唐 博 石永進(jìn) 劉 微 梁賾隱 劉繪繪 苗圣超 任漢云
(北京大學(xué)第一醫(yī)院血液內(nèi)科,北京100034)
·專題綜述·
淋巴結(jié)成纖維網(wǎng)狀細(xì)胞調(diào)節(jié)T細(xì)胞定位和適應(yīng)性免疫應(yīng)答研究進(jìn)展①
唐 博 石永進(jìn) 劉 微 梁賾隱 劉繪繪 苗圣超 任漢云
(北京大學(xué)第一醫(yī)院血液內(nèi)科,北京100034)
淋巴結(jié)(Lymph nodes,LNs)是一種具有嚴(yán)格分區(qū)的外周淋巴器官,是決定免疫應(yīng)答激活或抑制的重要部位。成纖維網(wǎng)狀細(xì)胞(Fibroblastic reticular cells,F(xiàn)RCs)是淋巴結(jié)內(nèi)的一種特殊的基質(zhì)細(xì)胞,雖然其數(shù)量?jī)H占淋巴結(jié)細(xì)胞成分的1%,卻在淋巴結(jié)結(jié)構(gòu)及功能的維持上發(fā)揮重要功能[1]。這群細(xì)胞起源于淋巴結(jié)原基微環(huán)境中的間充質(zhì)前脂肪祖細(xì)胞[2],在出生后的淋巴結(jié)內(nèi)分化為成熟的FRCs[3-6]。成人淋巴結(jié)T細(xì)胞區(qū)富集了成熟的FRCs,大約占淋巴結(jié)內(nèi)非造血細(xì)胞的20%~50%[7]。這些細(xì)胞特征性表達(dá)腎小球足突細(xì)胞膜黏蛋白(Podoplanin,PDPN),也被稱為gp38[8],血小板衍生的生長(zhǎng)因子受體α,不表達(dá) CD31和 CD45,借此與淋巴結(jié)內(nèi)其他寄居細(xì)胞(T細(xì)胞、DC等)區(qū)分[9]。
近期大量研究發(fā)現(xiàn)FRCs及其趨化因子和細(xì)胞因子參與調(diào)節(jié)淋巴結(jié)T細(xì)胞發(fā)育的多個(gè)重要時(shí)期[10,11]。T細(xì)胞來源于骨髓或胚肝淋巴樣肝細(xì)胞分化發(fā)育的T細(xì)胞系前體,在胸腺內(nèi)發(fā)育為成熟的初始T淋巴細(xì)胞[12]。成熟的T細(xì)胞遷出胸腺后,不斷地循環(huán)在血液和次級(jí)淋巴器官之間尋覓靶抗原,執(zhí)行著免疫監(jiān)視功能[13]。進(jìn)入LNs的T細(xì)胞會(huì)在此停留多達(dá)24 h,一旦抗原呈遞細(xì)胞攜帶特定的抗原呈遞給初始T細(xì)胞,活化的T細(xì)胞要么即刻引起免疫反應(yīng),要么誘導(dǎo)自身耐受。在適當(dāng)?shù)膮f(xié)同刺激分子的作用下,活化的T細(xì)胞快速進(jìn)入增殖期,幾天后發(fā)育為具有分泌細(xì)胞因子及遷移能力的效應(yīng)細(xì)胞遷至外周組織發(fā)揮作用。當(dāng)抗原被清除時(shí),絕大多數(shù)抗原特異性效應(yīng)T細(xì)胞會(huì)凋亡,有大約5%~10%細(xì)胞成為記憶細(xì)胞長(zhǎng)期存活[14]。FRCs可以調(diào)節(jié)T細(xì)胞的功能,參與免疫應(yīng)答。本文著重就FRCs對(duì)淋巴結(jié)內(nèi)T細(xì)胞定位、活化、分化,以及直接抑制效應(yīng)T細(xì)胞反應(yīng)和誘導(dǎo)免疫耐受等發(fā)揮的調(diào)節(jié)作用做一綜述。
