楊景柯,艾 昊 (鄭州大學(xué)附屬腫瘤醫(yī)院血液科,河南鄭州450008)
成人復(fù)發(fā)/難治急性髓系白血病靶向治療的臨床研究進展
楊景柯,艾 昊 (鄭州大學(xué)附屬腫瘤醫(yī)院血液科,河南鄭州450008)
目前成人復(fù)發(fā)/難治急性髓系白血?。≧/R AML)的治療仍面臨較大困難,傳統(tǒng)挽救性化療的效果和預(yù)后普遍較差.AML細胞存在多種與發(fā)病機制和病理生理學(xué)密切相關(guān)的基因、表觀遺傳學(xué)、酶活性、細胞表面抗原等異常改變,由此已設(shè)計出多種針對這些特異性改變的小分子靶向藥物或免疫療法.靶向治療以其相對高效、低毒的特性,拓寬了R/R AML患者的治療選擇.本文對成人R/R AML分子和免疫靶向治療的臨床研究進展做一綜述.
急性髓系白血病;復(fù)發(fā)難治;臨床研究;靶向治療
急性髓系白血?。╝cute myeloid leukemia,AML)是一組遺傳學(xué)上高度異質(zhì)性的惡性克隆性疾病,以骨髓中未成熟的髓系原始細胞分化和增殖異常為特征[1].該病是成人急性白血病中最常見的一種類型,其發(fā)病率隨年齡逐年增加.隨著支持治療和化療方案的改進,目前高達50%~80%的初診AML患者經(jīng)1~2療程誘導(dǎo)化療后可獲得完全緩解(complete remission,CR),但仍有10%~40%患者誘導(dǎo)化療無效,即原發(fā)難治;即使獲得CR,大多數(shù)患者最終仍會面臨疾病復(fù)發(fā)和難治的情況.由此導(dǎo)致5年總生存率(overall survival,OS)僅為15%~25%[2].對于復(fù)發(fā)/難治(relapsed or refractory,R/R)AML患者的治療,目前仍面臨著巨大的挑戰(zhàn),尚無統(tǒng)一的標準治療方案,療效和預(yù)后普遍較差.由于R/R AML患者普遍對傳統(tǒng)化療方案耐藥,或耐受性較差,尤其是老年患者,治療首選為入組新療法的臨床研究爭取再次獲得CR,以尋求可能的異基因造血干細胞移植(allohematopoietic stem cell transplantation,allo-HSCT)治療的機會,或至少獲得生存期的延長[3].
隨著對白血病生物學(xué)特性認識的不斷深入,一系列與AML發(fā)病機制和病理生理學(xué)密切相關(guān)的基因、受體、抗原、細胞內(nèi)關(guān)鍵物質(zhì)等相繼被發(fā)現(xiàn),引發(fā)了針對這些靶點的新型藥物和療法的研發(fā).靶向治療具有較強的特異性和較低的毒性,其臨床應(yīng)用拓寬了R/R AML患者的治療選擇.本文對近年來成人R/R AML分子和免疫靶向治療的臨床研究進展做一綜述.
與正常細胞相比,AML細胞存在著多種與信號通路、增殖、代謝、存活、凋亡等相關(guān)的基因突變或表達異常,酶活性的異常,以及表觀遺傳學(xué)的異常改變.由此已設(shè)計出多種針對這些異常改變的小分子靶向藥物,在治療R/R AML方面已積累了大量的基礎(chǔ)和臨床研究數(shù)據(jù).其中個別藥物已進入3期臨床研究,而大部分藥物仍處在1/2期臨床研究階段.
1.1 靶向異常的信號通路
1.1.1 FLT3激酶抑制劑 FMS樣酪氨酸激酶3(FMS-like tyrosine kinase 3,F(xiàn)LT3)是一種Ⅲ型受體酪氨酸激酶(receptor tyrosine kinase,RTK),其活化性突變在AML較常見,約見于30%的AML患者,包括位于FLT3近膜區(qū)域的內(nèi)部重復(fù)串聯(lián)序列(internal tandem duplications,ITDs)和點突變兩種類型.FLT3-ITD突變可見于20%~30%的AML患者,此突變可導(dǎo)致FLT3組成性激活,與標準方案化療后早期復(fù)發(fā)及較短的生存期密切相關(guān)[4].FLT-ITD陽性的R/R AML療效及預(yù)后極差.據(jù)報道,晚期復(fù)發(fā)(CR1≥6個月)的具有該突變的患者二次緩解率僅為20%,可預(yù)期的長期生存率僅為5%~10%,而原發(fā)耐藥或早期復(fù)發(fā)(CR1<6個月)的此類患者長期生存率僅為0%~3%[5].FLT3抑制劑作為一種相對低毒的治療策略,可在一定程度上直接改善FLT-ITD陽性R/R AML患者的預(yù)后,并提高成功銜接allo-HSCT的可能性[5].
