• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of freeze-dried pH-responsive dextrin nanogels containing doxorubicin

    2017-01-20 01:28:32SomkamolManchunCrispinDassPornsakSriamornsak
    關(guān)鍵詞:示意圖理論

    Somkamol Manchun,Crispin R.Dass,Pornsak Sriamornsak,*

    aDepartment of Pharmaceutical Technology,Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    bPharmaceutical Biopolymer Group(PBiG),Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    cSchool of Pharmacy,Faculty of Health Sciences,Curtin University,Perth 6845,Australia

    dCurtin Health Innovation Research Institute of Ageing and Chronic Disease,Bentley 6102,Australia

    Stability of freeze-dried pH-responsive dextrin nanogels containing doxorubicin

    Somkamol Manchuna,b,Crispin R.Dassc,d,Pornsak Sriamornsaka,b,*

    aDepartment of Pharmaceutical Technology,Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    bPharmaceutical Biopolymer Group(PBiG),Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand

    cSchool of Pharmacy,Faculty of Health Sciences,Curtin University,Perth 6845,Australia

    dCurtin Health Innovation Research Institute of Ageing and Chronic Disease,Bentley 6102,Australia

    A R T I C L EI N F O

    Article history:

    Received 13 August 2015

    Received in revised form 20

    September 2015

    Accepted 28 September 2015

    Available online 9 October 2015Keywords:

    Stability

    Nanogels

    Dextrin

    Induction of non-specifc toxicities by doxorubicin(DOX)has restricted conventional DOX-based chemotherapy.pH-responsive dextrin nanogels(DNGs)have been fabricated in order to incorporate and deliver DOX to specifc(targeted)sites.However,adequate stability studies of DOX-loaded DNGs are required for selection of storage conditions.The aim of this study was therefore to evaluate the accelerated(25°C/60%RH)and long-term(5°C)stability of DNGs prepared with formaldehyde(FDNGs)and glyoxal(GDNGs)as cross-linker by determining the change in their physicochemical properties.The mean diameter decreased with time during long-term storage.The drug content between freshly prepared(initial day)and after storage at 5°C for 180 days of DOX-loaded FDNGs and DOX-loaded GDNGs was not signifcantly different(p>0.05),but decreased after storage under the accelerated condition.The release of DOX from all DNGs was pH-dependent.However,DNGs kept under the accelerated condition showed higher amount of DOX release than those stored at 5°C and the freshly prepared ones.The results indicate that the stability of DNGs could be improved by their storage at 5°C.

    ?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Cancer is a major cause of mortality worldwide with 8.2 million people being affected in 2012[1].Major clinical treatments for cancer include surgery,radiation,and chemotherapy, with chemotherapy being the major form.However,chemotherapy is a major form of management of cancer patients enlisting the used drugs to kill cancer cells.Among such drugs,the anthraquinonedoxorubicin(DOX)is a frontlinechemotherapeutic agent used for treatment of several forms of cancer.Its mechanism of action is to inhibit DNA polymerases and topoisomerases and block the cell cycle,usually resulting in the induction of apoptosis in tumor cells[2,3]. Despite its effcacy,the clinical use of unformulated(free)DOX is limited due to development of progressive cardiomyopathy with apoptosis induction in cardiomyocytes by activation of p53 protein and reactive oxygen species leading to congestive heart failure[4].In addressing this problem,a variety of innovative approaches to entrap this drug in nanocarriers and hopefully achieve site-specifc delivery has been developed.

    Among these approaches,pH-responsive nanocarriers have been previously exploited for targeted delivery of drugs.Due to its biocompatibility and degradability[5],dextrin is frequently chosen for nanogels formulating in order to circumvent carrier toxicity.It is a saccharide-based polymer containing D-glucose units linked by α-(1→4)glycosidic bonds,and considerable quantities of hydroxyl groups that are readily modifed. Regarding biomedical application,dextrin is employed as a drug delivery system[5–9]and as a scaffold material[10,11].pH-responsive dextrin nanogels(DNGs)are cross-linked dextrin networks fabricated by incorporating pH-responsive bonds, namely acetal bonds,into their structure.These bonds are used as linkers to immobilize anti-tumor drugs within the carrier matrix.In this system,DNGs are delivered to the tumor siteviathe enhanced permeability and retention(EPR)phenomenon[12,13].DNGs are stable at physiological pH but could be destabilized and release the drug under mild acidic conditions at the target neoplastic site,resulting in enhanced therapeutic effcacy and reduced side-effects to normal tissue. Despite DNGs providing many benefts,the challenge remains in producing highly stable forms of encapsulated DOX and maintaining the long-term pH-responsive behavior.Knowledge of the stability helps in selecting appropriate formulation and packaging as well as providing suitable storage conditions and shelf-life,which is essential for regulatory documentation[14].

    The purpose of this research is to investigate the longterm stability and accelerated stability of two different types of pH-responsive DNGs,that is,FDNGs and GDNGs which were formulated using formaldehyde and glyoxal as a cross-linker, respectively.In addition,the effects of various types and quantities of cross-linker on stability were also studied.The changes of properties namely mean diameter,ζ-potential,chemical structure,drug remaining,pH-responsive behavior and amount of drug release in both DNGs after storage over a period of 6 months were evaluated in order to elucidate the optimal conditions for DNG stability during storage for future application.

