蔡雯雯,王靈杰,岳華杰,張瑞平
(山西醫(yī)科大學(xué)第一醫(yī)院影像科,山西 太原 030001)
基于釓的納米對(duì)比劑MRI應(yīng)用進(jìn)展
蔡雯雯,王靈杰,岳華杰,張瑞平*
(山西醫(yī)科大學(xué)第一醫(yī)院影像科,山西 太原 030001)
目前應(yīng)用于臨床的MRI對(duì)比劑主要是基于釓的小分子配合物,如Gd-dTPA、Gd-dOTA等,但其在弛豫性能和早期診斷中仍存在缺陷。隨著納米技術(shù)的發(fā)展,分子納米探針不僅具有粒徑小、生物相容性好、增強(qiáng)滲透滯留(EPR)效應(yīng)及半衰期長等優(yōu)勢(shì),其弛豫率也要高于目前常用的釓對(duì)比劑。本文對(duì)以脂質(zhì)體、樹枝狀大分子、介孔氧化硅、聚合物膠束、碳納米管、納米金及順磁性納米粒子為主的MR分子探針的應(yīng)用進(jìn)行綜述。
磁共振成像;釓;對(duì)比劑;納米材料;弛豫率
MRI作為一種無創(chuàng)、非侵入性的成像技術(shù),可提供解剖和功能雙重成像信息,同時(shí)具有時(shí)間和空間分辨率高、無輻射等優(yōu)勢(shì)[1]。臨床上近1/3的MR檢查為增強(qiáng)掃描,且以釓對(duì)比劑應(yīng)用最為廣泛[2]。與X線、CT等傳統(tǒng)成像技術(shù)相比,MRI在功能成像方面具有獨(dú)特優(yōu)勢(shì),這使得通過MRI發(fā)現(xiàn)病變、示蹤移植細(xì)胞及進(jìn)行分子和細(xì)胞水平成像成為可能。MR對(duì)比劑一般分兩類,以超順磁性氧化鐵(superparamagnetic iron oxid, SPIO)為代表的陰性對(duì)比劑(T2對(duì)比劑)和以金屬離子(釓、錳等)螯合物為代表的陽性對(duì)比劑(T1對(duì)比劑)。在T2WI圖像中,SPIO表現(xiàn)為低信號(hào),體內(nèi)成像時(shí)很難將其與周圍低信號(hào)組織或出血相區(qū)分[3-4],且SPIO標(biāo)記細(xì)胞后會(huì)產(chǎn)生毒性、影響細(xì)胞活性[5-6]。鑭系金屬釓是一類稀土金屬,外層含有7個(gè)未成對(duì)電子,具有極強(qiáng)的順磁性,能夠明顯縮短T1,在臨床應(yīng)用廣泛[7]。但游離Gd3+活體使用毒性大,將Gd3+與某些配體結(jié)合后形成復(fù)合物能夠有效降低毒性。臨床應(yīng)用較多的是DTPA、DOTA等小分子物質(zhì)。
釓對(duì)比劑有以下特點(diǎn)[8]:①高弛豫率,能夠極大提高疾病的檢出率;②高穩(wěn)定性,可避免游離釓離子的釋放,從而有效減少不良反應(yīng);③特定的生物分布,能夠提高特定疾病檢出率;④具有清除能力,能夠從體內(nèi)排出,避免殘留產(chǎn)生慢性毒性;⑤低毒性。
納米科學(xué)技術(shù)在醫(yī)學(xué)領(lǐng)域的研究與應(yīng)用廣泛,如納米藥物、藥物載體、組織修復(fù)和再生醫(yī)學(xué)中的納米材料等[9],其中納米對(duì)比劑具有粒徑小,形狀、粒徑、成分和組裝可控,EPR效應(yīng)及半衰期長,易于修飾等特性。MR納米對(duì)比劑主要分為兩種:①將順磁性物質(zhì)嵌入納米框架結(jié)構(gòu)中,如脂質(zhì)體、樹枝狀大分子、介孔氧化硅及碳納米管等;②順磁性納米粒子[10]。本文主要對(duì)基于Gd3+的納米對(duì)比劑在MR成像中的應(yīng)用和研究進(jìn)展進(jìn)行綜述。