T細(xì)胞必須接受抗原提呈細(xì)胞所呈遞的抗原,才能激發(fā)有效的免疫應(yīng)答,為最大可能的遇見靶抗原,T細(xì)胞不斷地循環(huán)在血液及淋巴系統(tǒng)中[15]。循環(huán)的T細(xì)胞只需在血液中停留半個(gè)小時(shí),便可通過高內(nèi)皮微靜脈(High endothelial venules,HEVs)進(jìn)入下一個(gè)淋巴結(jié)[16]。HEVs只存在于二級(jí)淋巴器官,正常情況下必須發(fā)揮兩個(gè)功能,即:促使淋巴細(xì)胞進(jìn)出淋巴結(jié),但屏障血細(xì)胞于血管外[16]。結(jié)構(gòu)的完整性是HEVs發(fā)揮正常功能的前提。血小板表面C型凝集素受體CLEC-2參與調(diào)節(jié)淋巴結(jié)的結(jié)構(gòu)及功能[17]。近期研究發(fā)現(xiàn)T細(xì)胞穿HEVs的過程中,會(huì)借助HEVs周圍的FRCs表面的gp38和血管間隙滲出的血小板表面C型凝集素受體CLEC-2,兩者之間的相互作用會(huì)促使血小板活化,活化的血小板進(jìn)行釋放鞘氨醇-1-磷酸酯,通過與其受體相結(jié)合上調(diào)血管內(nèi)皮鈣黏蛋白的表達(dá),增強(qiáng)細(xì)胞之間的連接,從而維持HEVs的完整性[18]。此外,gp38/CLEC-2軸參與調(diào)控FRCs的伸展性,從而進(jìn)一步保證了淋巴結(jié)內(nèi)結(jié)構(gòu)的穩(wěn)定性[19]。一旦進(jìn)入淋巴結(jié),F(xiàn)RCs分泌的CCL19、CCL21及CXCL12會(huì)和T細(xì)胞表面的受體CCR7、CXCR4相結(jié)合,從而指引進(jìn)入淋巴結(jié)的T細(xì)胞沿著特定的路徑到達(dá)皮質(zhì)區(qū)及T細(xì)胞區(qū)[20-22]。近期Takeda等[23]學(xué)者研究發(fā)現(xiàn)FRCs分泌的溶血磷脂酸可以局限性和T細(xì)胞表面的溶血磷脂酸受體2作用指引T細(xì)胞的運(yùn)動(dòng),體內(nèi)實(shí)驗(yàn)也證實(shí)無論是清除FRCs分泌的溶血磷脂酸或是T細(xì)胞表面缺少受體2,都會(huì)使得T細(xì)胞在淋巴結(jié)內(nèi)的運(yùn)動(dòng)減慢。此外,動(dòng)物模型也證實(shí)清除淋巴結(jié)內(nèi)FRCs會(huì)改變皮質(zhì)區(qū)T細(xì)胞的定位,降低T細(xì)胞的存活,影響T細(xì)胞的活化[24]??偟膩碚f,F(xiàn)RCs可以通過維持HEVs的完整性,分泌可溶性介質(zhì)指引T細(xì)胞歸巢至淋巴結(jié),捕獲抗原,進(jìn)一步產(chǎn)生免疫應(yīng)答。
初始T淋巴細(xì)胞進(jìn)入淋巴結(jié)后,一旦接受抗原呈遞細(xì)胞攜帶的特定抗原,在適當(dāng)?shù)膮f(xié)同刺激分子的作用下,便會(huì)發(fā)生活化[25]。FRCs作為L(zhǎng)Ns的結(jié)構(gòu)支架細(xì)胞,將細(xì)胞成分?jǐn)U展到實(shí)質(zhì)部分,加之分泌的細(xì)胞外基質(zhì)成分構(gòu)建成自己獨(dú)有的管道系統(tǒng)[26,27]。進(jìn)入結(jié)內(nèi)的T細(xì)胞以及DC細(xì)胞也可以利用該管道系統(tǒng),以最便捷的通道進(jìn)入淋巴結(jié)T細(xì)胞區(qū)。這種特殊的管道系統(tǒng)在功能上發(fā)揮著分子篩的作用,允許上游的可溶性小分子抗原及趨化因子直接進(jìn)入淋巴結(jié)的實(shí)質(zhì)[28]。這樣一來,可以增加抗原與DC以及T細(xì)胞之間的相互作用。FRCs同時(shí)也分泌趨化因子CCL19/CCL21及黏附分子ICAM-1共同作用,從而指引淋巴結(jié)內(nèi)T細(xì)胞以及DC的運(yùn)動(dòng)。也有研究表明,在炎癥環(huán)境下,F(xiàn)RCs分泌的CCL19/CCL21和DC表面的CCR7相互作用,會(huì)誘導(dǎo)共刺激分子的表達(dá),此外,F(xiàn)RCs會(huì)和CD4+T細(xì)胞通過CD40-CD40L相互作用[29],從而為T細(xì)胞提供第二信號(hào)[30]。