FDNGs at a mole ratio of dextrin to formaldehyde of 4:1 and GDNGs at a mole ratio of dextrin to glyoxal of 4:1 and 20:1,before and after 6-month storage.All DNGs demonstrated pH-dependent drug release properties.Drug release was slow at physiological pH but increased signifcantly in acidic medium.In addition,type and amount of cross-linker also affected the release of drug, similar to freshly prepared ones(Fig.6).However,DNGs tested under accelerated condition(25°C/60%RH)showed higher amount of DOX release than those kept at 5°C and the freshlyprepared ones.At pH 5,about 98%,60%and 50%of DOX were released from GDNGs at mole ratio of dextrin to glyoxal of 20:1 kept at 25°C/60%RH,5°C and freshly-prepared GDNGs,respectively.The results indicated that the acetal bond in DNG structure was unstable,easily hydrolyzed in solution when stored under the accelerated condition for 6 months.These changes related well to the corresponding NMR spectra.

    Fig.6–pH-dependent release of DOX from FDNGs(4∶1), GDNGs(4∶1)and(20∶1)at 37°C in(a)pH 5,(b)pH 6.8,(c)pH 7.4 phosphate buffer,after storage under the long-term (5°C)and accelerated(25°C/60%RH)conditions.

    4.Conclusion

    The stability of both FDNGs and GDNG was examined by measuring the change of their physical properties over a period of 6 months under different conditions,5°C and 25°C/60%RH. Under accelerated condition(25°C/60%RH),both FDNGs and GDNGs were found to be unstable;the particle size and amount of encapsulated DOX decreased over time.In contrast,the amount of DOX release increased at all pH conditions,compared with those kept at 5°C and the freshly prepared ones. The results of NMR demonstrated that the destabilization and degradation of acetal bonds occurred after storage under the accelerated condition.In addition,the long-term stability of DNGs is affected by type of cross-linker,with GDNGs being more stable than FDNGs.The stability of DNGs can be manipulated by storage at 5°C.

    Acknowledgements

    This work was fnancially supported by the Higher Education Research Promotion and National Research University project ofThailand,Offce of the Higher Education Commission(Grant No.2558A11462001).SM is supported by the Royal Golden Jubilee Ph.D.Program(Grant No.PHD/0361/2551).The authors thank Siam Modifed Starch Co.,Ltd.(Pathumthani,Thailand)which kindly provided dextrin samples.CRD is supported by a Curtin Academic50 grant scheme.

    R E F E R E N C E S

    [1]Mathers CD,Loncar D.Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med 2006;3:e442.

    [2]Yokochi T,Robertson KD.Doxorubicin inhibits DNMT1, resulting in conditional apoptosis.Mol Pharmacol 2004;66:1415–1420.

    [3]Tacar O,Sriamornsak P,Dass CR.Doxorubicin:an update on anticancer molecular action,toxicity and novel drug delivery systems.J Pharm Pharmacol 2013;65:157–170.

    [4]Octavia Y,Tocchetti CG,Gabrielson KL,et al.Doxorubicininduced cardiomyopathy:from molecular mechanisms to therapeutic strategies.J Mol Cell Cardiol 2012;52:1213–1225.

    [5]Gon?alves C,Torrado E,Martins T,et al.Dextrin nanoparticles:studies on the interaction with murine macrophages and blood clearance.Colloids Surf B Biointerfaces 2010;75:483–489.

    [6]Gon?alves C,Martins JA,Gama FM.Self-assembled nanoparticles of dextrin substituted with hexadecanethiol. Biomacromolecules 2007;8:392–398.

    [7]Gon?alves C,Gama FM.Characterization of the selfassembly process of hydrophobically modifed dextrin.Eur Polym J 2008;44:3529–3534.

    [8]Gon?alves C,Pereira P,Schellenberg P,et al.Self-assembled dextrin nanogel as curcumin delivery system.J Biomater Nanobiotechnol 2012;3:178–184.