目前臨床應(yīng)用的釓對(duì)比劑多為親水性物質(zhì),以Gd-dTPA為例,其同細(xì)胞膜表面均帶有負(fù)電荷,因此很難直接進(jìn)入細(xì)胞內(nèi),限制了其在細(xì)胞及分子水平的應(yīng)用。Shuai等[11]利用磷酸鈣、脂質(zhì)體2000及Effectene作為轉(zhuǎn)染劑,將Gd-dTPA成功轉(zhuǎn)染入人臍帶間充質(zhì)干細(xì)胞(human umbilical cord mesenchymal stem cells, hUCMSCs)中,結(jié)果表明3種轉(zhuǎn)染劑均能成功轉(zhuǎn)染Gd-dTPA,其中Effectene的轉(zhuǎn)染效率最高;同時(shí)發(fā)現(xiàn)轉(zhuǎn)染后的干細(xì)胞增殖和分化潛能不受影響。Shen等[4]通過脂質(zhì)體轉(zhuǎn)染Gd-dTPA,發(fā)現(xiàn)其標(biāo)記率達(dá)90%,且標(biāo)記信號(hào)可持續(xù)15天左右。
目前臨床應(yīng)用的釓對(duì)比劑弛豫效能較低[12],產(chǎn)生良好的對(duì)比增強(qiáng)效果則需提高劑量[13],但毒性較大,且對(duì)早期病變?cè)\斷的敏感度和特異度較低;此外,對(duì)比劑在血液中的循環(huán)時(shí)間較短(半衰期短)。
脂質(zhì)體是一種由脂質(zhì)雙分子層形成的球形自封閉納米結(jié)構(gòu),具有親兩性特征,是目前納米載藥系統(tǒng)中的代表[14]。脂質(zhì)體溶于水后形成雙分子層囊泡結(jié)構(gòu),可作為載體包裹不同的物質(zhì)。此外,脂質(zhì)體的膜與細(xì)胞膜類似,適用于生物醫(yī)學(xué)研究。脂質(zhì)體還具有靶向性、緩釋性和降低藥物毒性等優(yōu)勢(shì)[15]。
小分子對(duì)比劑經(jīng)靜脈給藥后體內(nèi)半衰期短,腎功能正常情況下約為1.5 h,會(huì)不可避免地從血管中滲出,尤其是受損血管。Aryal等[16]合成Gd(DOTA)-脂質(zhì)體納米粒,將其與紅細(xì)胞共孵育30 min后成功標(biāo)記形成Gd-RBCs,通過鼠尾靜脈注射后測(cè)得血液循環(huán)時(shí)間延長至2天,且縱向弛豫時(shí)間顯著縮短,弛豫率達(dá)20 mM-1s-1。由于對(duì)比劑不能通過正常血腦屏障,對(duì)早期腦膠質(zhì)瘤患者無法達(dá)到早期診斷的目的。Liu等[17]將Gd-dTPA包裹于IL-13脂質(zhì)體內(nèi),合成了粒徑約(137±43)nm的IL-13-liposome-Gd-dTPA,發(fā)現(xiàn)該粒子能夠通過正常血腦屏障,有助于早期發(fā)現(xiàn)腦膠質(zhì)瘤。
由于具有獨(dú)特可調(diào)節(jié)的三維立體結(jié)構(gòu),樹枝狀大分子具有優(yōu)于傳統(tǒng)線性結(jié)構(gòu)的一些特征,如單分散性、可調(diào)控納米粒徑、立體結(jié)構(gòu)、表面基團(tuán)豐富、內(nèi)腔封裝等優(yōu)勢(shì)[18]。此外,樹枝狀大分子表面可偶聯(lián)多種功能基團(tuán),能夠與靶向配體、成像探針、藥物等共軛結(jié)合,提高血液循環(huán)時(shí)間、增加靶向性,從而實(shí)現(xiàn)疾病的診療一體化[19-20]。