近年來有多種FLT3激酶的抑制劑正處于臨床前及臨床研究階段.索拉非尼(sorafenib)是一種多靶點酪氨酸激酶抑制劑,其活性針對RAF激酶、VEGF受體、野生型和突變型FLT3-ITD、PGDF受體、c-KIT以及RET激酶,目前已被美國FDA批準用于治療腎細胞癌和肝細胞癌等實體腫瘤[6].有關(guān)急性白血病的臨床前研究發(fā)現(xiàn),該藥可誘導(dǎo)抑制攜帶FLT3-ITD突變的AML細胞系的生長阻滯和凋亡[7].一項1期臨床研究顯示,索拉非尼作為FLT3-ITD陽性AML患者行allo-HSCT后的單藥維持治療(400 mg,bid)可降低復(fù)發(fā)率[8].然而索拉非尼單藥治療此類AML多局限于病例數(shù)較少的1期臨床研究,療效尚存在爭議,且緩解時間較短.一項旨在探討索拉非尼治療R/R急性白血病的藥動學(xué)的1期臨床研究顯示,盡管該藥體外可顯著抑制 FLT3-ITD,但并沒有患者獲得完全緩解或部分緩解(partial remission,PR)[9].Zhang W等[7]報道索拉非尼治療6例FLT3-ITD陽性R/R AML,但緩解的時間僅持續(xù)了21~70 d.另一項開放標簽的單臂臨床研究發(fā)現(xiàn),大部分FLT-ITD陽性R/R AML患者經(jīng)索拉非尼治療后骨髓原始細胞得到完全清除或接近完全清除,并伴隨髓系分化的證據(jù).然而,大部分患者的初始治療反應(yīng)僅維持72 d[10].而部分研究發(fā)現(xiàn),索拉非尼聯(lián)合化療或去甲基化治療顯示出較好的療效和安全性.我國劉筱姝等[11]用索拉非尼聯(lián)合小劑量阿糖胞苷(Ara-c)方案治療了 7例FLT-ITD陽性R/R AML患者,經(jīng)1療程治療后5例獲CR,2例PR,CR率71.4%,總體有效率達100%.7例均未發(fā)生嚴重出血、惡心和嘔吐等不良反應(yīng).國外一項正在進行中2期臨床試驗顯示,索拉非尼聯(lián)合阿扎胞苷治療FLT-ITD陽性R/R AML獲得46%的有效率,其中CR、伴不完全血細胞恢復(fù)的CR(CR with incomplete count recovery,CRi)及PR率分別為16%、27%和3%[12].這些提示將索拉非尼納入聯(lián)合治療方案中對此類患者可能具有較好的臨床價值.
來妥替尼(lestaurtinib,CEP-701)為一種JAK2,TrkA,TrkB,TrkC and FLT3等激酶的小分子抑制物,可劑量依賴性抑制FLT3,在體外顯示出較強細胞毒性[13].一項1/2期臨床試驗用來妥替尼單藥作為挽救療法治療14例FLT-ITD陽性的R/R或預(yù)后不良AML,結(jié)果顯示,在起始口服劑量為60 mg,bid下,來妥替尼可獲得最小治療毒性.在此劑量下,5例患者獲得可檢測的臨床療效,包括骨髓及外周血原始細胞比例明顯下降.且此臨床療效與FLT3持續(xù)性抑制有關(guān)[14].然 而,另 一 項 多 中 心 隨 機 臨 床 研 究(NCT00079482)納入了23例首次復(fù)發(fā)的FLT3陽性AML患者,將來妥替尼作為其挽救化療后維持治療方案,發(fā)現(xiàn)并沒有明顯提高緩解率及延長生存期.因此來妥替尼治療FLT-ITD陽性R/R AML患者的有效性及最佳方案尚有待進一步研究[15].
