• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    2017-01-19 06:08:56CHENTingtingCHENZhichunCHENZhengzheng
    數(shù)學(xué)雜志 2017年1期
    關(guān)鍵詞:安徽大學(xué)初值毛細(xì)

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system when the viscosity coefficient and capillarity coefficient are general smooth functions of the density.By using the elementary energy method and Kanel’s technique[25],we obtain the global existence and time-asymptotic behavior of smooth non-vacuum solutions with large initial data,which improves the previous ones in the literature.

    compressible Navier-Stokes-Korteweg system;global existence;time-asymptotic behavior;large initial data

    1 Introduction

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system with density-dependent viscosity coefficient and capillarity coefficient in the Eulerian coordinates

    with the initial data

    here t and x represent the time variable and the spatial variable,respectively,K is the Korteweg tensor given by

    The unknown functions ρ>0,u,P=P(ρ)denote the density,the velocity,and the pressure of the fluids respectively.μ=μ(ρ)>0 and κ=κ(ρ)>0 are the viscosity coefficient and the capillarity coefficient,respectively,and>0 is a given constant.Throughout this paper, we assume that

    System(1.1)can be used to model the motions of compressible isothermal viscous fluids with internal capillarity,see[1–3]for its derivations.Notice that when κ=0,system(1.1) is reduced to the compressible Navier-Stokes system.

    There were extensive studies on the mathematical aspects on the compressible Navier-Stokes-Korteweg system.For small initial data,we refer to[8,9,13–15,19–23]for the global existence and large time behavior of smooth solutions in Sobolev space,[5,7,11]for the global existence and uniqueness of strong solutions in Besov space,and[5,6]for the global existence of weak solutions near constant states in the whole space R2.

    For large initial data,Kotschote[12],Hattori and Li[10]proved the local existence of strong solutions.Bresch et al.[4]investigated the global existence of weak solutions for an isothermal fluid with the viscosity coefficientsμ(ρ)=ρ,λ(ρ)=0 and the capillarity coefficient κ(ρ)≡in a periodic domain Td(d=2,3),where>0 are positive constants. Later,such a result was improved by Haspot[6]to some more general density-dependent viscosity coefficients.Tsyganov[16]studied the global existence and time-asymptotic convergence of weak solutions for an isothermal compressible Navier-Stokes-Korteweg system with the viscosity coefficientμ(ρ)≡1 and the capillarity coefficient κ(ρ)=ρ-5on the interval[0,1].Charve and Haspot[17]showed the global existence of strong solutions to system (1.1)withμ(ρ)=ερ and κ(ρ)=ε2ρ-1.Recently,Germain and LeFloch[18]studied the global existence of weak solutions to the Cauchy problem(1.1)–(1.2)with general densitydependent viscosity and capillarity coefficients.Both the vacuum and non-vacuum weak solutions were obtained in[18].Moreover,Chen et al.[23,24]discussed the global existence and large time behavior of smooth and non-vacuum solutions to the Cauchy problem of system(1.1)with the viscosity and capillarity coefficients being some power functions of the density.

    However,few results were obtained for the global smooth,large solutions of the isothermal compressible Navier-Stokes-Korteweg system with general density-dependent viscosity coefficient and capillarity coefficient up to now.This paper is devoted to this problem,and we are concerned with the global existence and large time behavior of smooth,non-vacuum solutions to the Cauchy problems(1.1)–(1.2)when the the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of the density ρ.

    The main result of this paper is stated as follows.

    Theorem 1.1Suppose the following conditions hold:

    (i)The initial data(ρ0(x)-,u0(x))∈H4(R)×H3(R),and there exist two positive constants m0,m1such that m0≤ρ0(x)≤m1for all x∈R.

    (ii)The smooth functionsμ(ρ)and κ(ρ)satisfyμ(ρ),κ(ρ)>0 for ρ>0,and one of the following two conditions hold:

    and the time-asymptotic behavior

    here C1is a positive constant depending only on m0,m1,and C2is a positive constant depending only on m0,m1,

    When the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by

    where α,β∈R are some constants,condition(ii)of Theorem 1.1 corresponds to

    while condition(iii)of Theorem 1.1 is equivalent to

    or

    Thus from Theorem 1.1,we have the following corollary.

    Corollary 1.1Let condition(i)of Theorem 1.1 holds.Suppose that the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by(1.7)and the constants α,β satisfy one of the following conditions:

    then the same conclusions of Theorem 1.1 hold.

    Remark 1.1Some remarks on Theorem 1.1 and Corollary 1.1 are given as follows:

    (1)Conditions(ii)and(iii)of Theorem 1.1 are used to deduce the positive lower and upper bounds of the density ρ(t,x),see Lemmas 2.3–2.5 for details.

    (2)In Theorem 1.1,the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of ρ satisfying conditions(ii)and(iii)of Theorem 1.1,which are more general than those in[23,24],where only some power like density-dependent viscosity and capillarity coefficients are studied.