    [9]Hreczuk-Hirst D,Chicco D,German L,et al.Dextrins as potential carriers for drug targeting:tailored rates of dextrin degradation by introduction of pendant groups.Int J Pharm 2001;230:57–66.

    [10]Drury JL,Mooney DJ.Hydrogels for tissue engineering: scaffold design variables and applications.Biomaterials 2003;24:4337–4351.

    [11]Silva DM,Nunes C,Pereira I,et al.Structural analysis of dextrins and characterization of dextrin-based biomedical hydrogels.Carbohydr Polym 2014;114:458–466.

    [12]Shi J,Votruba AR,Farokhzad OC,et al.Nanotechnology in drug delivery and tissue engineering:from discovery to applications.Nano Lett 2010;10:3223–3230.

    [13]Maeda H,Bharate GY,Daruwalla J.Polymeric drugs for effcient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009;71:409–419.

    [14]Blessy M,Patel RD,Prajapati PN,et al.Development of forced degradation and stability indicating studies of drugs–a review.J Pharm Anal 2014;4:159–165.

    [15]Manchun S,Dass CR,Sriamornsak P.Designing nanoemulsion templates for fabrication of dextrin nanoparticles via emulsion cross-linking technique. Carbohydr Polym 2014;101:650–655.

    [16]Manchun S,Dass CR,Cheewatanakornkool K,et al. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydr Polym 2015;126:222–230.

    [17]Hoare T,Young S,Lawlor MW,et al.Thermoresponsive nanogels for prolonged duration local anesthesia.Acta Biomater 2012;8:3596–3605.

    [18]Hu X,Wei B,Zhang B,et al.Synthesis and characterization of dextrin monosuccinate.Carbohydr Polym 2013;97:111–115.

    [19]Liu X,Wang Y,Cao Y,et al.Study of dextrin-derived curing agent for waterborne epoxy adhesive.Carbohydr Polym 2011;83:1180–1184.

    [20]Carvalho J,Gon?alves C,Gil AM,et al.Production and characterization of a new dextrin based hydrogel.Eur Polym J 2007;43:3050–3059.

    [21]Manchun S,Cheewatanakornkool K,Dass CR,et al. Novel pH-responsive dextrin nanogels for doxorubicin delivery to cancer cells with reduced cytotoxicity to cardiomyocytes and stem cells.Carbohydr Polym 2014;114:78–86.

    [22]Janssen MJH,Crommelin DJA,Storm G,et al.Doxorubicin decomposition on storage.Effect of pH,type of buffer and liposome encapsulation.Int J Pharm 1985;23:1–11.

    [23]Cielecka-Piontek J,Jelin′ska A,Zaja?c M,et al.A comparison of the stability of doxorubicin and daunorubicin in solid state.J Pharm Biomed Anal 2009;50:576–579.

    [24]Gupta PK,Lam FC,Hung CT.Investigation of the stability of doxorubicin hydrochloride using factorial design.Drug Dev Ind Pharm 1988;14:1657–1671.

    *< class="emphasis_italic">Corresponding author.

    .Department of Pharmaceutical Technology,Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand.Tel.:+66 3425 5800;fax:+66 3425 5801.

    E-mail address:sriamornsak_p@su.ac.th(P.Sriamornsak).