Quizartinib(AC220)是一種高度選擇性 FLT3 RTKs抑制劑,該藥與其他 RTKs(如 KIT,RET,CSF1R,PDGFR等)的親和力比FLT3低至少十倍.細胞系研究發(fā)現(xiàn),quizartinib對 ITD突變型及野生型均具有活性[16].一項 1期多中心臨床試驗(NCT00462761)顯示,quizartinib單藥口服對 FLT3-ITD陽性、弱陽性、陰性的R/R AML患者有效率分別為53%、41%和14%.常見不良反應(yīng)包括惡性、QT間期延長、嘔吐等,大多為≤2級.研究提示單藥口服治療對R/R AML患者均有臨床療效,尤其是攜帶FLT3-ITD突變的患者,且治療毒性在可接受的范圍內(nèi)[4].此后開展了多項 quizartinib單藥治療 R/R AML的2期及3期臨床研究,亦初步顯示了類似的療效和安全性,但最佳治療劑量以及與其他藥物聯(lián)合治療方案等尚在進一步研究中[17-19].
近年研究發(fā)現(xiàn),影響FLT3抑制劑療效的一個關(guān)鍵因素是FLT3激酶結(jié)構(gòu)域基因在治療過程中發(fā)生的點突變,導(dǎo)致對索拉非尼及quizartinib等多個TKI產(chǎn)生耐藥性.目前報道最多的突變位于D835殘基(D835F/H/V/Y),其次為F691L[20].Crenolanib為一種新型TKI抑制劑,最初被研發(fā)用作一種高選擇性強效PDGFR α/β抑制劑,之后發(fā)現(xiàn)對其他類型Ⅲ型受體酪氨酸激酶如FLT3亦有較高親和力.體外研究顯示其對包含D835Y突變的FLT3-TKD有較強抑制活性.目前有關(guān)一些評估crenolanib治療含F(xiàn)LT3突變的R/R AML的2期臨床試驗正在研究中[21].
1.1.2 JAK激酶抑制劑 JAK激酶家族為 BCRABL1陰性的骨髓增殖性疾病(myeloproliferative disorders,MPD)發(fā)病的一個重要驅(qū)動因素[22].而JAK-STAT通路異常亦可見于包括AML在內(nèi)的其他血液腫瘤[23-24].體外研究顯示抑制JAK-STAT通路可抑制AML細胞增殖,誘導(dǎo)其凋亡[25].Ruxolitinib是一種JAK1和JAK2激酶的選擇性強效抑制劑,已獲美國FDA批準用于治療中高危骨髓纖維化.美國M.D.Anderson腫瘤中心近年開展了一項 2期臨床研究(NCT00674479)發(fā)現(xiàn),Ruxolitinib單藥治療(25 mg/50 mg bid)可使18例 MPD轉(zhuǎn)化的難治性AML中的3例獲得CR或伴不完全血小板恢復(fù)的CR(CR with incomplete platelet recovery,CRp),該3例患者治療脾臟顯著縮小,生活質(zhì)量明顯改善[26].此后該中心的另一項1/2期研究(NCT01251965)評估了Ruxolitinib治療(50 mg/100 mg/200 mg bid)已行多次挽救性化療的R/R AML的療效和安全性,發(fā)現(xiàn)26例患者中有1例在200 mg bid劑量下獲CRp,且總體耐受性較好[27].因此Ruxolitinib有望使此類MPD轉(zhuǎn)化的難治性AML患者獲益,而增加治療劑量對提高療效的作用有限.目前國際MPD研究協(xié)會(Myeloproliferative Disorders-Research Consortium)正在進行一項低劑量Ruxolitinib聯(lián)合地西他濱作為一線治療MPD轉(zhuǎn)化的AML的臨床研究[27].
1.1.3 哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)激酶抑制劑 mTOR是一種絲氨酸/蘇氨酸激酶,可通過調(diào)節(jié)p27kip1、cyclin D1、c-myc、STAT3等關(guān)鍵蛋白的翻譯而調(diào)控細胞的生長和增殖[28].Récher等[28]發(fā)現(xiàn)AML細胞中存在mTOR的組成性磷酸化激活.雷帕霉素可通過阻斷G0/G1期轉(zhuǎn)化而抑制多數(shù)AML細胞系的生長.該研究用雷帕霉素作為單藥治療9例R/R或繼發(fā)性AML患者,其中4例獲得部分療效,即外周血原始細胞數(shù)或骨髓原始細胞比例下降50%以上.