在LNs內(nèi),F(xiàn)RCs組成性表達(dá)的IL-7,可以通過增強(qiáng)TCR信號(hào)通路,加強(qiáng)DCs和T細(xì)胞之間的相互作用,參與調(diào)節(jié)初始再循環(huán)T細(xì)胞的活化[31]。在人類免疫缺陷病毒感染病人體內(nèi)大量FRCs被攻擊、破壞,使得T細(xì)胞無法從FRCs獲得支撐,從而進(jìn)一步被清除[32]。FRCs以其獨(dú)特的網(wǎng)狀系統(tǒng),分泌的趨化因子及細(xì)胞因子為T細(xì)胞的活化提供了堅(jiān)實(shí)的保障。
雖然FRCs可以活化T細(xì)胞,但是另一方面卻又通過抑制效應(yīng)T細(xì)胞反應(yīng)從而發(fā)揮免疫抑制功能。體外實(shí)驗(yàn)證實(shí),T細(xì)胞一旦開始分泌IFN-γ,不管這種T細(xì)胞是否具有特異性,和FRCs接觸,F(xiàn)RCs分泌的一氧化氮便會(huì)抑制T細(xì)胞的增殖[10]。FRCs表達(dá)MHCⅡ類分子[33],Dubrot等[34]研究發(fā)現(xiàn)FRCs捕獲DCs來源的抗原肽-MHCⅡ類分子復(fù)合物,繼而將之傳遞給CD4+初始T細(xì)胞,從而抑制T細(xì)胞的增殖和生存。小鼠模型結(jié)果顯示FRCs與T淋巴細(xì)胞存在著交互作用,T細(xì)胞來源的IFN-γ會(huì)增強(qiáng)FRCs釋放iNOS的能力[35],而且這種交互作用具有接觸依賴性。FRCs介導(dǎo)的T細(xì)胞抑制作用,在體內(nèi)也得到了證實(shí)。將特異性O(shè)TI T淋巴細(xì)胞輸注給iFABP-tOVA轉(zhuǎn)基因小鼠會(huì)誘導(dǎo)部分FRCs上調(diào)iNOS的表達(dá),使得FRCs對(duì)T細(xì)胞的抑制能力明顯增強(qiáng)[10]。此外,F(xiàn)RCs對(duì)于CD8+T細(xì)胞也有抑制效應(yīng),Denton等[36]利用基因修飾的方法清除淋巴結(jié)內(nèi)FRCs,證實(shí)FRCs對(duì)于CD8+T細(xì)胞處于靜息,非活化狀態(tài)的維持具有重要作用。在慢性感染等疾病中,淋巴結(jié)中大量的FRCs會(huì)被感染,感染后的FRCs支架結(jié)構(gòu)會(huì)發(fā)生變化,程序性死亡分子配體1表達(dá)上調(diào),從而在早期抑制CD8+T細(xì)胞的過激反應(yīng),減輕免疫應(yīng)答[37]。
在特定的刺激下,初始T細(xì)胞,可以分化成調(diào)節(jié)性T細(xì)胞、輔助性T細(xì)胞或記憶性T細(xì)胞等終末細(xì)胞。為闡明基質(zhì)細(xì)胞對(duì)于T細(xì)胞分化的影響,Ahrendt等[38]將腸系膜淋巴結(jié)和外周淋巴結(jié)分別移植入小鼠體內(nèi),在淋巴結(jié)重建的過程中,發(fā)現(xiàn)供者來源的免疫細(xì)胞被宿主來源的實(shí)質(zhì)細(xì)胞取代,而供者來源的基質(zhì)細(xì)胞得以存活。這種淋巴結(jié)移植模型的建立為后續(xù)探索成纖維基質(zhì)細(xì)胞對(duì)T細(xì)胞的影響提供了有效手段。Cording等[39]學(xué)者將肝引流腹腔淋巴結(jié)和胃腸道引流腹腔淋巴結(jié)移植至清除內(nèi)源性腘淋巴結(jié)的筋膜下,研究發(fā)現(xiàn)FRCs可以誘導(dǎo)調(diào)節(jié)性T細(xì)胞的產(chǎn)生。究其原因,可能是FRCs來源的NO直接作用于新活化T細(xì)胞,誘導(dǎo)其向調(diào)節(jié)性T細(xì)胞分化。Niedbala等[40]研究者的工作支持這一設(shè)想,研究結(jié)果顯示無論在體外還是體內(nèi)試驗(yàn),NO都能促進(jìn)CD4+CD25+Foxp3-調(diào)節(jié)性T細(xì)胞的產(chǎn)生。