張文豪,李建軍,楊德剛,高品操,楊明亮,杜良杰,高峰,唐芳,
MicroRNA在脊髓損傷中的研究進展①
張文豪1,2,3,4,李建軍1,2,3,4,楊德剛1,2,3,4,高品操5,楊明亮1,2,3,4,杜良杰1,2,3,4,高峰1,2,3,4,唐芳5,
劉長彬1,2,3,4,李大鵬1,2,3,4,張鑫1,2,3,4,張潔1,2,3,4
microRNA是能夠調控靶基因表達的小分子RNA,在脊髓發(fā)育和脊髓損傷等過程的基因表達中具有重要作用,可能是促進脊髓損傷后神經再生和修復的治療性干預新靶點,是脊髓損傷潛在的生物學標志物。本文從microRNA在脊髓損傷中的機制及熱點microRNA方面做一綜述。
脊髓損傷;microRNA;基因表達;轉錄調控;生物學標記;新靶點;綜述
[本文著錄格式]張文豪,李建軍,楊德剛,等.MicroRNA在脊髓損傷中的研究進展[J].中國康復理論與實踐,2017,23(6): 649-653.
CITED AS:Zhang WH,Li JJ,Yang DG,et al.Research progress of microRNAin spinal cord injury(review)[J].Zhongguo Kangfu Lilun Yu Shijian,2017,23(6):649-653.
脊髓損傷(spinal cord injury)是一種高發(fā)生率、高死亡率、高致殘率、高耗費的中樞神經系統(tǒng)疾病[1-3],隨著現(xiàn)代經濟社會和交通建筑事業(yè)的發(fā)展,其發(fā)病率逐年上升,在美國每年有1萬例新發(fā)患者[4],我國每年新增病例超過6萬人,給患者以及社會帶來沉重的負擔[5-6],故應給予足夠的重視[7-9]。
脊髓損傷可分為原發(fā)性損傷和繼發(fā)性損傷。原發(fā)性損傷由受傷當時所承受的扭轉力、壓縮力和神經橫斷程度決定;而后期伴發(fā)的血脊髓屏障障礙、缺血水腫、炎癥反應、脂質過氧化作用、自由基生成、離子通路受損、軸突脫髓鞘作用、神經細胞凋亡和瘢痕形成等繼發(fā)性損傷將進一步加重病情[10-13]。由于外界暴力等因素引起原發(fā)性損傷在一定程度上決定了患者神經病理學的等級,因此,治療脊髓損傷的策略主要在于對抗級聯(lián)發(fā)生的繼發(fā)性損傷,刺激軸突再生,阻止自發(fā)持續(xù)性的神經元退化以及增加新生神經元和膠質細胞以填補并整合損傷區(qū)的存活神經組織。
脊髓損傷的病理發(fā)展過程是一個大量分子參與的多因素、多步驟、多階段的網絡調控過程,目前臨床上仍缺乏明確有效的干預靶點。脊髓損傷后脊髓組織難以進行修復[14],而且功能重建也相對困難,這不僅與神經元微弱的再生能力密切相關,還與脊髓損傷后出現(xiàn)的瘢痕形成有關。因此,脊髓損傷后修復和重建神經功能是目前困擾醫(yī)學界的核心問題[14]。20世紀80年代,科學家發(fā)現(xiàn)在適當?shù)臈l件下脊髓組織可出現(xiàn)神經軸突的再生,這個開創(chuàng)性的發(fā)現(xiàn)開啟了脊髓損傷病理生理學治療發(fā)展之路。
最近20年來,臨床上新發(fā)現(xiàn)了一種基因表達調節(jié)因子,即microRNA。脊髓損傷后有大量的microRNA表達發(fā)生改變[13,15-18]。研究證明microRNA參與脊髓損傷后基因表達的調控,此類基因表達與脊髓缺血水腫、炎癥反應、神經元壞死等病理過程密切相關[13]。隨著分子生物學日新月異的發(fā)展和人類基因組計劃的完成,關于microRNA的研究越來越受到重視。研究表明,microRNA在脊髓發(fā)育、脊髓可塑性和脊髓損傷后的病理生理發(fā)生發(fā)展過程中均發(fā)揮重要的調節(jié)作用,一些microRNA可能成為脊髓損傷后治療性干預的有效靶點[13-14,19-21]。因此研究microRNA在脊髓損傷病理發(fā)展過程中的功能及作用,不僅能夠進一步明確繼發(fā)性脊髓損傷的發(fā)病機制,而且給脊髓損傷的治療與康復提供新的治療靶點和干預策略。