體外研究提示,雷帕霉素可增強AML細胞對化療的敏感性[29].目前已開展多項該藥聯(lián)合化療的小規(guī)模臨床試驗.一項雷帕霉素聯(lián)合MEC方案(米托蒽醌、依托泊苷、阿糖胞苷)治療R/R或初治繼發(fā)性AML的1期臨床試驗顯示,在最大耐受劑量下,CR+PR率為22%(6/22),該研究并未觀察到雷帕霉素及MEC方案的協(xié)同效應(yīng)[30].坦西莫司(Temsirolimus)和依維莫司(everolimus,RAD001)為兩種新型mTOR抑制劑.一項2期多中心研究中用坦西莫司聯(lián)合氯法拉濱挽救性治療了53例老年R/R AML,獲得21%的總體緩解率(CR 8%,CRi 13%).中位DFS和OS分別為3.5和4個月[31].另一項1b期研究(NCT 01074086)評估了依維莫司聯(lián)合DA方案化療治療首次復(fù)發(fā)的小于65歲AML患者,結(jié)果顯示CR率可達68%(18/28),且治療毒性(主要累及胃腸道和肺)發(fā)生率小于10%[32].因此今后有必要開展大樣本的臨床研究,進一步探討新型mTOR聯(lián)合不同化療方案的療效和安全性.
1.1.4 法尼?;D(zhuǎn)移酶(farnesyl transferase,F(xiàn)T)抑制劑 RAS癌基因及其下游信號途徑在AML發(fā)病中起重要作用.FT抑制劑可抑制RAS蛋白的法尼基化,從而阻斷RAS對MAPK信號途徑的激活作用,抑制AML細胞的增殖[33-34].替比法尼(tipifarnib)為一種FT抑制劑的口服制劑,一項1/2期臨床研究發(fā)現(xiàn),替比法尼聯(lián)合去甲柔紅霉素+Ara-C方案治療初診AML或高危MDS患者,CR+CRp率可達75%(CR 64%,CRp 9%)[35].目前正計劃開展該藥聯(lián)合化療治療R/R AML的臨床研究.
1.2 靶向異常的表觀遺傳學(xué)改變
1.2.1 去甲基化藥物 DNA甲基化異常與AML的發(fā)病機制及較差的預(yù)后密切相關(guān)[36].一些特定基因的異常甲基化參與了AML的進展及耐藥發(fā)生[37-38].地西他濱(5-氮雜-2脫氧核苷)是目前研究最為明確的一種去甲基化藥物.該藥通過與DNA甲基轉(zhuǎn)移酶(DNA methyltransferase,DNMT)共價結(jié)合,降低該酶轉(zhuǎn)移甲基的生物活性,從而實現(xiàn)去甲基化,上調(diào)與分化及凋亡相關(guān)基因的表達.該藥物具有良好的耐受性,較低的髓外毒性和治療相關(guān)死亡率,可顯著改善MDS患者的血液學(xué)和生存質(zhì)量參數(shù),已于2006年經(jīng)美國FDA批準用于MDS的治療.其后臨床研究發(fā)現(xiàn)其對初診的AML及CML亦有較好療效.對于R/R AML的治療,國外兩項研究分別回顧性評估了地西他濱單藥治療102例及34例R/R AML患者的療效,發(fā)現(xiàn)采用20 mg/m2/day,d1-10的給藥方案CR率分別為15.7%及21%,OS分別可達177天和8.5個月[39-40].近年國內(nèi)多項臨床研究顯示該藥聯(lián)合化療對R/R AML具有顯著療效.一項納入了20例R/R AML或MDS轉(zhuǎn)化的AML的單臂臨床研究(ChiCTRTRC-12001999)顯示,低劑量地西他濱(15 mg/m2/day,d1-5)聯(lián)合阿克拉霉素(Acla)/阿糖胞苷(Ara-c)方案治療的CR率達55%,中位總OS為10個月.且該方案耐受良好,無治療相關(guān)死亡[41].Zhu等[42]用低劑量地西他濱(DAC 20 mg/m2,d1-5)聯(lián)合改良CAG方案(Acla,Ara-c,G-CSF)治療了10例R/R AML患者,發(fā)現(xiàn)7例獲CR(70%),總反應(yīng)率達80%.主要不良反應(yīng)為骨髓抑制,但易控制,且無嚴重不良反應(yīng)發(fā)生.另一項小隨機對照臨床研究亦發(fā)現(xiàn),低劑量地西他濱(DAC 20 mg/m2,d1-3)聯(lián)合HAA方案(高三尖杉酯堿,Acla,Ara-c)較單用HAA方案可顯著提高首次誘導(dǎo)的CR,延長OS[43].這些研究提示低劑量地西他濱聯(lián)合化療較單藥治療可能會進一步提高療效,延長OS,且安全性較高,今后有必要進一步開展大樣本前瞻性臨床研究.