研究證實(shí),F(xiàn)RCs表達(dá)MHCⅡ類分子。CD4+CD25+Foxp3+的增殖依賴于非造血細(xì)胞表面MHCⅡ類分子的表達(dá)。Baptista等[33]學(xué)者利用K14-OVA轉(zhuǎn)基因小鼠制備淋巴結(jié)移植模型,檢測(cè)T細(xì)胞與表達(dá)OVA蛋白的基質(zhì)細(xì)胞之間的相互作用。研究結(jié)果顯示,即便在末梢淋巴結(jié)內(nèi)仍可檢測(cè)到大量OVA特異性的調(diào)節(jié)性T細(xì)胞。最近,有研究發(fā)現(xiàn),F(xiàn)RCs可能通過支持記憶前體效應(yīng)細(xì)胞的維持而調(diào)節(jié)T細(xì)胞的分化,當(dāng)清除了FRCs時(shí),記憶前體效應(yīng)細(xì)胞的比例會(huì)在某種程度上相對(duì)減少[41]。
雖然在負(fù)性選擇中具有自我反應(yīng)的T細(xì)胞應(yīng)該被清除掉,但是仍有一部分具有自我反應(yīng)的T細(xì)胞釋放到外周[42]。一直以來,認(rèn)為未成熟DCs參與誘導(dǎo)和維持外周免疫耐受[43]。然而,研究發(fā)現(xiàn),淋巴結(jié)基質(zhì)細(xì)胞在介導(dǎo)外周免疫耐受的過程中也發(fā)揮著重要作用。FRCs通過內(nèi)源性或捕獲的方法獲得MHCⅡ類分子,繼而誘導(dǎo)CD4+T細(xì)胞發(fā)生免疫耐受。一般認(rèn)為,在胸腺中,髓質(zhì)胸腺上皮細(xì)胞會(huì)呈遞自身外圍組織抗原通過陰性選擇過程清除自身反應(yīng)胸腺細(xì)胞。研究中發(fā)現(xiàn)CD45-gp38+淋巴結(jié)基質(zhì)細(xì)胞也可通過呈遞內(nèi)源性組織抗原的方式清除自身反應(yīng)T細(xì)胞,同時(shí)誘導(dǎo)耐受型CD8+T細(xì)胞的產(chǎn)生,從而誘導(dǎo)免疫耐受的發(fā)生[44]。FRCs雖然自身不表達(dá)自身免疫調(diào)節(jié)因子,但卻表達(dá)一種自身免疫調(diào)節(jié)因子類似分子,即畸形表皮自調(diào)節(jié)因子,調(diào)節(jié)某些和自身免疫疾病相關(guān)的自身抗原的表達(dá)[45-47]。有動(dòng)物模型證實(shí)FRCs表達(dá)的外周組織限制性抗原可通過清除自身反應(yīng)性T細(xì)胞克隆,從而減少自身免疫病的發(fā)生[48]。在移植物抗宿主病疾病中,通過阻斷Fas-FasL途徑減輕FRCs的損傷,可以明顯減輕疾病狀態(tài)[49],從而直接驗(yàn)證了FRCs在免疫耐受中的重要作用。
在過去幾十年,大家對(duì)于FRCs的免疫調(diào)節(jié)功能的認(rèn)識(shí)有了很大的提高。FRCs不再單單是淋巴結(jié)內(nèi)的支架細(xì)胞,它可以調(diào)節(jié)淋巴結(jié)內(nèi)T淋巴細(xì)胞的招募及在淋巴結(jié)內(nèi)定位。FRCs也可以通過誘導(dǎo)調(diào)節(jié)性T細(xì)胞產(chǎn)生從而誘導(dǎo)免疫耐受的發(fā)生。同時(shí),F(xiàn)RCs可以限制T細(xì)胞的擴(kuò)增,參與維持記憶前體效應(yīng)細(xì)胞。綜上所述,F(xiàn)RCs已日益成為調(diào)節(jié)T細(xì)胞免疫的關(guān)鍵細(xì)胞成分。
[1] Mueller SN,Germain RN.Stromal cell contributions to the homeostasis and functionality of the immune system[J].Nat Rev Immunol,2009,9(9):618-629.