    2.Materials and methods

    2.1.Materials

    Dextrin(molecular weight of 1400 Da)was a gift from Siam Modifed Starch Co.,Ltd.(Pathumthani,Thailand).Glyoxal, ethanol and doxorubicin hydrochloride(DOX)were obtained from Sigma-Aldrich Chemie(Steinheim,Germany).Hydrochloric acid,formaldehyde and n-hexane were purchased from RCI Labscan(Bangkok,Thailand).Tween?80 and Span?80 were purchased from P.C.Drug Center Co.,Ltd.(Bangkok,Thailand). Deionized water was used throughout the study.

    2.2.Preparation of dextrin nanogels

    DOX loaded-DNGs were prepared as described previously by our group[15]with some modifcations.Water-in-hexane emulsions were prepared,in order to form a nanoemulsion template, using 7%(w/w)mixture of Span?80/Tween?80 as emulsifer. Dextrin and DOX were dissolved in the water phase to obtain the fnal concentration of 5%(w/w)and 0.2 mg/mL,respectively.The water phase was added to the emulsion template and ultrasonicated for 1 minute to form nanoemulsions.After the nanoemulsions were obtained,different concentrations of cross-linking agent(that is,formaldehyde or glyoxal)were added immediately to achieve mole ratios of dextrin to crosslinking agent of 4:1,10:1,15:1 and 20:1.The mixtures were homogenized via ultrasonication(UP400S,Hielscher,Germany) with 100%amplitude of ultrasound power(400 W,24 KHz)for 30 min.The obtained nanoemulsions were then stirred with a magnetic stirrer for 12 h to continue the cross-linking reaction.DNGs were precipitated from the nanoemulsions by adding 99%(v/v)ethanol and washed 3 times with ethanol and fnally rinsed with deionized water.Subsequently,the DNGs were freeze-dried for 24 h.The dried DNGs obtained from the freezedrying process were packaged in zip-lock bags and kept at 4°C until further analysis.

    2.3.Stability study

    The dried DNGs were kept under two conditions–25°C±2°C/ 60%±5%RH(accelerated conditions;in stability chamber)and 5±3°C(long term condition;in refrigerator),for 6 months before further investigation.

    2.4.Particle size and ζ-potential determination

    2.5.Morphological observation of DNGs

    Morphological analysis of DNGs was carried out on a transmission electron microscope(TEM;model JEM-1230,JOEL Corp., Japan).TEM analyses were performed by sample mounting on a copper glider grid of 3.5 mm with a single aperture,adsorbed with flter paper and dried at ambient temperature,prior to TEM examination.

    2.6.13C nuclear magnetic resonance spectroscopy (13C NMR)

    The samples were dissolved in deuterium oxide.The13C NMR spectra of samples were recorded on NMR spectroscopy(modelADVANCE 300,Bruker,Germany)with deuterium oxide as the solvent.The chemical shifts were given in δ(ppm).

    2.7.Drug content determination

    The DNG dispersion was mixed with 1.0 N HCl and stirred for 12 h.Subsequently,the suspensions were fltered through 0.45-μm cellulose acetate membrane.The DOX concentration in DNGs was measured using UV absorbance at 495 nm with a UV/vis spectrophotometer(model T60U,PG Instrument Ltd., England).All measurements were performed in triplicate.DOX concentration was then calculated based on a standard curve of known amounts of DOX in 0.1 N HCl.Drug content and drug remaining were defned as:

    2.8.In vitrodrug release study

    Thein vitrorelease of DOX-loaded DNGs were investigated using the dialysis method[15].Briefy,DOX-loaded DNGs were added to a dialysis membrane bag(Cellu-SepT2 MWCO 6–8 kDa;Membrane Filtration Products Inc.,Braine-l’Alleud,Belgium),and then immersed in phosphate buffer(25 mL)and shaken horizontally(100 rpm)at 37°C using an environmental shaker incubator (model ES-20,Orbital Shaker-Incubator,Biosan,Latvia).At certain time points,the outer phase of the dialysis membrane bag was harvested and replaced with fresh buffer.The concentration of DOX in the collected samples was analyzed under UV/vis absorbance mode at 495 nm.

    通過矩陣理論的應(yīng)用,向量組之間的線性表示的問題可轉(zhuǎn)化為矩陣語言。這樣不僅簡化了問題,且把抽象的向量組轉(zhuǎn)化為具體的矩陣方程,更加直觀。矩陣方程的求解,即線性方程組的解的結(jié)構(gòu)的問題。然而,線性方程組的求解還是要用到矩陣理論中的秩。通過不斷轉(zhuǎn)化,向量組是否能相互表示等價于矩陣方程是否有解。為了更清晰,三者之間的轉(zhuǎn)化可用示意圖表示如下。

    2.9.Statistical analysis

    Data were analyzed using SPSS version 11.5 forWindows(SPSS Inc.,USA).The results were represented as mean±standard deviation(SD).Analysis of variance(One-way ANOVA)with Scheffé or Games–Howellpost hoctest was performed to evaluate difference among the groups.The statistical signifcance was set atp<0.05.

    3.Results and discussion

    As previously reported[16],pH-responsive DNGs were prepared by an emulsion cross-linking technique using glyoxal or formaldehyde as a cross-linker.In this method,nanogels were formed in the nanoemulsion droplet by simultaneously crosslinking and creating 3-dimensional structures.However,it is known that nanogels are prone to aggregation,leading to an increase in particle size and loss of certain properties with time [17].Therefore,the physicochemical properties,amount of encapsulated drug and drug release behavior over the process of storage were used as indicators to evaluate the accelerated and long-term stability of FDNGs and GDNGs,namely 25°C/60%RH and 5°C,respectively.