樹枝狀大分子可螯合大量Gd3+,從而提高弛豫率。Sousa等[21]合成聚酰胺-胺型樹枝狀大分子,與順磁性物質(zhì)結(jié)合后進(jìn)行診斷成像和化學(xué)治療。Xiong等[22]利用第4代丙烯亞胺樹枝狀大分子與Gd-dOTA螯合,發(fā)現(xiàn)其縱向弛豫效能較單純Gd-dOTA提高約3倍,合成的PPI-MAL DS-dOTA(Gd)復(fù)合物能夠有效應(yīng)用于腫瘤細(xì)胞體外成像及動(dòng)物體內(nèi)主動(dòng)脈、腎動(dòng)脈、腎臟及膀胱成像,且在注射48 h后從活體內(nèi)代謝。
介孔氧化硅納米材料具有比表面積高、孔徑均一可調(diào)、易于表面修飾和生物相容性好等優(yōu)勢(shì)[23],但由于整體粒徑較大、溶于介質(zhì)后易團(tuán)聚等缺陷,臨床應(yīng)用受到一定限制,盡管目前已合成粒徑約50 nm的介孔氧化硅,但仍無法解決團(tuán)聚問題[24-25]。
Hu等[26]成功合成粒徑約10~50 nm、弛豫率高、可雙模態(tài)成像(光學(xué)成像和核磁成像)且具有靶向性的Gd-MSN-RGD納米探針,該探針單分散性好,能夠準(zhǔn)確發(fā)現(xiàn)病灶并進(jìn)行術(shù)中導(dǎo)航。Chen等[27]合成一種多功能靶向納米顆粒(MSN-ss-GHA),負(fù)載抗癌藥物阿霉素(Doxorubicin, DOX),發(fā)現(xiàn)4T1細(xì)胞能夠有效攝取DOX@MSN-ss-GHA;此外,該納米探針還能夠靶向藥物傳輸并MR成像。
聚合物膠束是由兩親性聚合物分子在水中自組裝形成,其內(nèi)核為疏水性,外殼由親水性鏈段構(gòu)成,藥物載體包裹疏水性物質(zhì),而外層的親水性分子增加了生物相容性且延長了血漿半衰期[28]。聚合物膠束能夠攜帶水溶性差的藥物,提高生物利用率;與靶向配體連接后具有靶向性[29]。
Johnson等[30]應(yīng)用膠體NaGdF4納米晶體合成一種極高弛豫率的微膠,粒徑約2.8~12.5 nm,其弛豫率達(dá)80 mM-1s-1,同時(shí)能夠?qū)崿F(xiàn)粒徑可控。由于GD-dTPA分子量低,易于被機(jī)體清除,Lee等[31]將mPEG作為親水性配體,十六烷基銨作為親脂性配體,與琥珀酰亞胺(Polysicciniminde, PSI)和GD-dTPA形成聚合物膠束——SI-mPEG-c16-(DTPA-Gd),發(fā)現(xiàn)其弛豫性能較GD-dTPA高5倍,且穩(wěn)定性更好、半衰期更長。
碳納米管是一種由石墨烯片卷曲成圓柱狀片層、具有納米級(jí)直徑的結(jié)構(gòu),可分為單層碳納米管(single-walled carbon nanotubes, SWCNTs)和多層碳納米管(multi-walled carbon nanotubes, MWCNTs)。碳納米管具有張力高、縱橫比高及作為惰性材料仍能被功能化等優(yōu)勢(shì)[32]。
Avti等[33]通過化學(xué)氣相沉淀法合成Gd-SWCNTs,并通過聚乙二醇(polyethylene glycol, PEG)修飾形成穩(wěn)定且生物相容性好的Gd-SWCNT-dSPE-PEG,細(xì)胞毒性試驗(yàn)發(fā)現(xiàn)其濃度低于25 μg/ml后基本不影響細(xì)胞活性、增殖及分化能力,且標(biāo)記細(xì)胞產(chǎn)生的MRI信號(hào)強(qiáng)度較未標(biāo)記細(xì)胞高4倍。碳納米管還可作為靶向藥物輸送系統(tǒng)應(yīng)用于疾病診療一體化中。Yan等[34]利用天冬酰胺-甘氨酸-精氨酸肽修飾SWCNTs后,可負(fù)載抗癌藥物(如DOX)和MR對(duì)比劑(如Gd-dTPA),形成的復(fù)合物既具有細(xì)胞毒性作用,也可進(jìn)行MR成像,實(shí)現(xiàn)了診療一體化。