[2] Benezech C,Mader E,Desanti G,etal.Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells[J].Immunity,2012,37(4):721-734.
[3] van de Pavert SA,Mebius RE.New insights into the development of lymphoid tissues[J].Nat Rev Immunol,2010,10(9):664-674.
[4] Chai Q,Onder L,Scandella E,etal.Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity[J].Immunity,2013,38(5):1013-1024.
[5] Roozendaal R,Mebius RE.Stromal cell-immune cell interactions[J].Annu Rev Immunol,2011,29:23-43.
[6] Koning JJ,Mebius RE.Interdependence of stromal and immune cells for lymph node function[J].Trends Immunol,2012,33(6):264-270.
[7] Fletcher AL,Malhotra D,Acton SE,etal.Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells[J].Front Immunol,2011,2:35.
[8] Hou TZ,Bystrom J,Sherlock JP,etal.A distinct subset of podoplanin (gp38) expressing F4/80+ macrophages mediate phagocytosis and are induced following zymosan peritonitis[J].FEBS Lett,2010,584(18):3955-3961.
[9] Malhotra D,Fletcher AL,Astarita J,etal.Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks[J].Nat Immunol,2012,13(5):499-510.
[10] Lukacs-Kornek V,Malhotra D,Fletcher AL,etal.Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes[J].Nat Immunol,2011,12(11):1096-1104.
[11] Siegert S,Huang HY,Yang CY,etal.Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide[J].PLoS One,2011,6(11):e27618.
[12] Kyewski B,Klein L.A central role for central tolerance[J].Annu Rev Immunol,2006,24:571-606.
[13] von Andrian UH,Mempel TR.Homing and cellular traffic in lymph nodes[J].Nat Rev Immunol,2003,3(11):867-878.
[14] Kaech SM,Cui W.Transcriptional control of effector and memory CD8+T cell differentiation[J].Nat Rev Immunol,2012,12(11):749-761.
[15] Takada K,Jameson SC.Naive T cell homeostasis:from awareness of space to a sense of place[J].Nat Rev Immunol,2009,9(12):823-832.
[16] Girard JP,Springer TA.High endothelial venules (HEVs):specialized endothelium for lymphocyte migration[J].Immunol Today,1995,16(9):449-457.
[17] Bénézech C,Nayar S,Finney BA,etal.CLEC-2 is required for development and maintenance of lymph nodes [J].Blood,2014,123(20):3200-3207.
[18] Herzog BH,Fu J,Wilson SJ,etal.Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2[J].Nature,2013,502(7469):105-109.
[19] Astarita JL,Cremasco V,Fu J,etal.The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph nodemicroarchitecture [J].Nat Immunol,2015,16(1):75-84.
[20] Bajenoff M,Egen JG,Koo LY,etal.Stromal cell networks regulate lymphocyte entry,migration,and territoriality in lymph nodes[J].Immunity,2006,25(6):989-1001.
[21] Asperti-Boursin F,Real E,Bismuth G,etal.CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner[J].J Exp Med,2007,204(5):1167-1179.
[22] Worbs T,Mempel TR,Bolter J,etal.CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo[J].J Exp Med,2007,204(3):489-495.
[23] Takeda A,Kobayashi D,Aoi K,etal.Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility[J].Elife,2016,5:e10561.
[24] Cremasco V,Woodruff MC,Onder L,etal.B cell homeostasis and follicle confines are governed by fibroblastic reticular cells[J].Nat Immunol,2014,15(10):973-981.
[25] Tomura M,Yoshida N,Tanaka J,etal.Monitoring cellular movement in vivo with photoconvertible fluorescence protein "Kaede" transgenic mice[J].Proc Natl Acad Sci U S A,2008,105(31):10871-10876.
[26] Roozendaal R,Mebius RE,Kraal G.The conduit system of the lymph node[J].Int Immunol,2008,20(12):1483-1487.
[27] Sixt M,Kanazawa N,Selg M,etal.The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node[J].Immunity,2005,22(1):19-29.