    On the other hand,Germain and LeFloch[18]also discussed the global existence of weak solutions away from vacuum for problems(1.1)–(1.2)withμ(ρ)=ραand κ(ρ)=ρβunder the condition that

    or

    which means that 0≤α<1.From condition(A)of Corollary 1.1,we see that α∈thus Corollary 1.1 also improves the results of[18]to the case α∈Moreover,case (B)of Corollary 1.1 is completely new compared to the results in[18,23,24].Thus in these sense,our main result Theorem 1.1 can be viewed as an extension of the works[18,23,24].

    Now we make some comments on the analysis of this paper.The proof of Theorem 1.1 is motivated by the previous works[18,23,24].When the viscosity coefficientμ(ρ) and the capillarity coefficient κ(ρ)are some power functions of the density,the authors in [23,24]studied the global existence and large time behavior of smooth solutions away from vacuum to the Cauchy problem of system(1.1)with large initial data in the Lagrangian coordinates.However,for the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ) being some general smooth functions of the density,it is much more easier for us to study such a problem in the Eulerian coordinates rather than the Lagrangian coordinates.To prove Theorem 1.1,we mainly use the method of Kanel[25]and the energy estimates.The key step is to derive the positive lower and upper bounds for the density ρ(t,x).First,due to effect of the Korteweg tensor,an estimate ofappears in the basic energy estimate(see Lemma 2.1).Based on this and a new inequality for the renormalized internal energy(see Lemma 2.2),the lower and upper bounds of ρ(t,x)for cases(ii)(a)of Theorem 1.1 can be derived easily by applying Kanel’s method[25](see Lemma 2.3).Second,we perform an uniform-in-time estimate onunder condition(iii)of Theorem 1.1(see Lemma 2.4).We remark that Lemma 2.4 is proved by using the approach of Kanel[25],rather than introducing the effective velocity as[4,17,18].Then by employing Kanel’s method[25]againand Lemmas 2.1,2.2 and 2.4,the lower and upper bounds of ρ(t,x)for the cases(ii)(b)of Theorem 1.1 follows immediately(see Lemma 2.5).Having obtained the lower and upper bounds on ρ(t,x),the higher order energy estimates of solutions to the Cauchy problem (1.1)–(1.2)can be deduced by using the lower order estimates and Gronwall’s inequality, and then Theorem 1.1 follows by the standard continuation argument.In the next section, we will give the proof of Theorem 1.1.

    NotationsThroughout this paper,C denotes some generic constant which may vary in different estimates.If the dependence needs to be explicitly pointed out,the notation C(·,···,·)or Ci(·,···,·)(i∈N)is used.f′(ρ)denotes the derivative of the function f(ρ) with respect to ρ.For function spaces,Lp(R)(1≤p≤+∞)is the standard Lebesgue space with the norm‖·‖Lp,and Hl(R)stands for the usual l-th order Sobolev space with its norm

    2 Proof of Theorem 1.1

    This section is devoted to proving Theorem 1.1.To do this,we seek the solutions of the Cauchy problems(1.1)–(1.2)in the following set of functions

    where M≥m>0 and T>0 are some positive constants.

    Under the assumptions of Theorem 1.1,we have the following local existence result.

    Proposition 2.1(Local existence)Under the assumptions of Theorem 1.1,there exists a sufficiently small positive constant t1depending only on m0,m1,such that the Cauchy problems(1.1)–(1.2)admits a unique smooth solution(ρ,u)(t,x)∈

    where b>1 is a positive constant depending only on m0,m1.

    The proof of Proposition 2.1 can be done by using the dual argument and iteration technique,which is similar to that of Theorem 1.1 in[10]and thus omitted here for brevity. Suppose that the local solution(ρ,u)(t,x)obtained in Proposition 2.1 has been extended to the time step t=T≥t1for some positive constant T>0.To prove Theorem 1.1,one needs only to show the following a priori estimates.

    Proposition 2.2(A priori estimates)Under the assumptions of Theorem 1.1,suppose that(ρ,u)(t,x)∈X(0,T;M0,M1)is a solution of the Cauchy problem(1.1)–(1.2)for somepositive constants T and M0,M1>0.Then there exist two positive constants C1and C2which are independent of T,M0,M1such that the following estimates hold:

    Proposition 2.2 can be obtained by a series of lemmas below.We first give the following key lemma.

    Lemma 2.1(Basic energy estimates)Under the assumptions of Proposition 2.2,it holds that

    for all t∈[0,T],where the functionis defined by

    ProofIn view of the continuity equation(1.1)1,we have

    On the other hand,by using(1.1)1again,the movement equation(1.1)2can be rewritten as

    Substituting(2.6)into(2.5),we get

    Here and hereafter,{···}xdenotes the terms which will disappear after integrating with respect to x.

    Moreover,it follows from(1.1)1that

    Combining(2.7)and(2.8),and integrating the resultant equation with respect to t and x over[0,t]×R,we can get(2.3).This completes the proof of Lemma 2.1.

    In order to apply Kanel’s method[25]to show the lower and upper bound of the density ρ(t,x),we need to establish the following lemma.