金是一種生物相容性極好的金屬物質(zhì),形態(tài)多樣,目前合成和研究較多的是金納米棒和金納米簇。Nicholls等[35]研究發(fā)現(xiàn)脫氧腺苷寡核苷酸修飾的金納米粒能與Gd3+結(jié)合,并與cy3熒光染料結(jié)合后,形成的DNA-Gd@AuNPs可以在活體內(nèi)示蹤移植神經(jīng)干細(xì)胞。Qin等[36]合成雙模態(tài)分子探針——釓(Ⅲ)-金納米棒Gd(Ⅲ)-GNRs,進(jìn)行MR和光聲雙模態(tài)成像觀察,并成功標(biāo)記巨噬細(xì)胞后進(jìn)行MR成像。
除上述材料外,還有較多磁性納米粒子應(yīng)用于MR成像中。Faucher等[7]制備的超順磁性PEG-Gd2O3納米顆粒,粒徑在5 nm以下,由于比表面積小,釓密度大而產(chǎn)生強(qiáng)T1信號(hào),該納米粒子在成功標(biāo)記F98大鼠膠質(zhì)瘤細(xì)胞后植入大鼠體內(nèi),48 h后即可觀察到信號(hào)。
如何對(duì)腫瘤進(jìn)行精確定位及術(shù)中導(dǎo)航是目前精準(zhǔn)醫(yī)療研究的關(guān)鍵。Lim等[37]合成一種pH敏感的芘-釓納米顆粒(Py-Gd),該納米粒在腫瘤酸性環(huán)境中能產(chǎn)生較中性環(huán)境更高的信號(hào)強(qiáng)度。該項(xiàng)研究是未來分子探針合成的方向之一。
研究[38]發(fā)現(xiàn),以人體內(nèi)源性物質(zhì)——黑色素為基礎(chǔ),利用其緊密螯合金屬離子的特性,設(shè)計(jì)合成黑色素-釓納米粒(MNP-Gd),能夠成功標(biāo)記大鼠骨髓間充質(zhì)干細(xì)胞,且在濃度低于800 μg/ml時(shí)幾乎無細(xì)胞毒性。
總之,由于目前臨床應(yīng)用的釓對(duì)比劑多為小分子配合物,存在弛豫效能低且半衰期短的問題,而納米材料具有諸多優(yōu)勢(shì),因此納米分子探針將成為未來的研究和應(yīng)用趨勢(shì),且MR分子探針合成著重于弛豫率和安全性的問題。
[1] Ju KY, Lee JW, Im GH, et al. Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for T1-weighted magnetic resonance imaging. Biomacromolecules, 2013,14(10):3491-3497.
[2] Wei H, Bruns OT,Kaul MG, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A, 2017,114(9):2325-2330.
[3] Drey F, Choi YH, Neef K, et al. Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI. Cell Transplant, 2013,22(11):1971-1980.
[4] Shen J, Cheng LN, Zhong XM, et al. Efficient in vitro labeling rabbit neural stem cell with paramagnetic Gd-dTPA and fluorescent substance. Eur J Radiol, 2010,75(3):397-405.