    http://dx.doi.org/10.1016/j.ajps.2015.09.006

    1818-0876/?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    猜你喜歡
    示意圖理論
    構(gòu)建示意圖,深度把握
    堅持理論創(chuàng)新
    當代陜西(2022年5期)2022-04-19 12:10:18
    神秘的混沌理論
    理論創(chuàng)新 引領(lǐng)百年
    相關(guān)于撓理論的Baer模
    先畫示意圖再解答問題
    黔西南州旅游示意圖
    當代貴州(2019年41期)2019-12-13 09:28:56
    兩張圖讀懂“青年之聲”
    中國共青團(2015年7期)2015-12-17 01:24:38
    理論宣講如何答疑解惑
    學習月刊(2015年21期)2015-07-11 01:51:44
    “三定兩標”作好圖
    超碰av人人做人人爽久久| 国产大屁股一区二区在线视频| 国产色婷婷99| 在线a可以看的网站| 亚洲天堂av无毛| 亚洲最大成人av| 18禁裸乳无遮挡免费网站照片| 韩国av在线不卡| 联通29元200g的流量卡| av.在线天堂| 亚洲欧美日韩无卡精品| 久久久久久国产a免费观看| 老司机影院成人| 亚洲国产成人一精品久久久| 十八禁网站网址无遮挡 | 99热这里只有是精品50| 欧美xxⅹ黑人| 少妇人妻久久综合中文| av卡一久久| 极品教师在线视频| 欧美+日韩+精品| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 99热全是精品| videos熟女内射| 高清毛片免费看| 在线精品无人区一区二区三 | 夫妻午夜视频| 秋霞在线观看毛片| 午夜视频国产福利| 婷婷色麻豆天堂久久| 只有这里有精品99| 国产精品人妻久久久影院| 性插视频无遮挡在线免费观看| 蜜桃亚洲精品一区二区三区| 内射极品少妇av片p| 免费高清在线观看视频在线观看| 国产男女内射视频| 精品人妻熟女av久视频| 大又大粗又爽又黄少妇毛片口| 一级毛片黄色毛片免费观看视频| 777米奇影视久久| 男插女下体视频免费在线播放| 伊人久久国产一区二区| 人体艺术视频欧美日本| 菩萨蛮人人尽说江南好唐韦庄| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品| 日韩国内少妇激情av| 国产精品一区二区性色av| 在线免费十八禁| av国产久精品久网站免费入址| 一级毛片 在线播放| 听说在线观看完整版免费高清| 欧美xxxx黑人xx丫x性爽| 国产乱来视频区| av在线老鸭窝| 少妇高潮的动态图| 男人舔奶头视频| 最近最新中文字幕免费大全7| 在线观看免费高清a一片| 欧美xxxx性猛交bbbb| av在线app专区| 欧美人与善性xxx| 中文资源天堂在线| 18+在线观看网站| 亚洲av欧美aⅴ国产| 免费av毛片视频| 免费观看无遮挡的男女| 日本黄色片子视频| 丝袜美腿在线中文| 日本猛色少妇xxxxx猛交久久| 校园人妻丝袜中文字幕| 建设人人有责人人尽责人人享有的 | 丝袜喷水一区| 青春草视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 成年版毛片免费区| 国产午夜福利久久久久久| 天天一区二区日本电影三级| 亚洲经典国产精华液单| 亚洲精品自拍成人| 又大又黄又爽视频免费| 大码成人一级视频| 女人十人毛片免费观看3o分钟| 中文乱码字字幕精品一区二区三区| 免费看日本二区| 80岁老熟妇乱子伦牲交| 夫妻性生交免费视频一级片| 久久久亚洲精品成人影院| 男女下面进入的视频免费午夜| 午夜激情久久久久久久| 亚洲色图综合在线观看| 黄色视频在线播放观看不卡| 欧美 日韩 精品 国产| 男人添女人高潮全过程视频| 尾随美女入室| 欧美日韩一区二区视频在线观看视频在线 | 欧美日本视频| 九草在线视频观看| 1000部很黄的大片| 少妇人妻一区二区三区视频| 亚洲国产精品专区欧美| 国产欧美另类精品又又久久亚洲欧美| 爱豆传媒免费全集在线观看| 嫩草影院精品99| 啦啦啦中文免费视频观看日本| 欧美日韩国产mv在线观看视频 | 午夜爱爱视频在线播放| 久久精品久久久久久久性| 久久久精品免费免费高清| .