脊髓損傷后神經元的再生與修復機制極其復雜,涉及神經元所處的惡劣微環(huán)境以及復雜的細胞內信號通路,因此加強脊髓損傷后脊髓組織的修復與重建研究具有重要的價值和意義[22]。脊髓損傷造成損傷節(jié)段兩側脊髓組織之間神經纖維聯(lián)系的斷裂或損傷,軸突和樹突的修復與重建對于損傷區(qū)兩側殘存的神經元實現(xiàn)信號傳導至關重要。轉錄因子、蛋白修飾、染色質修飾、mRNA半衰期等多種方式調控基因表達。
研究表明,microRNA通過調控轉錄過程中的基因表達,影響神經元的功能和狀態(tài),其在脊髓損傷中具有的重要功能與作用已經逐漸被人們所認可[23]。microRNA作為一種長度約為22個核苷酸的內源性、具有基因調控功能的非編碼RNA,近年來已成為國內外研究的熱點,因此也發(fā)現(xiàn)microRNA的多種生物學功能,如參與調控生長發(fā)育、增殖分化、新陳代謝、炎癥反應、腫瘤及細胞凋亡等許多病理生理過程[22,24-27]。1993年Lee等[28]在研究秀麗新小桿線蟲發(fā)育缺陷時最早發(fā)現(xiàn)microRNA;2000年Reinhart等[29]觀察到同樣現(xiàn)象。microRNA在正常細胞和組織中表達,且廣泛存在于動植物中,截至目前microRNA數(shù)據庫(http://www.mirbase.org/)已收錄約15,000個microRNA序列,約占人類基因的1%~4%,這使microRNA成為人體內功能與作用最廣泛的一類基因調控因子。microRNA對3′端非編碼區(qū)的保守性極高,它可以通過和靶基因mRNA部分或完全互補配對,調控下游靶基因,抑制mRNA翻譯或促使其降解,從而在轉錄翻譯水平上對靶基因mRNA表達起到很好的負向調控作用[30-33]。
脊髓損傷多由外傷等暴力因素引起,并引起深靜脈血栓、性功能障礙等嚴重并發(fā)癥[34-35],往往導致?lián)p傷節(jié)段以下肢體功能的嚴重障礙,造成患者嚴重身心傷害[36]。雖然有關脊髓損傷的microRNA研究起步較晚,但目前卻已引起研究者的廣泛關注,并呈Moore律增長。多數(shù)研究表明[23,37-40],脊髓損傷后脊髓組織中的microRNA的水平發(fā)生變化,其變化水平可分為以下三種情況:①上調;②下調;③早期(4 h)上調,后期(1~7 d)下調。生物信息學分析表明,脊髓損傷后發(fā)生變化的microRNA,其靶基因可能包括編碼炎癥、氧化應激和細胞凋亡等過程的基因,這些過程被認為在脊髓損傷病理機制中具有重要作用。microRNA分子受到其他生物學分子基因的調控,它也調控著它們下游的靶基因,一個miRNA可能調控著數(shù)十個甚至上百個靶基因[41],但本身又有可能受數(shù)個基因的調控,在分子生物學基因-microRNA-靶基因-機體功能等方面構成紛繁復雜的信號通路網絡,調節(jié)著機體病理生理等方面的功能與作用。另有研究表明,microRNA能夠調控多個靶基因,但是在不同細胞類型或不同應激狀態(tài)下其調控的靶基因可能會有差異。脊髓損傷伴隨著其特異性microRNA基因表達的改變,但相關機制有待進一步闡明[19]。
盡管microRNA在人類疾病中的功能與作用尚需要進一步闡明,但是越來越多的研究表明,microRNA可以作為一種全新的藥物靶點。本部分重點闡述脊髓損傷研究領域的熱點microRNA及其可能的分子機制。
2.1 microRNA-124(miR-124)