    Lemma 2.2There exists a uniform positive constant c0such that

    ProofUsing the L’Hospital rule,we obtain

    Consequently,there exist a sufficiently small constant δ and a large constantsuch that

    and c0=minwe have(2.9)holds.This completes the proof of Lemma 2.2.

    Based on Lemmas 2.1–2.2,we now show the lower and upper bounds of ρ(t,x)by using Kanel’s method[25].

    Lemma 2.3(Lower and upper bounds of ρ(t,x)for the cases(ii)(a)of Theorem 1.1)Under the assumptions of Proposition 2.2,if the capillarity coefficient κ(ρ)satisfies the condition(ii)(a)of Theorem 1.1,then there exists a positive constant C3depending only

    for all(t,x)∈[0,T]×R.

    ProofLet

    then under the condition(ii)(a)of Theorem 1.1,we have

    On the other hand,we deduce from Lemmas 2.1–2.2 that

    (2.13)thus follows from(2.14)and(2.15)immediately.This completes the proof of Lemma 2.3.

    Next,we give the estimate on

    Lemma 2.4Let condition(i)of Theorem 1.1 holds and

    Then if f(ρ)≤0,there exists a positive constant C4depending only on m0,m1and‖(ρ0-

    ProofFirst,by the continuity equation(1.1)1,we have

    where we have used the fact that

    Putting(2.17)into(2.6),and multiplying the resultant equation by

    A direct calculation yields that

    Combining(2.19)and(2.20),and integrating the resultant equation in t and x over[0,t]×R, we have

    where we have used the fact that

    By employing integrations by parts,we obtain

    Inserting(2.22)–(2.23)into(2.21),and using(2.3),we arrive at

    (2.24)together with the assumption that f(ρ)≤0 implies(2.16)immediately.This completes the proof of Lemma 2.4.

    Lemma 2.5Let conditions(i)and(ii)(b)of Theorem 1.1 hold and f(ρ)≤0,then there exists a positive constant C5depending only on m0,m1andthat

    for all(t,x)∈[0,T]×R.

    ProofSet

    then it follows from assumption(ii)(b)of Theorem 1.1 that

    On the other hand,Lemmas 2.1 and 2.4 imply that

    From(2.26)and(2.27),we have(2.25)at once.This completes the proof Lemma 2.5.

    As a consequence of Lemmas 2.3–2.5,we have

    Corollary 2.1Under the assumptions of Lemmas 2.3–2.5,it holds that for 0≤t≤T,

    where C6>0 is a constant depending only on m0,m1and

    The next lemma gives an estimate on

    Lemma 2.6There exists a positive constant C7depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofWe derive from Lemmas 2.3–2.5 that

    On the other hand,Lemmas 2.3–2.5 also imply that

    From the Cauchy equality and(2.30),we infer that

    Then(2.29)follows from(2.31)and(2.32)immediately.This completes the proof of Lemma 2.6.

    For the estimate on‖ux(t)‖2,we have

    Lemma 2.7There exists a positive constant C8depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofMultiplying(2.6)by-uxx,and using the continuity equation(1.1)1,we have

    Integrating(2.34)in t and x over[0,t]×R gives

    where

    It follows from the Cauchy inequality,the Sobolev inequality,the Young inequality,

    Lemmas 2.3 and 2.5,and Corollary 2.1 that

    Putting(2.36)–(2.37)into(2.35),and using Growwall’s equality,we obtain(2.33).This completes the proof of Lemma 2.7.

    Finally,we estimate the term

    Lemma 2.8There exists a positive constant C9depending only on m0,m1,and‖u0‖1such that for t∈[0,T],

    ProofDifferentiating(1.1)2once with respect to x,then multiplying the resultant equation by ρxx,and using equation(1.1)1,we have

    Integrating(2.39)with respect to t and x over[0,t]×R,using the Cauchy inequality,the Sobolev inequality,Lemmas 2.3–2.7 and Corollary 2.1,we can get Lemma 2.8,the proof is similar to Lemma 2.7 and thus omitted here.This completes the proof of Lemma 2.8.

    It follows from Corollary 2.1,and Lemmas 2.6–2.8 that there exists a positive constant C10depending only on m0,m1,and‖u0‖1such that for 0≤t≤T,

    Similarly,we can also obtain

    where C11is a positive constant depending only on m0,m1,

    Proof of Proposition 2.2Proposition 2.2 follows from(2.40)and(2.41)immediately.

    Proof of Theorem 1.1By Propositions 2.1–2.2 and the standard continuity argument,we can extend the local-in-time smooth solution to be a global one(i.e.,T=+∞). Thus(1.4)and(1.5)follows from(2.1)and(2.2),respectively.Moreover,estimate(2.2)and system(1.1)imply that

    which implies that

    Furthermore,we deduce from(2.2),(2.43)and the Sobolev inequality that

    From(2.43)and(2.44),we have(1.6)at once.This completes the proof of Theorem 1.1.

    [1]Van der Waals J D.Thermodynamische theorie der Kapillaritt unter Voraussetzung stetiger Dichtenderung[J].Z.Phys.Chem.,1894,13:657–725.