国产精品久久| 国产成人精品久久久久久| 免费看a级黄色片| 日韩中字成人| 成人特级av手机在线观看| 91在线精品国自产拍蜜月| 偷拍熟女少妇极品色| 中国国产av一级| 99久久精品国产国产毛片| 国产中年淑女户外野战色| 别揉我奶头 嗯啊视频| 尾随美女入室| 精品久久久噜噜| 国产又色又爽无遮挡免| 日本熟妇午夜| 国产黄片美女视频| 人体艺术视频欧美日本| 一区二区av电影网| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| 欧美老熟妇乱子伦牲交| 国产永久视频网站| 各种免费的搞黄视频| 久久久色成人| 国产一级毛片在线| 高清视频免费观看一区二区| 亚洲成人av在线免费| 精品国产三级普通话版| 激情 狠狠 欧美| 亚洲精品第二区| 日日啪夜夜爽| 黄色配什么色好看| av天堂中文字幕网| 精品国产乱码久久久久久小说| 国产成人精品婷婷| 好男人在线观看高清免费视频| 99久久人妻综合| 人妻制服诱惑在线中文字幕| 国产av码专区亚洲av| 亚洲美女视频黄频| 少妇的逼好多水| 97热精品久久久久久| 国产黄色视频一区二区在线观看| 在线亚洲精品国产二区图片欧美 | 国内精品美女久久久久久| 亚洲精品乱久久久久久| 最后的刺客免费高清国语| 菩萨蛮人人尽说江南好唐韦庄| 国产男女内射视频| 深夜a级毛片| 亚洲在久久综合| 国产男女超爽视频在线观看| 日产精品乱码卡一卡2卡三| xxx大片免费视频| 日韩国内少妇激情av| 菩萨蛮人人尽说江南好唐韦庄| 日本欧美国产在线视频| av专区在线播放| 麻豆久久精品国产亚洲av| 一级片'在线观看视频| 高清欧美精品videossex| 天堂俺去俺来也www色官网| 免费大片黄手机在线观看| av免费在线看不卡| 国产精品熟女久久久久浪| 午夜视频国产福利| 中文天堂在线官网| 狂野欧美激情性xxxx在线观看| 99热全是精品| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄| 最后的刺客免费高清国语| 久久久久久久国产电影| 精品酒店卫生间| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 国产一级毛片在线| 久久精品国产亚洲av涩爱| 免费看a级黄色片| 久久影院123| 最近2019中文字幕mv第一页| 国产淫语在线视频| 纵有疾风起免费观看全集完整版| 又粗又硬又长又爽又黄的视频| 热99国产精品久久久久久7| 真实男女啪啪啪动态图| 亚洲欧美日韩东京热| 女人久久www免费人成看片| eeuss影院久久| 久久6这里有精品| 香蕉精品网在线| 欧美老熟妇乱子伦牲交| 国产黄频视频在线观看| 免费观看性生交大片5| 欧美成人午夜免费资源| 夫妻性生交免费视频一级片| 久久99热这里只有精品18| 国产精品久久久久久av不卡| 中文字幕制服av| 黄色配什么色好看| 免费播放大片免费观看视频在线观看| 丝袜美腿在线中文| 高清毛片免费看| 亚洲成人av在线免费| 色吧在线观看| 大香蕉97超碰在线| 国产探花在线观看一区二区| 午夜福利高清视频| 最新中文字幕久久久久| 一区二区三区四区激情视频| 中文字幕制服av| 亚洲成色77777| 久久久久久伊人网av| 国产在视频线精品| 夜夜爽夜夜爽视频| 1000部很黄的大片| 成人特级av手机在线观看| 又爽又黄无遮挡网站| 国产黄片美女视频| 一级a做视频免费观看| 成人二区视频| 看十八女毛片水多多多| 日韩三级伦理在线观看| 日本爱情动作片www.