中樞神經系統(tǒng)特異性表達最為豐富的是miR-124。miR-124具有3種亞型,其中以miR-124a最為常見。在細胞的增殖分化過程中,miR124a的表達水平可發(fā)生較大的變化[40,42-44]。目前,學者對中樞神經中miR-124基因表達情況的研究多集中在果蠅、小鼠的中樞神經系統(tǒng)。Chen等[45]研究發(fā)現(xiàn),阻斷中樞神經系統(tǒng)中miR-124a的表達后,神經再生出現(xiàn)明顯的延遲。趙宇[42]研究發(fā)現(xiàn)脊髓損傷后miR-124低表達。上述研究均表明,miR-124a在中樞神經系統(tǒng)損傷的機制中發(fā)揮著重要作用,可作為中樞神經系統(tǒng)損傷的有效干預性治療靶點。但有些學者的報道尚存在一定的爭議[40,46],這可能是由于選用的動物種類、損傷模型以及檢測時間點的不同引起,故尚需更多的實驗來加以驗證。
2.2 microRNA-152(miR-152)
中樞神經系統(tǒng)發(fā)育過程中,miR-152在大腦皮層和脊髓組織中,自胚胎9.5 d至出生后表達水平逐漸升高。研究表明[47-48],自脊髓損傷早期至晚期miR-152表達水平持續(xù)上調,提示其在中樞神經系統(tǒng)生長發(fā)育和病理過程中發(fā)揮重要作用。武昊[47]通過實驗證實,脊髓損傷后miR-152的表達上調,并且進一步驗證機械性損傷或炎性環(huán)境導致miR-152的表達上調,而上調的miR-152靶向抑制N端α乙?;D移酶15(Naa15)基因的表達,影響N端乙?;D移酶的活性,阻礙微管的組裝,最終抑制神經元樹突的生長。陳琨[48]雖然同樣發(fā)現(xiàn)小鼠脊髓損傷后miR-152的表達水平升高,但其通過實驗證明Hu antigen D (HuD)基因在脊髓損傷后表達水平下降,且與miR-152的表達水平基本呈相反趨勢,并通過雙熒光素酶報告系統(tǒng)及Western boltting技術進一步證實HuD基因可能是miR-152的靶基因;其研究還發(fā)現(xiàn)miR-152過表達后可以顯著促進PC12細胞的增殖,并與miR-152具有依賴性且其作用具有細胞類型選擇性有關,猜測這種現(xiàn)象可能是miR-152通過抑制周期素依賴性蛋白激酶19(cyclin dependent kinase 19,CDK19)的基因表達所導致。2.3 microRNA-223(miR-223)
miR-223是一種骨髓特異性的microRNA。研究顯示脊髓組織miR-223在脊髓損傷后6 h、12 h、3 d表達均升高,且在損傷部位表達。研究還表明脊髓損傷后中性粒細胞表達顯著升高,且與miR-223的表達存在時間依賴性,這提示miR-223可能參與脊髓損傷后中性粒細胞的調控[40,49]。Izumi等[49]發(fā)現(xiàn)miR-223在小鼠脊髓損傷區(qū)域頭端及尾端2 mm內大量表達,同時炎癥因子白細胞介素(interleukin,IL)-1β、IL-6及腫瘤壞死因子(tumor necrosis factor,TNF)-α在相同區(qū)域表達亦顯著提高。這些研究表明,脊髓損傷后miR-223可能參與中性粒細胞介導的炎癥反應,從而介導繼發(fā)性脊髓損傷的過程。孫煒俊[50]研究表明,脊髓損傷后miR-223基因表達顯著升高,RhoB基因的表達亦同步明顯上調,且二者呈顯著正相關,由此進一步推測RhoB基因的表達可能受miR-223的調控。近些年研究發(fā)現(xiàn),RhoB/ROCK信號通路在脊髓損傷的病理過程中發(fā)揮著重要作用,抑制RhoB/ROCK通路可能促進中樞神經損傷后的修復與重建。
2.4 microRNA-210(miR-210)