    [2]Korteweg D J.Sur la forme que prennent lesquations des mouvement des fluids si l’on tient comple des forces capillaries par des variations de densit[J].Arch.Neerl.Sci.Exactes Nat.Ser.II,1901,6: 1–24.

    [3]Dunn J E,Serrin J.On the thermodynamics of interstital working[J].Arch.Rat.Mech.Anal.,1985, 88:95–133.

    [4]Bresch D,Desjardins B,Lin C K.On some compressible fluid models:Korteweg,lubrication and shallow water systems[J].Comm.Part.Diff.Equa.,2003,28:843–868.

    [5]Danchin R,Desjardins B.Existence of solutions for compressible fluid models of Korteweg type[J]. Ann.Inst.Henri PoincarAnal.Non.Linaire,2001,18:97–133.

    [6]Haspot B.Existence of global weak solution for compressible fluid models of Korteweg type[J].J. Math.Fluid Mech.,2011,13:223–249.

    [7]Haspot B.Existence of strong solutions for nonisothermal Korteweg system[J].Annales Math.Blaise Pascal,2009,16:431–481.

    [8]Hattori H,Li D.Golobal solutions of a high dimensional system for Korteweg materials[J].J.Math. Anal.Appl.,1996,198:84–97.

    [9]Hattori H,Li D.The existence of global solutions to a fluid dynamic model for materials for Korteweg type[J].J.Part.Diff.Equ.,1996,9:323–342.

    [10]Hattori H,Li D.Solutions for two dimensional system for materials of Korteweg type[J].SIAM J. Math.Anal.,1994,25:85–98.

    [11]Kotschote M.Existence and time-asymptotics of global strong solutions to dynamic Korteweg models[J].Indiana Univ.Math.J.,2014,63(1):21–51.

    [12]Kotschote M.Strong solutions for a compressible fluid model of Korteweg type[J].Ann.Inst.Henri PoincarAnal.Non.Linaire,2008,25:679–696.

    [13]Wang Y J,Tan Z.Optimal decay rates for the compressible fluid models of Korteweg type[J].J. Math.Anal.Appl.,2011,379:256–271.

    [14]Li Y P.Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force[J].J.Math.Anal.Appl.,2012,388:1218–1232.

    [15]Wang W J,Wang W K.Decay rate of the compressible Navier-Stokes-Korteweg equations with potential force[J].Discrete Contin.Dyn.Syst.,2015,35(1):513–536.

    [16]Tsyganov E.Global existence and asymptotic convergence of weak solutions for the one-dimensional Navier-Stokes equations with capillarity and nonmonotonic pressure[J].J.Diff.Equ.,2008,245: 3936–3955.

    [17]Charve F,Haspot B.Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system[J].SIMA J.Math.Anal.,2014,45(2):469–494.

    [18]Germain P,LeFloch P G.Finite energy method for compressible fluids:the Navier-Stokes-Korteweg model[J].Comm.Pure Appl.Math.,2016,69(1):3–61.

    [19]Chen Z Z.Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2012,394:438–448.

    [20]Chen Z Z,Xiao Q H.Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type[J].Math.Meth.Appl.Sci.,2013,36(17):2265–2279.

    [21]Chen Z Z,He L,Zhao H J.Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2015,422:1213–1234.

    [22]Chen Z Z,Zhao H J.Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system[J].J.Math.Pur.Appl.,2014,101:330–371.

    [23]Chen Z Z,Chai X J,Dong B Q,Zhao H J.Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[J].J.Diff.Equ.,2015,259:4376–4411.

    [24]Chen Z Z.Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[J].Nonl.Anal.,2016,144:139–156.

    [25]Kanel’Y.On a model system of equations of one-dimensional gas motion(in Russian)[J].Diff. Uravn.,1968,4:374–380.

    一維可壓縮Navier-Stokes-Korteweg方程組的大初值整體光滑解

    陳婷婷,陳志春,陳正爭

    (安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥230601)

    本文研究了當(dāng)粘性系數(shù)和毛細(xì)系數(shù)是密度函數(shù)的一般光滑函數(shù)時,一維等溫的可壓縮Navier-Stokes-Korteweg方程的Cauchy問題.利用基本能量方法和Kanel的技巧,得到了大初值、非真空光滑解的整體存在性與時間漸近行為.本文結(jié)果推廣了已有文獻(xiàn)中的結(jié)論.

    可壓縮Navier-Stokes-Korteweg方程;整體存在性;時間漸近行為;大初值

    O175.29

    tion:35Q35;35L65;35B40

    A

    0255-7797(2017)01-0091-16

    ?Received date:2016-04-09Accepted date:2016-04-20

    Foundation item:Supported by National Natural Science Foundation of China(11426031)and Undergraduate Scientific Research Training Program of Anhui University(ZLTS2015141).

    Biography:Chen Tingting(1995–),female,born at Tongling,Anhui,undergraduate,major in partial differential equation.

    Chen Zhengzheng.