在线观看| 蜜桃亚洲精品一区二区三区| 少妇高潮的动态图| 九九久久精品国产亚洲av麻豆| 国语对白做爰xxxⅹ性视频网站| 中文字幕免费在线视频6| 国产男女内射视频| 亚洲欧美清纯卡通| 国产精品99久久99久久久不卡 | 日本熟妇午夜| 女人久久www免费人成看片| 欧美最新免费一区二区三区| 欧美区成人在线视频| 久久久久久久久大av| 亚洲高清免费不卡视频| 蜜桃久久精品国产亚洲av| 欧美日本视频| 久久久久久久亚洲中文字幕| 国内精品美女久久久久久| 国产精品精品国产色婷婷| 日本三级黄在线观看| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 内地一区二区视频在线| 亚洲自拍偷在线| 中文乱码字字幕精品一区二区三区| 白带黄色成豆腐渣| 黄色怎么调成土黄色| 亚洲丝袜综合中文字幕| 久久久久久久久大av| 国产一级毛片在线| 亚洲自拍偷在线| 精品人妻熟女av久视频| 永久免费av网站大全| 国产成人a∨麻豆精品| 亚洲精品一二三| 欧美精品国产亚洲| 中文在线观看免费www的网站| 男人舔奶头视频| 毛片女人毛片| 欧美日韩综合久久久久久| 久久综合国产亚洲精品| 日韩视频在线欧美| 亚洲自偷自拍三级| 又黄又爽又刺激的免费视频.| av国产免费在线观看| 午夜激情福利司机影院| 中文天堂在线官网| 成年人午夜在线观看视频| 国产男女超爽视频在线观看| 六月丁香七月| 一个人看的www免费观看视频| 综合色av麻豆| a级一级毛片免费在线观看| 少妇人妻久久综合中文| 99久久人妻综合| 免费观看a级毛片全部| 99热全是精品| 久久久午夜欧美精品| 国产老妇伦熟女老妇高清| 欧美日韩综合久久久久久| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱| 国产精品爽爽va在线观看网站| 国产精品麻豆人妻色哟哟久久| 成人欧美大片| 国产精品一及| 中文字幕人妻熟人妻熟丝袜美| 国产真实伦视频高清在线观看| 国产片特级美女逼逼视频| 夫妻性生交免费视频一级片| 王馨瑶露胸无遮挡在线观看| 亚洲成色77777| 亚洲色图综合在线观看| 免费大片黄手机在线观看| 欧美性感艳星| 国产伦理片在线播放av一区| 国产视频首页在线观看| 国产在线男女| 狂野欧美激情性xxxx在线观看| 日韩电影二区| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 国产在线男女| 噜噜噜噜噜久久久久久91| 在线观看人妻少妇| 免费电影在线观看免费观看| 国产亚洲av片在线观看秒播厂| 少妇丰满av| 又爽又黄无遮挡网站| 日产精品乱码卡一卡2卡三| 国产精品99久久99久久久不卡 | 美女视频免费永久观看网站| 日本色播在线视频| 国产69精品久久久久777片| 国产黄色免费在线视频| 日韩一区二区三区影片| 亚洲欧美精品专区久久| 婷婷色av中文字幕| 3wmmmm亚洲av在线观看| 国产91av在线免费观看| 人妻夜夜爽99麻豆av| 国产黄片视频在线免费观看| 国产高清三级在线| 亚洲美女视频黄频| 性色av一级| 国产av码专区亚洲av| 国产精品精品国产色婷婷| 日韩电影二区| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片| 精品人妻偷拍中文字幕| 毛片女人毛片| 国产男女超爽视频在线观看| 激情 狠狠 欧美| 国产色爽女视频免费观看| 国内揄拍国产精品人妻在线| 五月天丁香电影| 成人亚洲欧美一区二区av| 视频中文字幕在线观看| 