    3.1.Changes in physicochemical properties

    The ability of DOX-loaded FDNGs and GDNGs to maintain their sizes over a long storage period was evaluated.Fig.1 shows that size and zeta-potential of DOX-loaded FDNGs and GDNGs changed after storage at 25°C/60%RH and 5°C for 180 days. The results indicate that the trends of mean diameter and ζ-potential change were varied;they tended to decrease with time,refecting the different changes during different stages in long-term storage.Minor change in the size of DNGs kept at 5°C was observed,whereas the size of DNGs keeping at 25°C/ 60%RH showed an apparent change over the time period investigated.The change of size was probably due to the unstable linkage that could be broken during storage as a result of exposure to moisture;however,storing at 5°C seemed to increase conservation of size of nanogels.

    3.2.Changes in chemical structure

    Fig.1–(a)Size and(b)ζ-potential of DOX-loaded FDNGs (4∶1),GDNGs(4∶1),(10∶1)and(20∶1)at initial day and after storage at 25°C/60%RH and 5°C for 180 days.

    Fig.2–13C NMR spectra of GDNGs at a molar ratio of dextrin to glyoxal of 4∶1 at(a)initial day,(b)after storage at 5°C,and(c) 25°C/60%RH,compared to(d)native dextrin.

    Fig.3–13C NMR spectra of FDNGs at a molar ratio of dextrin to formaldehyde of 4∶1 at(a)initial day,(b)after storage at 5°C, and(c)25°C/60%RH,compared to(d)native dextrin.

    Figs.2 and 3 shows the13C NMR spectra of freshly prepared FDNGs and GDNGs and those after storage at 25°C/60%RH and5°C,fabricated at a mole ratio of dextrin to formaldehyde or glyoxal of 4:1.The chemical shifts at 99.52 ppm(C1),76.62 ppm (C4),73.27–71.10 ppm(C2,C3,C5),and 60.39 ppm(C6)verifed a presence of dextrin molecule as reported previously[18–20]. The signals at 90 ppm(C7)of GDNGs(Fig.2a)and 84 ppm(C8) of FDNGs(Fig.3a)were assigned to the formation of acetal linkage[21].After storage at 25°C/60%RH and 5°C,the characteristic peaks of this acetal linkage of GDNGs(Fig.2c)were decreased when compared to freshly prepared ones,but no signal at 84 ppm of FDNGs(Fig.3c)was observed.The absence of these peaks is probably due to destabilization and degradation of acetal bonds after storage under the accelerated conditions,perhaps by the moisture in the humid condition. However,the NMR signals of GDNGs that were kept at 5°C were similar to freshly prepared ones,indicating that storage at 5°C could retain nanogel stability long-term.On the other hand, the small signal was observed at 84 ppm for FDNGs,indicating that the acetal bonds,which were formed by formaldehyde, were less stable than that formed by glyoxal.

    3.3.Changes in encapsulated drug

    The ability to retain encapsulated drug during storage is also critical to the development of a drug carrier.The drug remaining in nanogels(both FDNGs and GDNGs)was evaluated to determine the long-term stability of these formulations.The stability of DOX-loaded FDNGs and GDNGs is shown in Fig.4. There was no signifcant difference observed in the encapsulation effciency between freshly-prepared(initial day)DOX-loaded FDNGs and DOX-loaded GDNGs and those after storage at 5°C for 180 days(p>0.05).However,the encapsulation effciency decreased after storage at accelerated condition,25°C/ 60%RH(data not shown).According to the literature,DOX is stable in the solid state at 2–8°C(protected from light),and the degradation rate of DOX increases with increasing temperature[22–24].Moreover,the amount of glyoxal also affected DOX stability;DOX was less stable when the dextrin to glyoxal ratio was increased from 4:1 to 20:1.It is possible that DOX cannot be completely entrapped in nanogels with lower quantities of cross-linker;therefore,DOX located at the surface of the nanogels is easily degraded by the environment.

    Fig.4–Drug remaining in DOX-loaded FDNGs(4∶1),GDNGs (4∶1),(10∶1)and(20∶1)at initial day and after storage at 25°C/60%RH and 5°C for 180 days.

    3.4.Changes in pH-responsive behavior and DOX release

    The mechanism controlling the release of DOX incorporated in DNGs is mainly attributed to pH-induced structural changes. This behavior has been ascribed to the hydrolysis of acetal bonds in the DNG structure under mildly acidic conditions,resulting in destabilization of the structural integrity of DNGs that could accelerate DOX release at pH below 7[21].In order to verify the hypothesis that DOX was released due to the destabilization of DNG structure,the morphology of FDNGs and GDNGs at a mole ratio of dextrin to cross-linker of 4:1 at each pH,(5,6.8 and 7.4)was examined by TEM.The TEM images showed deformation and fracture in both FDNG and GDNG structures;the size of DNGs decreased with decreasing pH (Fig.5).These results confrmed that the change of nanogel structure by acid hydrolysis was attributed to the difference in drug release under different pHs.

    Fig.5–TEM micrographs of DOX-loaded FDNGs at a mole ratio of dextrin to formaldehyde of 4∶1 in(a)pH 7.4,(b)pH 6.8,(c)pH 5 phosphate buffer,and DOX-loaded GDNGs at a mole ratio of dextrin to glyoxal of 4∶1 in(d)pH 7.4,(e)pH 6.8,(f)pH 5 phosphate buffer.