miR-210具有廣泛的生理作用,參與細胞增殖分化、血管生成、新陳代謝、DNA修復、細胞周期等的調控[51-53],并可以作為一些癌癥的腫瘤標志物[54-55]。研究表明miR-210能夠在缺血缺氧的情況下,參與低氧反應、氧化應激以及細胞凋亡的調控[56-57]。邵建立等[58]通過實驗證實H2O2能夠刺激鼠脊髓神經元內miR-210表達的上調,而降低miR-210的表達能夠降低細胞內NADPH氧化酶2(NADPH oxidase 2,NOX2)和活性氧(reactive oxygen species,ROS)的表達,進而抑制NOX2/ROS通路,從而減緩H2O2對大鼠背脊髓神經元細胞造成的損傷。Ujigo等[59]通過實驗驗證miR-210可能通過抑制蛋白酪氨酸磷酸酶1B的生成,從而促進血管生成,進而促進脊髓損傷的修復。這些研究表明[58-59],miR-210過表達和繼發(fā)性脊髓損傷存在一定的關系,miR-210在繼發(fā)性脊髓損傷中可能發(fā)揮重要的作用,從而推測miR-210可以作為脊髓損傷的治療靶點。
2.5 microRNA-21(miR-21)
研究發(fā)現(xiàn)小鼠脊髓損傷組織中miR-21的表達水平與正常脊髓組織相比顯著升高[60],通過生物信息學檢索預測,其靶基因可能包括程序性細胞死亡因子4(programmed cell death, PDCD4)。研究表明[61-63],PDCD4是一類細胞凋亡的相關基因,降低其表達可以抑制細胞凋亡的發(fā)生,從而對細胞起保護效應。佘飛等[64]通過實驗驗證小鼠脊髓損傷中高表達的miR-21直接作用于PDCD4,從而在mRNA和蛋白水平抑制PDCD4的表達,進而推測miR-21可能在脊髓損傷過程中具有重要的保護作用,這和多種損傷模型中miR-21通過抑制PDCD4的表達從而發(fā)揮保護效應的研究結果基本一致[63,65-66]。
在過去20多年里,關于microRNA的基礎研究迅速增加,研究結果有力地證實了microRNA應用于臨床脊髓損傷治療的潛力。大量研究發(fā)現(xiàn)microRNA可能是脊髓損傷后神經細胞死亡的一個潛在標記物,可能成為干預脊髓損傷的有效靶點[13,19,21,23,37,67-70],也為脊髓損傷患者神經功能的恢復與重建提供了新思路、新方法與新技術,部分基于microRNA的研究已處于臨床試驗階段。
迄今為止microRNA在脊髓損傷研究領域的報道仍然比較有限,仍有一些問題需要解決,例如脊髓損傷后microRNA研究的資料較少并且零散,研究內容不夠深入,缺乏分子機制之間的相互聯(lián)系,目前僅知microRNA可能與脊髓損傷后的炎癥反應、氧化應激和神經元壞死的調控有關。該研究領域下一步的發(fā)展方向可能是如何分離純化microRNA分子,microRNA與靶mRNA之間的關系,microRNA是否可以調節(jié)其他microRNA等。通過對特定microRNA作用分子機制的詳細研究,對特定microRNA分子調控的上下游分子及所涉及的信號通路做深入研究,進而揭示相關microRNA在脊髓損傷中的調控網絡與調控模式。
隨著基因芯片、原位雜交、微陣列數(shù)據、實時定量反轉錄聚合酶鏈反應(real-time quantitative polymerase chain reaction, RT-qPCR)檢測等技術手段的飛速發(fā)展與廣泛應用,人們將進一步理解microRNA在生物發(fā)展中的功能與作用,并利用microRNA進行臨床診斷和治療,這將提高人們對脊髓損傷后microRNA調控作用的認知水平,并促進基于microRNA調控的脊髓損傷治療措施的研究。該研究有望找到基因調控階段修復與重建脊髓損傷的新途徑,為臨床治療尋找新靶點。
[1]Wang H,Liu X,Zhao Y,et al.Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years:an observational study[J].Medicine (Baltimore),2016,95(43):p.e5220.