    猜你喜歡
    安徽大學(xué)初值毛細(xì)
    “毛細(xì)”政務(wù)號關(guān)停背后
    廉政瞭望(2024年5期)2024-05-26 13:21:07
    具非定常數(shù)初值的全變差方程解的漸近性
    多孔建筑材料毛細(xì)吸水系數(shù)連續(xù)測量的方法
    能源工程(2020年6期)2021-01-26 00:55:16
    一種適用于平動點(diǎn)周期軌道初值計算的簡化路徑搜索修正法
    讀《安徽大學(xué)藏戰(zhàn)國竹簡》(一)札記
    三維擬線性波方程的小初值光滑解
    秦曉玥作品
    出現(xiàn)憋喘 可能是毛細(xì)支氣管炎!
    媽媽寶寶(2017年3期)2017-02-21 01:22:16
    L'examen dans l'antiquitéet de nos jours
    高滲鹽水霧化吸入治療毛細(xì)支氣管炎的療效觀察
    黄色配什么色好看| 一区福利在线观看| 久久久久久国产a免费观看| 丰满乱子伦码专区| 久99久视频精品免费| 久久久久精品国产欧美久久久| 99久久精品一区二区三区| 婷婷亚洲欧美| 国产野战对白在线观看| 免费观看人在逋| 三级毛片av免费| 脱女人内裤的视频| 亚洲 国产 在线| 久久精品影院6| 啪啪无遮挡十八禁网站| 日本三级黄在线观看| 亚洲,欧美,日韩| 午夜福利在线在线| 综合色av麻豆| 两人在一起打扑克的视频| 精品一区二区三区av网在线观看| 国产亚洲精品久久久久久毛片| 99国产极品粉嫩在线观看| 亚洲av.av天堂| 深夜精品福利| 欧美黑人巨大hd| 一个人观看的视频www高清免费观看| 性欧美人与动物交配| 免费在线观看日本一区| 亚洲人成网站在线播放欧美日韩| 五月伊人婷婷丁香| 18美女黄网站色大片免费观看| 男人狂女人下面高潮的视频| 欧美激情久久久久久爽电影| 3wmmmm亚洲av在线观看| 嫩草影院新地址| 桃色一区二区三区在线观看| 韩国av一区二区三区四区| 两个人的视频大全免费| 亚洲无线在线观看| 中文字幕精品亚洲无线码一区| av黄色大香蕉| 三级国产精品欧美在线观看| 国产三级黄色录像| 成年免费大片在线观看| 特级一级黄色大片| 亚洲片人在线观看| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 国产毛片a区久久久久| 成人三级黄色视频| 岛国在线免费视频观看| 亚洲av不卡在线观看| 脱女人内裤的视频| 啦啦啦韩国在线观看视频| 国产不卡一卡二| 久久精品国产亚洲av香蕉五月| 宅男免费午夜| 高清日韩中文字幕在线| 国内毛片毛片毛片毛片毛片| 美女cb高潮喷水在线观看| 午夜福利成人在线免费观看| www.熟女人妻精品国产| 亚洲国产精品合色在线| 国产伦在线观看视频一区| 日韩精品中文字幕看吧| 亚洲va日本ⅴa欧美va伊人久久| 全区人妻精品视频| 老熟妇仑乱视频hdxx| 免费看a级黄色片| 免费av毛片视频| 久久精品综合一区二区三区| 日韩av在线大香蕉| 亚洲欧美清纯卡通| 亚洲人成伊人成综合网2020| 亚洲欧美精品综合久久99| 国产v大片淫在线免费观看| 亚洲美女搞黄在线观看 | 亚洲一区二区三区色噜噜| 亚洲中文字幕一区二区三区有码在线看| 小蜜桃在线观看免费完整版高清| 国产av一区在线观看免费| 成人一区二区视频在线观看| 亚洲经典国产精华液单 | 在现免费观看毛片| 18禁黄网站禁片午夜丰满| 亚洲成人久久爱视频| 欧美xxxx性猛交bbbb| 97超级碰碰碰精品色视频在线观看| 成年女人毛片免费观看观看9| 精品人妻一区二区三区麻豆 | 国产精品久久久久久精品电影| 欧美性猛交黑人性爽| 在线观看美女被高潮喷水网站 | 真实男女啪啪啪动态图| 国产熟女xx| 99久久九九国产精品国产免费| 亚洲专区中文字幕在线| 午夜a级毛片| www.999成人在线观看| 一级作爱视频免费观看| 精品一区二区三区av网在线观看| 亚洲电影在线观看av| 国产精品一及| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 久久久精品欧美日韩精品| 亚洲人与动物交配视频| 一本综合久久免费| 香蕉av资源在线| 精品人妻偷拍中文字幕| 黄色视频,在线免费观看| 性欧美人与动物交配| 一个人看视频在线观看www免费| av天堂在线播放| 免费看美女性在线毛片视频| 老司机福利观看| 亚洲欧美日韩东京热| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| 我的老师免费观看完整版| 亚洲无线在线观看| 欧美另类亚洲清纯唯美| 免费在线观看影片大全网站| 一夜夜www| 午夜福利成人在线免费观看| 成年女人看的毛片在线观看| 欧美日韩乱码在线| 高清在线国产一区| av天堂在线播放| 国产又黄又爽又无遮挡在线| 黄色一级大片看看| 99热只有精品国产| 精品熟女少妇八av免费久了| 久久久久国产精品人妻aⅴ院| avwww免费| 99riav亚洲国产免费| 精品国内亚洲2022精品成人| av天堂在线播放| 久久6这里有精品| 乱码一卡2卡4卡精品| 老熟妇仑乱视频hdxx| 一级毛片久久久久久久久女| 真实男女啪啪啪动态图| 大型黄色视频在线免费观看| 免费人成视频x8x8入口观看| www.