国产淫语在线视频| 深夜a级毛片| 亚洲国产色片| 国产黄片美女视频| 午夜亚洲福利在线播放| 成人欧美大片| 久久久成人免费电影| 狂野欧美激情性bbbbbb| 日本免费在线观看一区| 69av精品久久久久久| 国产伦精品一区二区三区四那| 草草在线视频免费看| 少妇熟女欧美另类| 肉色欧美久久久久久久蜜桃 | 亚洲最大成人中文| a级毛片免费高清观看在线播放| av线在线观看网站| 国产乱人视频| 精品少妇久久久久久888优播| 精品久久久噜噜| 国产一区二区三区av在线| 国产综合精华液| 麻豆精品久久久久久蜜桃| 白带黄色成豆腐渣| 国产男女内射视频| 国产爽快片一区二区三区| 日本-黄色视频高清免费观看| 中国三级夫妇交换| 亚洲精品中文字幕在线视频 | 精品久久久久久久末码| 少妇的逼水好多| 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 欧美97在线视频| 亚洲精品日韩在线中文字幕| 国产亚洲精品久久久com| 天堂中文最新版在线下载 | 人人妻人人澡人人爽人人夜夜| 男男h啪啪无遮挡| 大陆偷拍与自拍| 免费观看的影片在线观看| 欧美区成人在线视频| 高清欧美精品videossex| 寂寞人妻少妇视频99o| 一本一本综合久久| 精品人妻偷拍中文字幕| 欧美3d第一页| 久久精品国产自在天天线| 国产欧美日韩一区二区三区在线 | 联通29元200g的流量卡| 久久ye,这里只有精品| 日日摸夜夜添夜夜添av毛片| 69人妻影院| 女人久久www免费人成看片| 一区二区三区免费毛片| 国产成人精品久久久久久| 人妻少妇偷人精品九色| 街头女战士在线观看网站| 国产精品蜜桃在线观看| 九九久久精品国产亚洲av麻豆| 国产大屁股一区二区在线视频| 国产精品国产三级国产av玫瑰| 日韩视频在线欧美| av一本久久久久| 国产伦理片在线播放av一区| 91久久精品国产一区二区成人| 久久久久久久久久人人人人人人| 大香蕉97超碰在线| 亚洲精品日韩在线中文字幕| 欧美 日韩 精品 国产| 日本wwww免费看| videos熟女内射| 大片电影免费在线观看免费| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区成人| 精品国产一区二区三区久久久樱花 | 亚洲av电影在线观看一区二区三区 | 高清av免费在线| 人人妻人人看人人澡| 色视频在线一区二区三区| 国产白丝娇喘喷水9色精品| videossex国产| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 国产一区二区三区av在线| 欧美成人午夜免费资源| 中文精品一卡2卡3卡4更新| 国产欧美日韩精品一区二区| 国产综合精华液| h日本视频在线播放| 18禁裸乳无遮挡免费网站照片| 麻豆久久精品国产亚洲av| 亚洲精品第二区| 免费观看a级毛片全部| 国产乱人偷精品视频| 在线观看三级黄色| 91狼人影院| 国产精品久久久久久av不卡| 人妻夜夜爽99麻豆av| 国产乱来视频区| 免费观看a级毛片全部| 又爽又黄a免费视频| 五月玫瑰六月丁香| kizo精华| 大片免费播放器 马上看| 亚洲av日韩在线播放| 久久精品国产亚洲网站| 精品国产乱码久久久久久小说| 在线观看人妻少妇| 久久ye,这里只有精品| www.av在线官网国产| 插阴视频在线观看视频| 亚洲一区二区三区欧美精品 | 亚洲av免费在线观看| a级一级毛片免费在线观看| 成人二区视频| 国产精品国产三级专区第一集| 中文字幕制服av| 各种免费的搞黄视频| 国产成人午夜福利电影在线观看| 亚洲国产精品成人综合色| 九九在线视频观看精品| 午夜激情福利司机影院| 亚洲欧洲国产日韩| 中文字幕久久专区| 视频中文字幕在线观看| 在线天堂最新版资源| 97精品久久久久久久久久精品| 五月伊人婷婷丁香| 天堂网av新在线| 