    The change in pH dependency of both FDNGs and GDNGs after storage was investigated.Fig.6 shows the amount of DOX released at different pHs,within 24 h,from FDNGs at a mole ratio of dextrin to formaldehyde of 4:1 and GDNGs at a mole ratio of dextrin to glyoxal of 4:1 and 20:1,before and after 6-month storage.All DNGs demonstrated pH-dependent drug release properties.Drug release was slow at physiological pH but increased signifcantly in acidic medium.In addition,type and amount of cross-linker also affected the release of drug, similar to freshly prepared ones(Fig.6).However,DNGs tested under accelerated condition(25°C/60%RH)showed higher amount of DOX release than those kept at 5°C and the freshlyprepared ones.At pH 5,about 98%,60%and 50%of DOX were released from GDNGs at mole ratio of dextrin to glyoxal of 20:1 kept at 25°C/60%RH,5°C and freshly-prepared GDNGs,respectively.The results indicated that the acetal bond in DNG structure was unstable,easily hydrolyzed in solution when stored under the accelerated condition for 6 months.These changes related well to the corresponding NMR spectra.

    Fig.6–pH-dependent release of DOX from FDNGs(4∶1), GDNGs(4∶1)and(20∶1)at 37°C in(a)pH 5,(b)pH 6.8,(c)pH 7.4 phosphate buffer,after storage under the long-term (5°C)and accelerated(25°C/60%RH)conditions.

    4.Conclusion

    The stability of both FDNGs and GDNG was examined by measuring the change of their physical properties over a period of 6 months under different conditions,5°C and 25°C/60%RH. Under accelerated condition(25°C/60%RH),both FDNGs and GDNGs were found to be unstable;the particle size and amount of encapsulated DOX decreased over time.In contrast,the amount of DOX release increased at all pH conditions,compared with those kept at 5°C and the freshly prepared ones. The results of NMR demonstrated that the destabilization and degradation of acetal bonds occurred after storage under the accelerated condition.In addition,the long-term stability of DNGs is affected by type of cross-linker,with GDNGs being more stable than FDNGs.The stability of DNGs can be manipulated by storage at 5°C.

    Acknowledgements

    This work was fnancially supported by the Higher Education Research Promotion and National Research University project ofThailand,Offce of the Higher Education Commission(Grant No.2558A11462001).SM is supported by the Royal Golden Jubilee Ph.D.Program(Grant No.PHD/0361/2551).The authors thank Siam Modifed Starch Co.,Ltd.(Pathumthani,Thailand)which kindly provided dextrin samples.CRD is supported by a Curtin Academic50 grant scheme.

    R E F E R E N C E S

    [1]Mathers CD,Loncar D.Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med 2006;3:e442.

    [2]Yokochi T,Robertson KD.Doxorubicin inhibits DNMT1, resulting in conditional apoptosis.Mol Pharmacol 2004;66:1415–1420.

    [3]Tacar O,Sriamornsak P,Dass CR.Doxorubicin:an update on anticancer molecular action,toxicity and novel drug delivery systems.J Pharm Pharmacol 2013;65:157–170.

    [4]Octavia Y,Tocchetti CG,Gabrielson KL,et al.Doxorubicininduced cardiomyopathy:from molecular mechanisms to therapeutic strategies.J Mol Cell Cardiol 2012;52:1213–1225.

    [5]Gon?alves C,Torrado E,Martins T,et al.Dextrin nanoparticles:studies on the interaction with murine macrophages and blood clearance.Colloids Surf B Biointerfaces 2010;75:483–489.

    [6]Gon?alves C,Martins JA,Gama FM.Self-assembled nanoparticles of dextrin substituted with hexadecanethiol. Biomacromolecules 2007;8:392–398.

    [7]Gon?alves C,Gama FM.Characterization of the selfassembly process of hydrophobically modifed dextrin.Eur Polym J 2008;44:3529–3534.

    [8]Gon?alves C,Pereira P,Schellenberg P,et al.Self-assembled dextrin nanogel as curcumin delivery system.J Biomater Nanobiotechnol 2012;3:178–184.

    [9]Hreczuk-Hirst D,Chicco D,German L,et al.Dextrins as potential carriers for drug targeting:tailored rates of dextrin degradation by introduction of pendant groups.Int J Pharm 2001;230:57–66.

    [10]Drury JL,Mooney DJ.Hydrogels for tissue engineering: scaffold design variables and applications.Biomaterials 2003;24:4337–4351.

    [11]Silva DM,Nunes C,Pereira I,et al.Structural analysis of dextrins and characterization of dextrin-based biomedical hydrogels.Carbohydr Polym 2014;114:458–466.

    [12]Shi J,Votruba AR,Farokhzad OC,et al.Nanotechnology in drug delivery and tissue engineering:from discovery to applications.Nano Lett 2010;10:3223–3230.

    [13]Maeda H,Bharate GY,Daruwalla J.Polymeric drugs for effcient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009;71:409–419.

    [14]Blessy M,Patel RD,Prajapati PN,et al.Development of forced degradation and stability indicating studies of drugs–a review.J Pharm Anal 2014;4:159–165.

    [15]Manchun S,Dass CR,Sriamornsak P.Designing nanoemulsion templates for fabrication of dextrin nanoparticles via emulsion cross-linking technique. Carbohydr Polym 2014;101:650–655.

    [16]Manchun S,Dass CR,Cheewatanakornkool K,et al. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydr Polym 2015;126:222–230.