1.2.2 組蛋白去乙?;敢种苿?研究發(fā)現(xiàn),多種腫瘤均存在組蛋白去乙?;福╤istone deacetylase,HDAC)活性的異常,導(dǎo)致一些有利于腫瘤進展的基因表觀遺傳學(xué)表達增強,而另一些調(diào)控分化和凋亡的基因表達受益.因此HDAC抑制劑可作為一種抗腫瘤策略.vorinostat是一種小分子HDAC抑制劑,可靶向大部分人類的1型和2型HDAC酶.該藥具有良好的生物等效性,是目前應(yīng)用于臨床強度最高的HDAC抑制劑.目前已被FDA批準用于治療難治性皮膚T細胞淋巴瘤的皮損并發(fā)癥[44].一項2期多中心隨機臨床研究使用vorinostat單藥治療了22例R/R AML及6例初診AML患者(NCT00305773),結(jié)果顯示CR率僅為4.5%[45].而此后一項1期多中心臨床研究中同時給予了最大耐受劑量(maximum tolerance dose,MTD)的vorinostat(400 mg/day×14 d)聯(lián)合地西他濱(20 mg/m2/day×5 d)化療,29例R/R AML患者的CR率達15%[46].另一項旨在評估vorinostat聯(lián)合Ara-c和依托泊苷治療R/R及預(yù)后不良的AML的I期臨床試驗(NCT00357305)則顯示出相對較高的CR率.在200 mg bid的MTD下,納入的21例患者中,7例(33.3%)獲得CR或CRp,中位緩解持續(xù)時間為6個月[47].這些研究提示vorinostat單藥治療R/R AML療程較差,而聯(lián)合挽救性化療可提高療效.
1.3 靶向細胞代謝
1.3.1 靶向異常的線粒體代謝酶 異檸檬酸脫氫酶1和2(Isocitrate dehydrogenase 1/2,IDH1/IDH2)為促進異檸檬酸向α酮戊二酸轉(zhuǎn)化的關(guān)鍵代謝酶.其體細胞功能獲得性突變導(dǎo)致促癌代謝物(R)-2-羥基戊二酸脫氫酶(2-hydroxyglutarate,2HG)的聚集.2HG可競爭性抑制α酮戊二酸依賴性雙加氧酶,包括Tet家族的組蛋白去甲基化酶和甲基胞嘧啶雙加氧酶,導(dǎo)致表觀遺傳學(xué)異常以及細胞分化阻滯.IDH突變可見于15%~20%的初診AML患者,因此靶向抑制IDH1/2激酶突變具有潛在的抗 AML效應(yīng)[48].AG-221是一種可口服的靶向IDH2激酶突變的選擇性抑制劑,臨床前研究發(fā)現(xiàn)其在攜帶IDH2突變的原代AML細胞以及小鼠模型中均可抑制2HG的生成,誘導(dǎo)細胞分化,并顯著延長負瘤小鼠的生存期[48].目前一項旨在評估AG-211治療高級別攜帶IDH2突變的成人血液腫瘤患者療效及安全性的1/2期臨床研究(NCT01915498)正在進行中,初步結(jié)果顯示,128例R/R AML中,41%(52例)患者可觀察到客觀療效,其中CR,CRp,CRi,mCR及PR率分別為18%,1%,1%,6%,15%,中位有效持續(xù)時間為6個月(3.7~9.2月),且該有效率與前期化療療程數(shù)和IDH2突變類型無關(guān)[49].一種IDH1突變的口服抑制劑AG-120的同樣處于臨床研究中.一項該藥的1/2期多中心臨床研究(NCT02074839)初步數(shù)據(jù)表明,66名含有IDH1突變AML患者在AG-120治療后可獲得11%的CR率和36%的總有效率[50].因此,IDH1/2突變抑制劑作為治療R/R AML的新藥值得期待.