[2]Yang R,Guo L,Huang L,et al.Epidemiological characteristics of traumatic spinal cord injury in Guangdong,China[J].Spine(Phila Pa 1976),2016.[Epub ahead of print].
[3]Jain NB,Ayers GD,Peterson EN,et al.Traumatic spinal cord injury in the United States,1993-2012[J].JAMA,2015,313(22):2236-2243.
[4]Zhang Y,Zhang L,Shen J,et al.Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model[J].Spine(Phila Pa 1976),2014,39 (8):E493-E499.
[5]Bhalala OG,Srikanth M,Kessler JA.The emerging roles of microRNAs in CNS injuries[J].Nat Rev Neurol,2013,9(6):328-339.
[6]Spinal cord injury facts and figures at a glance[J].J Spinal Cord Med, 2012,35(6):480-481.
[7]Lee BB,Cripps RA,Fitzharris M,et al.The global map for traumatic spinal cord injury epidemiology:update 2011,global incidence rate[J].Spinal Cord,2014,52(2):110-116.
[8]Hua R,Shi J,Wang X,et al.Analysis of the causes and types of traumatic spinal cord injury based on 561 cases in China from 2001 to 2010[J].Spinal Cord,2013,51(3):218-221.
[9]Mitchell RJ,Bambach MR.Personal injury recovery cost of pedestrian-vehicle collisions in New South Wales,Australia[J].Traffic Inj Prev,2016,17(5):508-514.
[10]Dasari VR,Veeravalli KK,Dinh DH.Mesenchymal stem cells in the treatment of spinal cord injuries:a review[J].World J Stem Cells, 2014,6(2):120-133.
[11]Zhu T,Tang Q,Gao H,et al.Current status of cell-mediated regenerative therapies for human spinal cord injury[J].Neurosci Bull,2014,30 (4):671-682.
[12]Poniatowski ?A,Wojdasiewicz P,Krawczyk M,et al.Analysis of the Role of CX3CL1(Fractalkine)and its receptor CX3CR1 in traumatic brain and spinal cord injury:insight into recent advances in actions of neurochemokine agents[J].Mol Neurobiol,2017,54(3):2167-2188.
[13]Xu M,Wang HF,Zhang YY,et al.Protection of rats spinal cord ischemia-reperfusion injury by inhibition of MiR-497 on inflammation and apoptosis:possible role in pediatrics[J].Biomed Pharmacother,2016, 81:337-344.
[14]Strickland ER,Hook MA,Balaraman S,et al.MicroRNA dysregulation following spinal cord contusion:implications for neural plasticity and repair[J].Neuroscience,2011,186:146-160.
[15]Li J,Huang J,Dai L,et al.miR-146a,an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4[J].Arthritis Res Ther,2012,14(2):R75.
[16]He QQ,Xiong LL,Liu F,et al.MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth,induces cell apoptosis and contributes to physiological dysfunction after spinal cord transaction[J].Sci Rep,2016,6:35205.
[17]He F,Ren Y,Shi E,et al.Overexpression of microRNA-21 protects spinal cords against transient ischemia[J].J Thorac Cardiovasc Surg, 2016,152(6):1602-1608.
[18]Gaudet AD,Mandrekar-Colucci S,Hall JC,et al.miR-155 deletion in mice overcomes neuron-intrinsic and neuron-extrinsic barriers to spinal cord repair[J].J Neurosci,2016,36(32):8516-8532.
[19]Yunta M,Nieto-Díaz M,Esteban FJ,et al.MicroRNA dysregulation in the spinal cord following traumatic injury[J].PLoS One,2012,7(4): e34534.