    [17]Hoare T,Young S,Lawlor MW,et al.Thermoresponsive nanogels for prolonged duration local anesthesia.Acta Biomater 2012;8:3596–3605.

    [18]Hu X,Wei B,Zhang B,et al.Synthesis and characterization of dextrin monosuccinate.Carbohydr Polym 2013;97:111–115.

    [19]Liu X,Wang Y,Cao Y,et al.Study of dextrin-derived curing agent for waterborne epoxy adhesive.Carbohydr Polym 2011;83:1180–1184.

    [20]Carvalho J,Gon?alves C,Gil AM,et al.Production and characterization of a new dextrin based hydrogel.Eur Polym J 2007;43:3050–3059.

    [21]Manchun S,Cheewatanakornkool K,Dass CR,et al. Novel pH-responsive dextrin nanogels for doxorubicin delivery to cancer cells with reduced cytotoxicity to cardiomyocytes and stem cells.Carbohydr Polym 2014;114:78–86.

    [22]Janssen MJH,Crommelin DJA,Storm G,et al.Doxorubicin decomposition on storage.Effect of pH,type of buffer and liposome encapsulation.Int J Pharm 1985;23:1–11.

    [23]Cielecka-Piontek J,Jelin′ska A,Zaja?c M,et al.A comparison of the stability of doxorubicin and daunorubicin in solid state.J Pharm Biomed Anal 2009;50:576–579.

    [24]Gupta PK,Lam FC,Hung CT.Investigation of the stability of doxorubicin hydrochloride using factorial design.Drug Dev Ind Pharm 1988;14:1657–1671.

    *< class="emphasis_italic">Corresponding author.

    .Department of Pharmaceutical Technology,Faculty of Pharmacy,Silpakorn University,Nakhon Pathom 73000, Thailand.Tel.:+66 3425 5800;fax:+66 3425 5801.

    E-mail address:sriamornsak_p@su.ac.th(P.Sriamornsak).