熟女人妻精品国产| 自拍偷自拍亚洲精品老妇| 我要搜黄色片| 成年免费大片在线观看| 精品久久久久久成人av| 国产精品一区二区三区四区久久| 亚洲av一区综合| 真人一进一出gif抽搐免费| 特大巨黑吊av在线直播| 窝窝影院91人妻| 国产精品久久久久久久电影| 精品久久久久久久久亚洲 | 宅男免费午夜| 69av精品久久久久久| 热99re8久久精品国产| 久久久久久久亚洲中文字幕 | 天天躁日日操中文字幕| 成年免费大片在线观看| 国产 一区 欧美 日韩| 国产乱人伦免费视频| 午夜福利18| 有码 亚洲区| 青草久久国产| 精品久久久久久久久久免费视频| h日本视频在线播放| 久久精品影院6| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| 香蕉av资源在线| 久久九九热精品免费| av在线老鸭窝| 午夜免费男女啪啪视频观看 | 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片免费观看直播| 波多野结衣高清无吗| 亚洲精品日韩av片在线观看| 色哟哟·www| 久久久色成人| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 一区二区三区高清视频在线| 精品国产三级普通话版| 中文字幕熟女人妻在线| 麻豆成人午夜福利视频| 国产在视频线在精品| h日本视频在线播放| 中文字幕人成人乱码亚洲影| 久久久久久大精品| 99在线视频只有这里精品首页| netflix在线观看网站| 黄色女人牲交| 97超级碰碰碰精品色视频在线观看| 特级一级黄色大片| 无遮挡黄片免费观看| 大型黄色视频在线免费观看| 国产伦在线观看视频一区| 午夜视频国产福利| 亚洲第一区二区三区不卡| 97超视频在线观看视频| 桃红色精品国产亚洲av| 精品人妻一区二区三区麻豆 | 欧美午夜高清在线| 男插女下体视频免费在线播放| 欧美中文日本在线观看视频| 国产久久久一区二区三区| 看免费av毛片| 免费无遮挡裸体视频| 亚洲国产高清在线一区二区三| 国产欧美日韩一区二区三| av在线天堂中文字幕| 欧美xxxx黑人xx丫x性爽| 97超级碰碰碰精品色视频在线观看| 看免费av毛片| 日本与韩国留学比较| 亚洲黑人精品在线| 尤物成人国产欧美一区二区三区| 亚洲专区国产一区二区| 最新中文字幕久久久久| 一夜夜www| 99久久精品国产亚洲精品| 午夜视频国产福利| 国产三级中文精品| 国产高清视频在线观看网站| 国产伦人伦偷精品视频| 夜夜看夜夜爽夜夜摸| 欧美一区二区精品小视频在线| 我的女老师完整版在线观看| 毛片女人毛片| 欧美最黄视频在线播放免费| 亚洲第一区二区三区不卡| 久久精品综合一区二区三区| 狂野欧美白嫩少妇大欣赏| 中文字幕高清在线视频| 国产乱人视频| 99riav亚洲国产免费| 国产免费男女视频| 国产精品日韩av在线免费观看| 亚洲第一欧美日韩一区二区三区| 午夜福利高清视频| 一边摸一边抽搐一进一小说| 好看av亚洲va欧美ⅴa在| 我的女老师完整版在线观看| 欧美另类亚洲清纯唯美| 久久国产乱子免费精品| 夜夜夜夜夜久久久久| 国内精品美女久久久久久| 亚洲黑人精品在线| 天天一区二区日本电影三级| 欧美性猛交黑人性爽| 亚洲美女搞黄在线观看 | 亚洲成人免费电影在线观看| 欧美黑人巨大hd| 中文字幕av在线有码专区| 亚洲av.av天堂| 如何舔出高潮| 午夜免费成人在线视频| 久99久视频精品免费| 亚洲欧美日韩东京热| 亚洲av日韩精品久久久久久密| 午夜久久久久精精品| 久久久久亚洲av毛片大全| 午夜福利在线观看吧| 搡老熟女国产l中国老女人| 亚洲熟妇中文字幕五十中出| 99久久成人亚洲精品观看| 自拍偷自拍亚洲精品老妇| 麻豆成人午夜福利视频| 在线a可以看的网站| 天美传媒精品一区二区| 国产熟女xx| 日本精品一区二区三区蜜桃| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av| 久久6这里有精品| 91在线观看av| 精品久久国产蜜桃| 成人一区二区视频在线观看| 丰满人妻一区二区三区视频av| 亚洲欧美精品综合久久99| 久久热精品热| 可以在线观看的亚洲视频| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 99精品在免费线老司机午夜| 欧美午夜高清在线| 久久久久精品国产欧美久久久| 美女免费视频网站| 老司机午夜十八禁免费视频| 日韩免费av在线播放| 