[20]Boon H,Sj?gren RJ,Massart J,et al.MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression[J].Physiol Rep,2015,3(11):e12622.
[21]Jee MK,Jung JS,Choi JI,et al.MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury[J].Brain,2012,135(Pt 4): 1237-1252.
[22]Aldahmash A,Zaher W,Al-Nbaheen M,et al.Human stromal(mesenchymal)stem cells:basic biology and current clinical use for tissue regeneration[J].Ann Saudi Med,2012,32(1):68-77.
[23]Liu NK,Wang XF,Lu QB,et al.Altered microRNA expression following traumatic spinal cord injury[J].Exp Neurol,2009,219(2): 424-429.
[24]Chen X,Xia J,Xia Z,et al.Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor[J].BMC Plant Biol,2015.15:33.
[25]Xie M,Zhang S,Yu B.MicroRNA biogenesis,degradation and activity in plants[J].Cell Mol Life Sci,2015,72(1):87-99.
[26]Das A,Ganesh K,Khanna S,et al.Engulfment of apoptotic cells by macrophages:a role of microRNA-21 in the resolution of wound inflammation[J].J Immunol,2014,192(3):1120-1129.
[27]Gao Y,Schug J,McKenna LB,et al.Tissue-specific regulation of mouse microRNA genes in endoderm-derived tissues[J].Nucleic Acids Res,2011,39(2):454-463.
[28]Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
[29]Reinhart BJ,Slack FJ,Basson M,et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature, 2000,403(6772):901-906.
[30]Tsai NP,Lin YL,Wei LN.MicroRNA mir-346 targets the 5'-untranslated region of receptor-interacting protein 140(RIP140)mRNA and up-regulates its protein expression[J].Biochem J,2009,424(3): 411-418.
[31]Kiriakidou M,Tan GS,Lamprinaki S,et al.An mRNA m7G cap binding-like motif within human Ago2 represses translation[J].Cell,2007, 129(6):1141-1151.
[32]Mathonnet G,Fabian MR,Svitkin YV,et al.MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F[J].Science,2007,317(5845):1764-1767.
[33]Lytle JR,Yario TA,Steitz JA.Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR[J].Proc NatlAcad Sci U SA,2007,104(23):9667-9672.
[34]Belle M,Terracol C,Castel-Lacanal E,et al.Evaluation of seating intervention effect for patient at Toulouse University Hospital's Wheelchair Seating Clinic(WSC)[J].Ann Phys Rehabil Med,2016,59S: e27.
[35]García-Perdomo HA,Echeverría-García F,Tobías A.Effectiveness of phosphodiesterase 5 inhibitors in the treatment of erectile dysfunction in patients with spinal cord trauma:systematic review and Meta-analysis[J].Urol Int,2017,98(2):198-204.
[36]Schomberg DT,Miranpuri GS,Chopra A,et al.Translational relevance of swine models of spinal cord injury[J].J Neurotrauma,2017, 34(3):541-551.
[37]Huang JH,Cao Y,Zeng L,et al.Tetramethylpyrazine enhances functional recovery after contusion spinal cord injury by modulation of MicroRNA-21,FasL,PDCD4 and PTEN expression[J].Brain Res,2016, 1648(PtA):35-45.
[38]Genda Y,Arai M,Ishikawa M,et al.microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury:A Taq-Man?low density array study[J].Int J Mol Med,2013,31(1):129-137.
[39]Ziu M,Fletcher L,Savage JG,et al.Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression[J].Spine J,2014,14 (2):353-360.
[40]Nakanishi K,Nakasa T,Tanaka N,et al.Responses of microRNAs124a and 223 following spinal cord injury in mice[J].Spinal Cord, 2010,48(3):192-196.
[41]Valencia-Sanchez MA,Liu J,Hannon GJ,et al.Control of translation and mRNA degradation by miRNAs and siRNAs[J].Genes Dev,2006, 20(5):515-524.
[42]趙宇.小鼠脊髓損傷后microRNA的表達變化及miR-124低表達和高表達轉基因小鼠的建立[D].西安:第四軍醫(yī)大學,2011.