    http://dx.doi.org/10.1016/j.ajps.2015.09.006

    1818-0876/?2016 The Authors.Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    猜你喜歡
    示意圖理論
    構(gòu)建示意圖,深度把握
    堅持理論創(chuàng)新
    當代陜西(2022年5期)2022-04-19 12:10:18
    神秘的混沌理論
    理論創(chuàng)新 引領(lǐng)百年
    相關(guān)于撓理論的Baer模
    先畫示意圖再解答問題
    黔西南州旅游示意圖
    當代貴州(2019年41期)2019-12-13 09:28:56
    兩張圖讀懂“青年之聲”
    中國共青團(2015年7期)2015-12-17 01:24:38
    理論宣講如何答疑解惑
    “三定兩標”作好圖
    水蜜桃什么品种好| 一级,二级,三级黄色视频| 日韩一卡2卡3卡4卡2021年| 久久热在线av| 韩国高清视频一区二区三区| 热99久久久久精品小说推荐| a级毛片在线看网站| 一级毛片 在线播放| 在线观看国产h片| av不卡在线播放| 晚上一个人看的免费电影| 欧美亚洲日本最大视频资源| 亚洲国产毛片av蜜桃av| 午夜免费观看性视频| 女性生殖器流出的白浆| 人人妻人人澡人人看| 黄片播放在线免费| 超碰97精品在线观看| 久久婷婷青草| 亚洲精品自拍成人| 久久ye,这里只有精品| 人妻少妇偷人精品九色| 考比视频在线观看| 国产黄频视频在线观看| 黑人欧美特级aaaaaa片| 婷婷成人精品国产| 日韩,欧美,国产一区二区三区| 国产极品天堂在线| 亚洲欧洲日产国产| 一级黄片播放器| 久久这里有精品视频免费| 国产福利在线免费观看视频| 国产激情久久老熟女| 亚洲四区av| 国产亚洲精品第一综合不卡| 免费观看在线日韩| 99热网站在线观看| 91在线精品国自产拍蜜月| av天堂久久9| 最近2019中文字幕mv第一页| 热99久久久久精品小说推荐| 日韩人妻精品一区2区三区| 亚洲综合色网址| 卡戴珊不雅视频在线播放| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 欧美人与性动交α欧美精品济南到 | 国产极品天堂在线| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 亚洲成国产人片在线观看| 亚洲国产欧美网| 亚洲图色成人| 黑丝袜美女国产一区| 久久久久久伊人网av| 啦啦啦中文免费视频观看日本| 黄色毛片三级朝国网站| 蜜桃国产av成人99| 成年动漫av网址| 日韩熟女老妇一区二区性免费视频| 免费在线观看黄色视频的| 国产成人免费无遮挡视频| 欧美日韩亚洲高清精品| 叶爱在线成人免费视频播放| 亚洲综合色网址| a级毛片黄视频| 秋霞伦理黄片| 青草久久国产| 久久97久久精品| 成年av动漫网址| 亚洲中文av在线| 少妇被粗大猛烈的视频| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区久久| 涩涩av久久男人的天堂| 中文天堂在线官网| 色视频在线一区二区三区| 天堂俺去俺来也www色官网| 亚洲国产精品999| 久久99精品国语久久久| 亚洲精品av麻豆狂野| 国产精品蜜桃在线观看| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 精品少妇内射三级| 高清在线视频一区二区三区| 国产高清不卡午夜福利| 少妇人妻久久综合中文| 国产在视频线精品| 欧美精品高潮呻吟av久久| 亚洲第一区二区三区不卡| 国产一区亚洲一区在线观看| 青春草国产在线视频| 欧美黄色片欧美黄色片| 一区在线观看完整版| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠躁躁| 亚洲成人av在线免费| 女人精品久久久久毛片| 最近的中文字幕免费完整| 热99久久久久精品小说推荐| 视频区图区小说| 久久 成人 亚洲| 伊人久久大香线蕉亚洲五| 久久国产精品大桥未久av| 桃花免费在线播放| 亚洲欧美一区二区三区国产| 亚洲,欧美精品.| 欧美日韩视频精品一区| 精品久久久精品久久久| 国产亚洲精品第一综合不卡| 欧美精品人与动牲交sv欧美| 国产综合精华液| 美女视频免费永久观看网站| 欧美日韩一区二区视频在线观看视频在线| 国产片内射在线| 一区二区三区激情视频| 亚洲成人av在线免费| 777米奇影视久久| 久久久久精品性色| 看免费成人av毛片| 成年女人毛片免费观看观看9 | 日日撸夜夜添| a 毛片基地| 国产毛片在线视频| av片东京热男人的天堂| 久久精品夜色国产| 女性生殖器流出的白浆| 日韩中文字幕视频在线看片| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 26uuu在线亚洲综合色| 国产免费一区二区三区四区乱码| 考比视频在线观看| 亚洲国产av新网站| 少妇人妻精品综合一区二区| 夫妻性生交免费视频一级片| av网站在线播放免费| 亚洲精品成人av观看孕妇| 免费大片黄手机在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产熟女午夜一区二区三区| 嫩草影院入口| 80岁老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| www日本在线高清视频| 80岁老熟妇乱子伦牲交| 欧美日韩视频精品一区| 久久久久网色| 黄色一级大片看看| 亚洲内射少妇av| 亚洲精品在线美女| 午夜福利在线观看免费完整高清在| 夫妻午夜视频| 另类精品久久| 久久精品国产亚洲av高清一级| 久久久久人妻精品一区果冻| 国产亚洲av片在线观看秒播厂| 永久免费av网站大全| 国产日韩一区二区三区精品不卡| 精品亚洲成国产av| 制服诱惑二区| 午夜91福利影院| 巨乳人妻的诱惑在线观看| 午夜日本视频在线| 亚洲欧美清纯卡通| 亚洲国产日韩一区二区| 免费久久久久久久精品成人欧美视频| 免费日韩欧美在线观看| 精品视频人人做人人爽| 欧美人与性动交α欧美精品济南到 | 黑人巨大精品欧美一区二区蜜桃| 人成视频在线观看免费观看| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| a 毛片基地| 捣出白浆h1v1| 国产激情久久老熟女| 