[28] Gretz JE,Norbury CC,Anderson AO,etal.Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex[J].J Exp Med,2000,192(10):1425-1440.
[29] Nakayama Y,Brinkman CC,Bromberg JS.Murine fibroblastic reticular cells from lymph node interact with CD4+T cells through CD40-CD40L[J].Transplantation,2015,99(8):1561-1567.
[30] Schumann K,Lammermann T,Bruckner M,etal.Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells[J].Immunity,2010,32(5):703-713.
[31] Mackall CL,Fry TJ,Gress RE.Harnessing the biology of IL-7 for therapeutic application[J].Nat Rev Immunol,2011,11(5):330-342.
[32] Estes JD,Reilly C,Trubey CM,etal.Antifibrotic therapy in simian immunodeficiency virus infection preserves CD4+T-cell populations and improves immune reconstitution with antiretroviral therapy [J].J Infect Dis,2015,211(5):744-754.
[33] Baptista AP,Roozendaal R,Reijmers RM,etal.Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation[J].Elife,2014,3:doi:10.7554/eLife.04433.
[34] Dubrot J,Duraes FV,Potin L,etal.Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4(+) T cell tolerance[J].J Exp Med,2014,211(6):1153-1166.
[35] Khan O,Headley M,Gerard A,etal.Regulation of T cell priming by lymphoid stroma[J].PLoS One,2011,6(11):e26138.
[36] Denton AE,Roberts EW,Linterman MA,etal.Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+T cells[J].Proc Natl Acad Sci U S A,2014,111(33):12139-12144.
[37] Mueller SN,Matloubian M,Clemens DM,etal.Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection[J].Proc Natl Acad Sci U S A,2007,104(39):15430-15435.
[38] Ahrendt M,Hammerschmidt SI,Pabst O,etal.Stromal cells confer lymph node-specific properties by shaping a unique microenvironment influencing local immune responses[J].J Immunol,2008,181(3):1898-1907.
[39] Cording S,Wahl B,Kulkarni D,etal.The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes[J].Mucosal Immunol,2014,7(2):359-368.
[40] Niedbala W,Besnard AG,Jiang HR,etal.Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function[J].J Immunol,2013,191(1):164-170.
[41] Fletcher AL,Elman JS,Astarita J,etal.Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis[J].Sci Transl Med,2014,6(249):109r-249r.
[42] Lohse AW,Dinkelmann M,Kimmig M,etal.Estimation of the frequency of self-reactive T cells in health and inflammatory diseases by limiting dilution analysis and single cell cloning[J].J Autoimmun,1996,9(5):667-675.
[43] Steinman RM,Hawiger D,Liu K,etal.Dendritic cell function in vivo during the steady state:a role in peripheral tolerance[J].Ann N Y Acad Sci,2003,987:15-25.
[44] Lee JW,Epardaud M,Sun J,etal.Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self[J].Nat Immunol,2007,8(2):181-190.
[45] Fletcher AL,Lukacs-Kornek V,Reynoso ED,etal.Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions[J].J Exp Med,2010,207(4):689-697.
[46] Cohen JN,Guidi CJ,Tewalt EF,etal.Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation[J].J Exp Med,2010,207(4):681-688.
[47] Yip L,Su L,Sheng D,etal.Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes[J].Nat Immunol,2009,10(9):1026-1033.
[48] Magnusson FC,Liblau RS,von Boehmer H,etal.Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity[J].Gastroenterology,2008,134(4):1028-1037.
[49] Suenaga F,Ueha S,Abe J,etal.Loss of lymph node fibroblastic reticular cells and high endothelial cells is associated with humoral immunodeficiency in mouse graft-versus-host disease[J].J Immunol,2015,194(1):398-406.
[收稿2016-06-23 修回2016-08-03]
(編輯 倪 鵬)
10.3969/j.issn.1000-484X.2017.03.030
①本文為國(guó)家自然科學(xué)基金(No.81370667、81570160)資助項(xiàng)目。
唐 博(1988年-),女,在讀博士,主要從事惡性血液病的治療方面研究。
及指導(dǎo)教師:任漢云(1959年-),男,博士,主任醫(yī)師,教授,博士生導(dǎo)師,主要從事造血干細(xì)胞移植的臨床與基礎(chǔ)研究,E-mail:renhy0813@163.com。
R392.12
A
1000-484X(2017)03-0453-04