[43]Louw AM,Kolar MK,Novikova LN,et al.Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury[J].Nanomedicine,2016,12 (3):643-653.
[44]Zhao Y,Zhang H,Zhang D,et al.Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury[J]. Neural Regen Res,2015,10(7):1147-1152.
[45]Chen X,He D,Dong XD,et al.MicroRNA-124a is epigenetically regulated and acts as a tumor suppressor by controlling multiple targets in uvealmelanoma[J].InvestOphthalmolVisSci,2013,54(3): 2248-2256.
[46]Zou D,Chen Y,Han Y,et al.Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells[J].Neural Regen Res,2014,9(12):1241-1248.
[47]武昊.脊髓損傷后miR-152表達升高并抑制神經元突起生長[D].西安:第四軍醫(yī)大學,2012.
[48]陳琨.小鼠脊髓損傷后microRNA-152對神經元突起再生作用和機制的研究[D].西安:第四軍醫(yī)大學,2014.
[49]Izumi B,Nakasa T,Tanaka N,et al.MicroRNA-223 expression in neutrophils in the early phase of secondary damage after spinal cord injury[J].Neurosci Lett,2011,492(2):114-118.
[50]孫煒俊.大鼠損傷脊髓中microRNA-223的表達及與RhoB的相關性研究[D].福州:福建醫(yī)科大學,2015.
[51]Camps C,Saini HK,Mole DR,et al.Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia[J].Mol Cancer,2014,13:28.
[52]Huang X,Le QT,Giaccia AJ.MiR-210-micromanager of the hypoxia pathway[J].Trends Mol Med,2010,16(5):230-237.
[53]Chan SY,Loscalzo J.MicroRNA-210:a unique and pleiotropic hypoxamir[J].Cell Cycle,2010,9(6):1072-1083.
[54]Mei Y,Gao C,Wang K,et al.Effect of microRNA-210 on prognosis and response to chemotherapeutic drugs in pediatric acute lymphoblastic leukemia[J].Cancer Sci,2014,105(4):463-472.
[55]Wang J,Raimondo M,Guha S,et al.Circulating microRNAs in pancreatic juice as candidate biomarkers of pancreatic cancer[J].J Cancer, 2014,5(8):696-705.
[56]Luft FC.Merely miR210 in mesenchymal stem cells-one size fits all[J].J Mol Med(Berl),2012,90(9):983-985.
[57]Xu J,Huang Z,Lin L,et al.MiR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation[J].Sci China Life Sci, 2014,57(10):989-997.
[58]邵建立,李志忠,張瑕,等.MiR-210inhibitor對大鼠背脊髓神經元細胞氧化應激的保護作用[J].中山大學學報(醫(yī)學科學版),2015,36(3): 360-365.
[59]Ujigo S,Kamei N,Hadoush H,et al.Administration of microRNA-210 promotes spinal cord regeneration in mice[J].Spine(Phila Pa 1976),2014,39(14):1099-1107.
[60]Nieto-Diaz M,Esteban FJ,Reigada D,et al.MicroRNA dysregulation in spinal cord injury:causes,consequences and therapeutics[J].Front Cell Neurosci,2014,8:53.
[61]Lu P,Sun H,Zhang L,et al.Isocorydine targets the drug-resistant cellular side population through PDCD4-related apoptosis in hepatocellular carcinoma[J].Mol Med,2012,18:1136-1146.
[62]He J,Yue Y,Dong C,et al.MiR-21 confers resistance against CVB3-induced myocarditis by inhibiting PDCD4-mediated apoptosis[J].Clin Invest Med,2013,36(2):E103-E111.
[63]Wang J,Li Y,Wang X,et al.Ursolic acid inhibits proliferation and induces apoptosis in human glioblastoma cell lines U251 by suppressing TGF-beta1/miR-21/PDCD4 pathway[J].Basic Clin Pharmacol Toxicol,2012,111(2):106-112.