久热久热在线精品观看| 熟女电影av网| 亚洲,一卡二卡三卡| 欧美av亚洲av综合av国产av | 两个人看的免费小视频| 男女午夜视频在线观看| 成人手机av| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频| 亚洲精品自拍成人| 91精品伊人久久大香线蕉| 美女午夜性视频免费| 中文欧美无线码| 欧美日韩国产mv在线观看视频| 久久这里有精品视频免费| 看非洲黑人一级黄片| www日本在线高清视频| 亚洲在久久综合| 色吧在线观看| 蜜桃国产av成人99| 麻豆av在线久日| 少妇猛男粗大的猛烈进出视频| 国产淫语在线视频| 久久久久久伊人网av| 少妇熟女欧美另类| 国产成人精品久久久久久| 中国国产av一级| 精品亚洲成a人片在线观看| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| 韩国精品一区二区三区| 最近最新中文字幕大全免费视频 | 午夜久久久在线观看| 女的被弄到高潮叫床怎么办| 18在线观看网站| 王馨瑶露胸无遮挡在线观看| 深夜精品福利| www.熟女人妻精品国产| 久久久国产欧美日韩av| 超色免费av| 亚洲精品国产av成人精品| 18禁国产床啪视频网站| 熟女少妇亚洲综合色aaa.| 18禁动态无遮挡网站| 精品福利永久在线观看| 一级毛片我不卡| 蜜桃在线观看..| 日韩一卡2卡3卡4卡2021年| 亚洲三区欧美一区| 国产福利在线免费观看视频| 一区二区三区乱码不卡18| 18+在线观看网站| 亚洲国产av影院在线观看| 亚洲欧美精品综合一区二区三区 | 久久99热这里只频精品6学生| 欧美97在线视频| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 深夜精品福利| 国产人伦9x9x在线观看 | 激情五月婷婷亚洲| 国产一区有黄有色的免费视频| 91aial.com中文字幕在线观看| av不卡在线播放| 十八禁网站网址无遮挡| 夫妻午夜视频| 欧美97在线视频| 成人国产麻豆网| 97精品久久久久久久久久精品| 老司机影院毛片| 亚洲av欧美aⅴ国产| 国产人伦9x9x在线观看 | 青春草亚洲视频在线观看| 精品亚洲成a人片在线观看| 91aial.com中文字幕在线观看| 国产老妇伦熟女老妇高清| 久久久久国产网址| 久久热在线av| 18+在线观看网站| 亚洲成国产人片在线观看| 女的被弄到高潮叫床怎么办| www.熟女人妻精品国产| 韩国精品一区二区三区| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 你懂的网址亚洲精品在线观看| 我的亚洲天堂| 欧美变态另类bdsm刘玥| 高清av免费在线| 欧美成人午夜免费资源| 久久99蜜桃精品久久| 国产精品熟女久久久久浪| 人人妻人人爽人人添夜夜欢视频| 国产亚洲最大av| 午夜影院在线不卡| 日韩大片免费观看网站| 老熟女久久久| 国产一区二区三区av在线| 国产老妇伦熟女老妇高清| 免费高清在线观看日韩| 国产精品久久久久久av不卡| 久久久久精品人妻al黑| 亚洲情色 制服丝袜| 亚洲三级黄色毛片| 少妇的丰满在线观看| 久久久久久久大尺度免费视频| 高清av免费在线| 极品少妇高潮喷水抽搐| 日韩一卡2卡3卡4卡2021年| 老汉色∧v一级毛片| 久久久久久久久久久久大奶| 超碰成人久久| 免费观看在线日韩| 午夜日韩欧美国产| av有码第一页| 日本av手机在线免费观看| 午夜福利一区二区在线看| 亚洲成国产人片在线观看| 欧美成人午夜免费资源| 成人国产麻豆网| 婷婷成人精品国产| 青草久久国产| 韩国高清视频一区二区三区| av在线观看视频网站免费| a 毛片基地| 午夜福利在线观看免费完整高清在| 丝袜美足系列| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| 午夜福利,免费看| 日本猛色少妇xxxxx猛交久久| 亚洲少妇的诱惑av| 亚洲av男天堂| 亚洲图色成人| 日韩一卡2卡3卡4卡2021年| 久久久久久久国产电影| 欧美日韩精品成人综合77777| 一级黄片播放器| av网站免费在线观看视频| 国产精品不卡视频一区二区| www.精华液| 国产又爽黄色视频| 日韩中文字幕视频在线看片| 免费少妇av软件| 国产成人免费观看mmmm| 久久精品人人爽人人爽视色| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 久久精品久久精品一区二区三区| 亚洲精品美女久久久久99蜜臀 | 国产97色在线日韩免费| 久久久国产欧美日韩av| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 99热网站在线观看| 久久久国产欧美日韩av| 大码成人一级视频| 精品一区二区三卡| 日韩伦理黄色片| 亚洲欧美中文字幕日韩二区| 精品酒店卫生间| 免费av中文字幕在线| 久久久久久人人人人人| 午夜av观看不卡| 热re99久久精品国产66热6| 亚洲一区二区三区欧美精品| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人 | 赤兔流量卡办理| 精品国产一区二区久久| a 毛片基地| 久久鲁丝午夜福利片| 国产精品三级大全| 国产精品蜜桃在线观看| 老鸭窝网址在线观看| 精品少妇久久久久久888优播| 精品亚洲成a人片在线观看| 国产女主播在线喷水免费视频网站| 国产激情久久老熟女| 亚洲精品国产av蜜桃| 免费观看av网站的网址| 青春草亚洲视频在线观看| 韩国精品一区二区三区| 国产成人精品久久久久久| 欧美少妇被猛烈插入视频| 女人被躁到高潮嗷嗷叫费观| 国产成人精品无人区| 两个人看的免费小视频| 一级爰片在线观看| 街头女战士在线观看网站| 精品国产国语对白av| 国产精品香港三级国产av潘金莲 | 亚洲国产精品国产精品| 精品福利永久在线观看| 中文字幕av电影在线播放| 欧美97在线视频| 亚洲美女黄色视频免费看| 免费日韩欧美在线观看| 一级毛片黄色毛片免费观看视频| 夜夜骑夜夜射夜夜干| 看十八女毛片水多多多| 欧美国产精品一级二级三级| 91成人精品电影| 少妇人妻久久综合中文| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 久久久国产精品麻豆| 在线观看免费高清a一片| 国产精品一区二区在线观看99| 最近2019中文字幕mv第一页| 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 搡女人真爽免费视频火全软件| 韩国av在线不卡| 国产极品天堂在线| 亚洲国产欧美日韩在线播放| 男人操女人黄网站| 狠狠精品人妻久久久久久综合| 欧美bdsm另类| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 亚洲国产毛片av蜜桃av| 黑人猛操日本美女一级片| 午夜免费男女啪啪视频观看| www.