[5] Rosenberg JT, Sellgren KL, Sachi-Kocher A, et al. Magnetic resonance contrast and biological effects of intracellular superparamagnetic iron oxides on human mesenchymal stem cells with long-term culture and hypoxic exposure. Cytotherapy, 2013,15(3):307-322.
[6] Crichton RR, Wilmet S, Legssyer R, et al. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem, 2002,91(1):9-18.
[7] Faucher L, Tremblay M, Lagueux J, et al. Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces, 2012,4(9):4506-4515.
[8] Hao D, Ai T, Goerner F, et al. MRI contrast agents: Basic chemistry and safety. J Magn Reson Imaging, 2012,36(5):1060-1071.
[9] 曲秋蓮,張英鴿.納米技術(shù)和材料在醫(yī)學(xué)上應(yīng)用的現(xiàn)狀與展望.東南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2011,30(1):157-163.
[10] Hu F, Joshi HM, Dravid VP, et al. High-performance nanostructured MR contrast probes. Nanoscale, 2010,2(10):1884-1891.
[11] Shuai HL, Yan RL, Song H, et al. Analysis of feasibility of in vitro nuclear magnetic resonance tracking human umbilical cord mesenchymal stem cells by Gd-dTPA labeled. Magn Reson Imaging, 2014,32(7):934-940.
[12] Werner EJ, Datta A, Jocher CJ, et al. High-relaxivity MRI contrast agents: Where coordination chemistry meets medical imaging. Angew Chem Int Ed Engl, 2008,47(45):8568-8680.
[13] Sigg SJ, Santini F, Najer A, et al. Nanoparticle-based highly sensitive MRI contrast agents with enhanced relaxivity in reductive milieu. Chem Commun (Camb), 2016,52(64):9937-9940.
[14] 李秀英,曾凡,趙曜,等.脂質(zhì)體藥物遞送系統(tǒng)的研究進(jìn)展.中國新藥雜志,2014,23(16):1904-1911.
[15] 楊鵬波,張華.脂質(zhì)體的研究新進(jìn)展.浙江中醫(yī)藥大學(xué)學(xué)報(bào),2013,37(7):936-939.
[16] Aryal S, Stigliano C, Key J, et al. Paramagnetic Gd(3+) labeled red blood cells for magnetic resonance angiography. Biomaterials, 2016,98:163-170.
[17] Liu X, Madhankumar AB, Miller PA, et al. MRI contrast agent for targeting glioma: Interleukin-13 labeled liposome encapsulating gadolinium-dTPA. Neuro Oncol, 2016,18(5):691-699.
[18] Sun W, Mignani S, Shen M, et al. Dendrimer-based magnetic iron oxide nanoparticles: Their synthesis and biomedical applications. Drug Discov Today, 2016,21(12):1873-1885.
[19] Cai H, Li K, Li J, et al. Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small, 2015,11(35):4584-4593.
[20] Bugno J, Hsu HJ, Hong S. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: Potential nanocarriers for improved cancer targeting. J Drug Target, 2015,23(7-8):642-650.
[21] Sousa AA, Aronova MA, Wu H, et al. Determining molecular mass distributions and compositions of functionalized dendrimer nanoparticles. Nanomedicine (Lond), 2009,4(4):391-399.
[22] Xiong Z, Wang Y, Zhu J, et al. Gd-chelated poly (propylene imine) dendrimers with densely organized maltose shells for enhanced MR imaging applications. Biomater Sci, 2016,4(11):1622-1629.
[23] 張一平,周春暉,王學(xué)杰,等.有機(jī)功能化介孔氧化硅的制備和表征.化學(xué)進(jìn)展,2008,20(1):33-41.
[24] Ma K, Sai H, Wiesner U. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J Am Chem Soc, 2012,134(32):13180-13183.
[25] Lin YS, Hurley KR, Haynes CL. Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett, 2012,3(3):364-374.
[26] Hu H, Arena F, Gianolio E, et al. Mesoporous silica nanoparticles functionalized with fluorescent and MRI reporters for the visualization of murine tumors overexpressing alphavbeta 3 receptors. Nanoscale, 2016,8(13):7094-7104.