[64]佘飛,蘇琴,張憲,等.小鼠脊髓損傷組織高表達的microRNA-21對neuro-2a細胞PDCD4的影響[J].創(chuàng)傷外科雜志,2015,17(6): 546-549.
[65]Yang GD,Huang TJ,Peng LX,et al.Epstein-Barr Virus_Encoded LMP1 upregulates microRNA-21 to promote the resistance of nasopharyngeal carcinoma cells to cisplatin-induced apoptosis by suppressing PDCD4 and Fas-L[J].PLoS One,2013,8(10):e78355.
[66]Cheng Y,Zhu P,Yang J,et al.Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4[J].Cardiovasc Res,2010,87(3): 431-439.
[67]Wei J,Wang J,Zhou Y,et al.MicroRNA-146a contributes to SCI recovery via regulating TRAF6 and IRAK1 expression[J].Biomed Res Int,2016,2016:4013487.
[68]Li P,Teng ZQ,Liu CM.Extrinsic and intrinsic regulation of axon regeneration by MicroRNAs after spinal cord injury[J].Neural Plast, 2016,2016:1279051.
[69]Xu Y,An BY,Xi XB,et al.MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model[J].Brain Res Bull,2016, 121:233-240.
[70]Wang T,Yuan W,Liu Y,et al.miR-142-3p is a potential therapeutic target for sensory function recovery of spinal cord injury[J].Med Sci Monit,2015,21:2553-2556.
Research Progress of MicroRNAin Spinal Cord Injury(review)
ZHANG Wen-hao1,2,3,4,LI Jian-jun1,2,3,4,YANG De-gang1,2,3,4,GAO Pin-cao5,YANG Ming-liang1,2,3,4,DU Liang-jie1,2,3,4, GAO Feng1,2,3,4,TANG Fang5,LIU Chang-bin1,2,3,4,LI Da-peng1,2,3,4,ZHANG Xin1,2,3,4,ZHANG Jie1,2,3,4
1.Capital Medical University School of Rehabilitation Medicine,Beijing 100068,China;2.Department of Spinal and Neural Function Reconstruction,Beijing Bo'ai Hospital,China Rehabilitation Research Center,Beijing 100068,China;3.Center of Neural Injury and Repair,Beijing Institute for Brain Disorders,Beijing 100068,China;4.Beijing Key Laboratory of Neural Injury and Rehabilitation,Beijing 100068,China;5.Hunan Medical University,Huaihua,Hunan 418000,China
LI Jian-jun.E-mail:crrc100@163.com
MicroRNAs are short non-coding RNAs that regulate and control the translation of target genes,and play an important role in gene expression involved in the development of spinal cord and spinal cord injury,which constitute novel targets for therapeutic intervention to promote repair and regeneration of the spinal cord,also they are the potential biomarkers of spinal cord injury.This article reviewed the mechanism of microRNAs and listed several microRNAs in spinal cord injury area.
spinal cord injury;microRNA;gene expression;transcriptional regulation;biological markers;novel targets;review
R651.2
A
1006-9771(2017)06-0649-05
2016-11-01
2016-11-18)
10.3969/j.issn.1006-9771.2017.06.006
1.國家自然科學基金面上項目(No.81272164);2.中央級公益性科研院所基本科研業(yè)務費專項資金項目(No.2015CZ-6)。
1.首都醫(yī)科大學康復醫(yī)學院,北京市100068;2.中國康復研究中心北京博愛醫(yī)院脊柱脊髓神經功能重建科,北京市100068;3.北京腦重大疾病研究院神經損傷與修復研究所,北京市100068;4.北京市神經損傷與康復重點實驗室,北京市100068;5.湖南醫(yī)藥學院,湖南懷化市418000。作者簡介:張文豪(1991-),男,漢族,河南柘城縣人,碩士研究生,主要研究方向:脊柱脊髓損傷的康復與治療。通訊作者:李建軍(1962-),男,漢族,教授,主任醫(yī)師,博士、博士后導師,主要研究方向:骨科及脊柱脊髓損傷的康復與治療。E-mail:crrc100@163.com。