熟女人妻精品国产| 久久精品国产亚洲av涩爱| xxxhd国产人妻xxx| 丝袜人妻中文字幕| 成人二区视频| 最新中文字幕久久久久| 涩涩av久久男人的天堂| 国产激情久久老熟女| 国产午夜精品一二区理论片| 日韩成人av中文字幕在线观看| 欧美激情极品国产一区二区三区| 精品国产国语对白av| 中文字幕人妻丝袜制服| 亚洲国产精品成人久久小说| 一区二区三区精品91| 国产精品久久久久久久久免| 极品人妻少妇av视频| 女人高潮潮喷娇喘18禁视频| 777米奇影视久久| 国产av一区二区精品久久| 久久热在线av| 久久精品人人爽人人爽视色| 婷婷色综合www| 亚洲一码二码三码区别大吗| 国产日韩欧美视频二区| 欧美人与性动交α欧美精品济南到 | 国产伦理片在线播放av一区| 一二三四中文在线观看免费高清| 肉色欧美久久久久久久蜜桃| 久久精品夜色国产| 亚洲色图 男人天堂 中文字幕| 成年av动漫网址| 日韩大片免费观看网站| av视频免费观看在线观看| 在线观看美女被高潮喷水网站| 欧美日本中文国产一区发布| 国产在视频线精品| 麻豆av在线久日| 免费看av在线观看网站| 少妇人妻 视频| 涩涩av久久男人的天堂| 国产精品 欧美亚洲| 宅男免费午夜| 久久久久久久大尺度免费视频| 国产麻豆69| www.自偷自拍.com| 国产一区二区三区av在线| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 五月天丁香电影| 亚洲,欧美,日韩| 久久久精品94久久精品| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 一级黄片播放器| 日本-黄色视频高清免费观看| 丝袜美足系列| 中文字幕人妻丝袜一区二区 | 美女xxoo啪啪120秒动态图| 久久这里有精品视频免费| 久久久久视频综合| 国产精品久久久av美女十八| 欧美另类一区| 男女午夜视频在线观看| 视频区图区小说| 久久久久久久大尺度免费视频| 亚洲精品国产av蜜桃| 青草久久国产| 国产成人欧美| 91午夜精品亚洲一区二区三区| 下体分泌物呈黄色| 高清黄色对白视频在线免费看| 视频区图区小说| 欧美日韩亚洲高清精品| 免费播放大片免费观看视频在线观看| 黄网站色视频无遮挡免费观看| av.在线天堂| 欧美人与性动交α欧美软件| 精品国产乱码久久久久久男人| 欧美日韩国产mv在线观看视频| 久久久久久久久久久免费av| 午夜免费鲁丝| 午夜福利一区二区在线看| 欧美日韩亚洲国产一区二区在线观看 | av免费观看日本| 精品亚洲乱码少妇综合久久| 国产精品欧美亚洲77777| 久久鲁丝午夜福利片| 又黄又粗又硬又大视频| 亚洲精品,欧美精品| 精品99又大又爽又粗少妇毛片| 精品一区二区免费观看| av视频免费观看在线观看| 亚洲精品av麻豆狂野| 永久网站在线| 成人二区视频| 国产一区亚洲一区在线观看| 人人妻人人爽人人添夜夜欢视频| 国语对白做爰xxxⅹ性视频网站| 母亲3免费完整高清在线观看 | 亚洲成人av在线免费| 欧美日韩av久久| 哪个播放器可以免费观看大片| 精品人妻一区二区三区麻豆| 欧美精品av麻豆av| 久久国产精品大桥未久av| 国产黄色视频一区二区在线观看| av福利片在线| 国产淫语在线视频| 免费观看无遮挡的男女| 男的添女的下面高潮视频| 久热久热在线精品观看| 中文精品一卡2卡3卡4更新| 在线精品无人区一区二区三| 最近手机中文字幕大全| 国产精品 国内视频| 久久久久久久国产电影| 午夜久久久在线观看| 久久久久精品人妻al黑| 最近手机中文字幕大全| 欧美精品一区二区免费开放| 久久久久视频综合| 久久精品aⅴ一区二区三区四区 | 老熟女久久久| 色吧在线观看| 男人操女人黄网站| 在线观看一区二区三区激情| 国产一区二区 视频在线| 亚洲人成77777在线视频| 在线免费观看不下载黄p国产| 又大又黄又爽视频免费| 精品人妻在线不人妻| 高清不卡的av网站| 国产精品 国内视频| 熟妇人妻不卡中文字幕| 激情五月婷婷亚洲| 欧美最新免费一区二区三区| 不卡av一区二区三区| 亚洲天堂av无毛| 精品一区二区三卡| 天美传媒精品一区二区| 制服丝袜香蕉在线| 黄色 视频免费看| 中文字幕色久视频| 午夜福利,免费看| 春色校园在线视频观看| 亚洲精品日韩在线中文字幕| 97在线人人人人妻| 成人漫画全彩无遮挡| 国产熟女欧美一区二区| 亚洲av综合色区一区| 中文精品一卡2卡3卡4更新| 国产在线视频一区二区| a级毛片黄视频| 国产极品粉嫩免费观看在线| 久久这里有精品视频免费| 嫩草影院入口| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 日本av手机在线免费观看| 成人毛片60女人毛片免费| 天天躁夜夜躁狠狠躁躁| 国产片内射在线| 国产有黄有色有爽视频| 国产成人欧美| 国产激情久久老熟女| 国产精品一区二区在线观看99| 日韩一区二区三区影片| 女人精品久久久久毛片| 久久精品国产亚洲av涩爱| 曰老女人黄片| 少妇人妻久久综合中文| 免费在线观看完整版高清| 亚洲av免费高清在线观看| 美女主播在线视频| 成人午夜精彩视频在线观看| 精品久久久精品久久久| 一区在线观看完整版| 一区二区日韩欧美中文字幕| av国产久精品久网站免费入址| 国产精品成人在线| 亚洲第一av免费看| 久久国产亚洲av麻豆专区| 最新的欧美精品一区二区| 亚洲国产毛片av蜜桃av| 黄色毛片三级朝国网站| 亚洲av国产av综合av卡| 一级爰片在线观看| 在线观看免费高清a一片| 最新的欧美精品一区二区| 伊人久久国产一区二区| 97在线视频观看| 国产成人精品在线电影| 亚洲欧美中文字幕日韩二区| 日韩伦理黄色片| 午夜免费观看性视频| 卡戴珊不雅视频在线播放| 国产精品 国内视频| 日韩制服丝袜自拍偷拍| 欧美另类一区| 夫妻性生交免费视频一级片| 亚洲精品第二区| 性少妇av在线| 另类亚洲欧美激情| 99久久综合免费| 婷婷色麻豆天堂久久| 老熟女久久久| 久久久久人妻精品一区果冻| 熟女电影av网| 久久久久久免费高清国产稀缺|