[27] Chen L, Zhou X, Nie W, et al. Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging. ACS Appl Mater Interfaces, 2016,8(49):33829-32841.
[28] 馬穎穎.溫度和pH敏感性可降解高分子膠束載藥體系的研究.武漢:武漢大學(xué),2013:1-20.
[29] Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev, 2002,54(2):235-252.
[30] Johnson NJ, He S, Nguyen Huu VA, et al. Compact micellization: A strategy for ultrahigh T1 magnetic resonance contrast with Gadolinium-based nanocrystals. ACS Nano, 2016,10(9):8299-8307.
[31] Lee HY, Jee HW, Seo SM, et al. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents. Bioconjug Chem, 2006,17(3):700-706.
[32] Hernandez-Rivera M, Zaibaq NG, Wilson LJ. Toward carbon nanotube-based imaging agents for the clinic. Biomaterials, 2016,101:229-240.
[33] Avti PK, Caparelli ED, Sitharaman B. Cytotoxicity, cytocompatibility, cell-labeling efficiency, and in vitro cellular magnetic resonance imaging of gadolinium-catalyzed single-walled carbon nanotubes. J Biomed Mater Res A, 2013,101(12):3580-3591.
[34] Yan C, Chen C, Hou L, et al. Single-walled carbon nanotube-loaded doxorubicin and Gd-dTPA for targeted drug delivery and magnetic resonance imaging. J Drug Target, 2017,25(2):163-171.
[35] Nicholls FJ, Rotz MW, Ghuman H, et al. DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials, 2016,77:291-306.
[36] Qin H, Zhou T, Yang S, et al. Gadolinium (Ⅲ)-gold nanorods for MRI and photoacoustic imaging dual-modality detection of macrophages in atherosclerotic inflammation. Nanomedicine (Lond), 2013,8(10):1611-1624.
[37] Lim EK, Kang B, Choi Y, et al. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging. Nanotechnology, 2014,25(24):245103.
[38] Cai WW, Wang LJ, Li SJ, et al. Effective tracking of bone mesenchymal stem cells in vivo by magnetic resonance imaging using melanin-based gadolinium3+ nanoparticles. J Biomed Mater Res A, 2017,105(1):131-137.
ApplicationprogressesofGadolinium-basednanomaterialscontrastmediainMRI
CAIWenwen,WANGLingjie,YUEHuajie,ZHANGRuiping*
(DepartmentofRadiology,theFirstHospitalofShanxiMedicalUniversity,Taiyuan030001,China)
Recently clinical MR contrast media consists mainly of gadolinium-based small molecule complexes, such as Gd-dTPA, Gd-dOTA, etc, but small molecule complexes are defective in the relaxation and early diagnosis. With the development of nanotechnology, molecular nanoprobes not only have the advantages of small particle size, good biocompatibility, enhanced penetration and retention (EPR) effect and long half-life, but also their relaxation rates are higher than that of common gadolinium contrast media. The application of current MR molecular probe, such as liposomes, dendrimers, mesoporous silica, polymer micelles, carbon nanotubes, nano-gold and paramagnetic nanoparticles were mainly introduced in this paper.
Magnetic resonance imaging; Gadolinium; Contrast media; Nanomaterials; Relaxation
10.13929/j.1003-3289.201703073
R445.2
A
1003-3289(2017)10-1475-04
國家自然科學(xué)基金(81571747、81371628)、山西省重點(diǎn)研發(fā)計(jì)劃(201603D121021)、山西省留學(xué)回國人員擇優(yōu)資助項(xiàng)目(2015057)。
蔡雯雯(1991—),女,山西臨汾人,在讀碩士。研究方向:分子影像學(xué)。E-mail: caiwenwen0914@sina.com
張瑞平,山西醫(yī)科大學(xué)第一醫(yī)院影像科,030001。E-mail: zrp_7142@163.com
2017-03-15
2017-06-04