午夜免费激情av| 免费看光身美女| or卡值多少钱| 国产av麻豆久久久久久久| 美女黄网站色视频| 久久国产精品人妻蜜桃| 免费电影在线观看免费观看| 日韩欧美在线二视频| 国产野战对白在线观看| 国产69精品久久久久777片| 日本免费一区二区三区高清不卡| 最后的刺客免费高清国语| 精品福利观看| 久久6这里有精品| 国产成+人综合+亚洲专区| a级毛片免费高清观看在线播放| 高潮久久久久久久久久久不卡| 久久久久久久久大av| 亚洲avbb在线观看| 少妇丰满av| 性欧美人与动物交配| 日本成人三级电影网站| 夜夜爽天天搞| 国产精品98久久久久久宅男小说| 99久久无色码亚洲精品果冻| 国产伦精品一区二区三区四那| 97超视频在线观看视频| 国产av一区在线观看免费| 18禁黄网站禁片免费观看直播| 三级毛片av免费| 日韩欧美 国产精品| 午夜福利在线观看吧| 国产精品国产高清国产av| 18禁在线播放成人免费| 搡老熟女国产l中国老女人| 九九热线精品视视频播放| 99精品在免费线老司机午夜| 女生性感内裤真人,穿戴方法视频| 久久久久精品国产欧美久久久| av欧美777| 色综合欧美亚洲国产小说| 深夜a级毛片| 成年免费大片在线观看| 精品人妻1区二区| 国产精品美女特级片免费视频播放器| 又粗又爽又猛毛片免费看| 能在线免费观看的黄片| 97碰自拍视频| 非洲黑人性xxxx精品又粗又长| 我的老师免费观看完整版| 一本一本综合久久| 欧美日韩黄片免| 亚洲欧美清纯卡通| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 在线观看免费视频日本深夜| 97热精品久久久久久| 变态另类成人亚洲欧美熟女| 久久午夜福利片| 三级男女做爰猛烈吃奶摸视频| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | 久久久久国产精品人妻aⅴ院| 国产精品精品国产色婷婷| 欧美潮喷喷水| 九色成人免费人妻av| 欧美最黄视频在线播放免费| 国产av不卡久久| 国产色爽女视频免费观看| 免费电影在线观看免费观看| 国产aⅴ精品一区二区三区波| 九九久久精品国产亚洲av麻豆| 国产成人啪精品午夜网站| 热99在线观看视频| 午夜久久久久精精品| 国产伦精品一区二区三区视频9| 色综合欧美亚洲国产小说| 久久精品国产自在天天线| 99热这里只有精品一区| 亚洲激情在线av| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 精品无人区乱码1区二区| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 噜噜噜噜噜久久久久久91| 乱人视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久精品久久久久久噜噜老黄 | 丝袜美腿在线中文| 国产亚洲精品综合一区在线观看| 亚洲熟妇中文字幕五十中出| 国产视频内射| 动漫黄色视频在线观看| 午夜福利在线观看吧| 亚洲中文日韩欧美视频| 宅男免费午夜| 欧美高清性xxxxhd video| 亚洲精品成人久久久久久| x7x7x7水蜜桃| 乱人视频在线观看| 中文在线观看免费www的网站| 深夜a级毛片| 在线免费观看不下载黄p国产 | av国产免费在线观看| 国内精品久久久久久久电影| 免费无遮挡裸体视频| 亚洲精品粉嫩美女一区| av黄色大香蕉| 少妇人妻一区二区三区视频| 色播亚洲综合网| 乱码一卡2卡4卡精品| 亚洲成人免费电影在线观看| 国产一区二区三区在线臀色熟女| 国产又黄又爽又无遮挡在线| 日韩欧美国产一区二区入口| www.www免费av| a级一级毛片免费在线观看| 精品人妻视频免费看| 亚洲国产色片| 白带黄色成豆腐渣| 亚州av有码| 欧美另类亚洲清纯唯美| 国产免费一级a男人的天堂| 夜夜爽天天搞| 可以在线观看毛片的网站| 国内精品美女久久久久久| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 欧美日本视频| 精品乱码久久久久久99久播| 中文字幕免费在线视频6| 午夜免费成人在线视频| 久久久久久久精品吃奶| 国产色婷婷99| 最新中文字幕久久久久| 麻豆国产av国片精品| 成人高潮视频无遮挡免费网站| 亚洲av.av天堂| 特大巨黑吊av在线直播| 91久久精品电影网| 欧美成人a在线观看| 91狼人影院| 国产黄a三级三级三级人| 久久伊人香网站| 亚洲精品在线观看二区| 午夜精品在线福利| 亚洲成av人片在线播放无| 亚洲自偷自拍三级| 久久99热6这里只有精品| 麻豆久久精品国产亚洲av| 中亚洲国语对白在线视频| 在线观看舔阴道视频| 亚州av有码| 精品久久久久久久久久久久久| 91av网一区二区| 国内精品久久久久久久电影| 亚洲经典国产精华液单 | 欧美日韩黄片免| 国产欧美日韩一区二区精品| 自拍偷自拍亚洲精品老妇| 