久久影院123| 一个人看的www免费观看视频| 亚洲精品国产av成人精品| 精品人妻偷拍中文字幕| 中文字幕制服av| 五月玫瑰六月丁香| 在线精品无人区一区二区三 | 国产大屁股一区二区在线视频| 夫妻午夜视频| 大香蕉久久网| 亚洲国产精品成人久久小说| 成人黄色视频免费在线看| 免费黄频网站在线观看国产| 噜噜噜噜噜久久久久久91| 国产白丝娇喘喷水9色精品| 久久久久网色| 五月伊人婷婷丁香| 精品一区二区三卡| 观看美女的网站| 夜夜看夜夜爽夜夜摸| 麻豆精品久久久久久蜜桃| 少妇人妻久久综合中文| 欧美高清成人免费视频www| 天天躁日日操中文字幕| 日韩欧美 国产精品| 极品教师在线视频| 又粗又硬又长又爽又黄的视频| 欧美激情国产日韩精品一区| 六月丁香七月| 99视频精品全部免费 在线| 国产免费一区二区三区四区乱码| 国产男女超爽视频在线观看| 天美传媒精品一区二区| 亚洲无线观看免费| 免费大片18禁| 伦精品一区二区三区| 午夜免费鲁丝| 黄色配什么色好看| 久久午夜福利片| 成年女人看的毛片在线观看| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 婷婷色av中文字幕| 99久久精品热视频| 久久久久久久亚洲中文字幕| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 直男gayav资源| av免费在线看不卡| 亚洲人成网站高清观看| 一级片'在线观看视频| 欧美97在线视频| 亚洲欧洲日产国产| 免费av观看视频| 在线观看美女被高潮喷水网站| 欧美激情国产日韩精品一区| 69av精品久久久久久| 大陆偷拍与自拍| 亚洲色图综合在线观看| 日韩不卡一区二区三区视频在线| 国产精品蜜桃在线观看| 高清日韩中文字幕在线| 精品一区二区三卡| 激情五月婷婷亚洲| 国产伦理片在线播放av一区| 69av精品久久久久久| 国产精品久久久久久久电影| 国产 精品1| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说 | 一级av片app| www.色视频.com| 日本一本二区三区精品| 国产一区亚洲一区在线观看| 在线观看人妻少妇| 日韩大片免费观看网站| tube8黄色片| 又粗又硬又长又爽又黄的视频| 久久这里有精品视频免费| 精品一区在线观看国产| 欧美人与善性xxx| 国产免费视频播放在线视频| 美女脱内裤让男人舔精品视频| 日韩亚洲欧美综合| 久久热精品热| 热re99久久精品国产66热6| 99热国产这里只有精品6| 老女人水多毛片| 一级a做视频免费观看| 亚洲精华国产精华液的使用体验| 午夜亚洲福利在线播放| .国产精品久久| 国产老妇伦熟女老妇高清| 国产极品天堂在线| 男人狂女人下面高潮的视频| 一区二区av电影网| 免费黄频网站在线观看国产| 男女边吃奶边做爰视频| 欧美激情国产日韩精品一区| 美女内射精品一级片tv| 永久网站在线| 国产中年淑女户外野战色| 免费观看a级毛片全部| 国产乱人偷精品视频| 日韩av免费高清视频| 亚洲性久久影院| 嫩草影院入口| 国产女主播在线喷水免费视频网站| 久久99热6这里只有精品| 26uuu在线亚洲综合色| 国产综合懂色| 亚洲国产欧美人成| 十八禁网站网址无遮挡 | 在线观看av片永久免费下载| 国产69精品久久久久777片| 免费播放大片免费观看视频在线观看| 一级爰片在线观看| 欧美一区二区亚洲| 国产熟女欧美一区二区| 韩国av在线不卡| 菩萨蛮人人尽说江南好唐韦庄| 男女无遮挡免费网站观看| av国产精品久久久久影院| 我的老师免费观看完整版| 欧美成人精品欧美一级黄| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av涩爱| 国产亚洲av嫩草精品影院| 亚洲精品视频女|