校园春色视频在线观看| 国产伦精品一区二区三区视频9| 久久久久久久亚洲中文字幕 | 伦理电影大哥的女人| 男插女下体视频免费在线播放| ponron亚洲| 亚洲欧美激情综合另类| 免费看a级黄色片| 内地一区二区视频在线| 国产精品一区二区三区四区久久| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 99国产精品一区二区三区| 搡老妇女老女人老熟妇| 国产熟女xx| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久精品电影| 国内精品久久久久久久电影| 午夜福利在线观看免费完整高清在 | 成人国产一区最新在线观看| 99精品久久久久人妻精品| 夜夜看夜夜爽夜夜摸| 91久久精品国产一区二区成人| 国产午夜精品论理片| 一个人免费在线观看的高清视频| 天堂av国产一区二区熟女人妻| 波多野结衣高清作品| 久久精品国产亚洲av天美| 午夜a级毛片| 男人狂女人下面高潮的视频| 村上凉子中文字幕在线| 在线免费观看不下载黄p国产 | www日本黄色视频网| 麻豆av噜噜一区二区三区| av在线观看视频网站免费| xxxwww97欧美| 日韩精品青青久久久久久| 1024手机看黄色片| 日本黄色视频三级网站网址| 日韩av在线大香蕉| 一本综合久久免费| а√天堂www在线а√下载| 婷婷亚洲欧美| 俺也久久电影网| 久久热精品热| 蜜桃久久精品国产亚洲av| 日本精品一区二区三区蜜桃| 特级一级黄色大片| 毛片女人毛片| 久久国产乱子免费精品| 亚洲在线观看片| 欧美性感艳星| 亚洲中文字幕日韩| 夜夜夜夜夜久久久久| 香蕉av资源在线| 精品国内亚洲2022精品成人| 亚洲av一区综合| 亚洲电影在线观看av| 在现免费观看毛片| 国产精品综合久久久久久久免费| 毛片女人毛片| 亚洲色图av天堂| 亚洲精品亚洲一区二区| 亚洲黑人精品在线| 伦理电影大哥的女人| 亚洲七黄色美女视频| 日本一本二区三区精品| 99热这里只有是精品50| 欧美黑人欧美精品刺激| 免费在线观看日本一区| 欧美一区二区国产精品久久精品| 一本综合久久免费| 性插视频无遮挡在线免费观看| 在线天堂最新版资源| 日韩有码中文字幕| 人人妻人人澡欧美一区二区| 久久99热6这里只有精品| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片 | 日韩成人在线观看一区二区三区| 免费看日本二区| 91av网一区二区| 蜜桃亚洲精品一区二区三区| 亚洲美女视频黄频| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 久久久国产成人免费| 欧洲精品卡2卡3卡4卡5卡区| 色哟哟哟哟哟哟| 欧美乱妇无乱码| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 久久久久性生活片| 深夜a级毛片| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 国产又黄又爽又无遮挡在线| 色吧在线观看| 99热精品在线国产| or卡值多少钱| 国产伦一二天堂av在线观看| 欧美性感艳星| 日韩精品中文字幕看吧| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 国产精品久久久久久人妻精品电影| 国产精品国产高清国产av| 啪啪无遮挡十八禁网站| 亚洲人成网站在线播放欧美日韩| 亚洲欧美清纯卡通| 日韩人妻高清精品专区| 免费看日本二区| 搡女人真爽免费视频火全软件 | 草草在线视频免费看| 久久伊人香网站| 九九久久精品国产亚洲av麻豆| 99久久99久久久精品蜜桃| 男人的好看免费观看在线视频| 少妇人妻一区二区三区视频| 免费人成在线观看视频色| 嫩草影院入口| 久久人人精品亚洲av| 十八禁国产超污无遮挡网站| 男女之事视频高清在线观看| 日本免费一区二区三区高清不卡| 国产亚洲欧美98| 在线观看一区二区三区| 日本在线视频免费播放| 在线免费观看的www视频| 久久精品夜夜夜夜夜久久蜜豆| 尤物成人国产欧美一区二区三区| 长腿黑丝高跟| 亚洲中文日韩欧美视频| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 性色avwww在线观看| 人妻制服诱惑在线中文字幕| 亚洲av电影在线进入| 国产亚洲精品综合一区在线观看| 亚洲av日韩精品久久久久久密| 成人一区二区视频在线观看| 黄片小视频在线播放| 亚洲午夜理论影院| 一区二区三区免费毛片| 日本免费一区二区三区高清不卡| 欧美丝袜亚洲另类 | 亚洲成人免费电影在线观看| 欧美日韩福利视频一区二区| 99国产极品粉嫩在线观看| 精品日产1卡2卡| 日本 av在线| 一本精品99久久精品77| 人人妻人人看人人澡| 国产蜜桃级精品一区二区三区| 久久久久精品国产欧美久久久| 国产av不卡久久|