研究已發(fā)現(xiàn)AML細胞對線粒體氧化磷酸化的依賴度明顯增高,因此靶向抑制線粒體代謝具有潛在的抗AML效應(yīng)[51].丙酮酸脫氫酶(pyruvate dehydrogenase,PDH)復(fù)合體及α酮戊二酸脫氫酶(alpha-ketoglutarate dehydrogenase,KGDH)復(fù)合體處于線粒體代謝的中心位置,分別控制著大部分來自丙酮酸和谷氨酰胺的碳化合物進入三羧酸循環(huán).此兩種酶復(fù)合體的活化需要一種輔助因子-硫辛酸鹽.CPI-613為一種硫辛酸鹽的衍生物,可競爭性抑制PDH、KGDH的活性[52].其作為單藥已在一些髓系惡性腫瘤患者中顯示出可能的療效和良好的耐受性.一項CPI-163聯(lián)合大劑量阿糖胞苷(high-dose Ara-c,HDAC)和米托蒽醌治療高危R/R AML的1期臨床研究顯示,36例患者的總CR/CRi率達50%(CR 16例,CRi 2例),中位生存期6.4個月.而60歲以上患者CR/CRi率同樣可達50%(10/20).且在17例遺傳學(xué)預(yù)后不良患者中可獲得53%的CR/CRi率 (11CR+3CRi),遠高于對照組中的25%(4/16).這些提示 CPI-163聯(lián)合HDAC和米托蒽醌對R/R AML有較廣闊的治療前景,尤其是遺傳學(xué)預(yù)后不良的患者[53].
1.3.2 靶向異常的膽固醇代謝關(guān)鍵酶 細胞膽固醇代謝穩(wěn)態(tài)的維持依賴于復(fù)雜的負反饋環(huán)路,包括脂蛋白受體,如低密度脂蛋白受體(low-density lipoprotein receptor,LDLR),調(diào)節(jié)羥甲戊酸通路的關(guān)鍵酶,如羥甲戊二酸單酰輔酶A還原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMG-CoAR)、鯊烯合成等.與正常細胞相比,AML細胞中常過表達LDLR和HMG-CoAR基因,導(dǎo)致膽固醇過度合成和運輸.而抑制HMG-CoAR可增強AML細胞對細胞毒藥物的敏感性[54].一項 1期臨床研究在去甲氧柔紅霉素+ HDAC(Ida-HDAC)的化療方案中加入了HMG-CoAR抑制劑普伐他?。╬ravastatin),發(fā)現(xiàn)所治療的22例行挽救性化療的R/R AML患者CR+CRp率達40.9%,且治療安全性高,未達到MTD[55].隨后一項擴大樣本量的2期多中心臨床研究(SWOG0919)進一步評估了普伐他丁輔助Ida-HDAC方案治療復(fù)發(fā)AML的療效.結(jié)果顯示治療有效率達75%(CR 20例,CRi 7例),中位OS達12個月[56].這些提示調(diào)節(jié)膽固醇代謝有望進一步提高傳統(tǒng)化療治療R/R AML的療效.
1.4 氨肽酶抑制劑氨肽酶是一類從蛋白質(zhì)或肽鏈的氨端選擇性切割氨基酸殘基的外肽酶,在調(diào)節(jié)蛋白質(zhì)再循環(huán)過程中起重要作用.Tosedostat是一種靶向抑制氨肽酶的新型口服制劑,可在包括AML的多種腫瘤細胞系中選擇性誘導(dǎo)氨基酸耗竭反應(yīng),并在多個實體瘤小鼠模型中觀察到抗腫瘤效應(yīng)[57].一項1/2期多中心臨床研究發(fā)現(xiàn),在130 mg/d的MTD下,35例R/R AML患者中CR+PR率達31.4%(CR 6例,PR 5例).最常見的不良反應(yīng)為血小板減少、乏力和外周水腫[58].此后一項多中心隨機對照的2期臨床研究(NCT00780598)進一步探討了tosedostat治療老年R/R AML的最佳劑量,該研究設(shè)置了兩種給藥方案,一組(38例)為120 mg/d,連用6個月,另一組(35例)為240 mg/d,連用2個月后減量至 120 mg/d,持續(xù)4個月.結(jié)果顯示,9.6%(7/73)患者獲CR/CRi,其中240~120 mg劑量組5例(15%,5/12),提示該劑量方案可取得更好的療效.兩組不良反應(yīng)發(fā)生率均較低[59].目前有多項tosedostat聯(lián)合去甲基化藥物或低劑量Ara-c治療老年AML的臨床研究正在進行中.
1.5 BCL-2抑制劑BCL-2為線粒體凋亡的抑制蛋白.研究發(fā)現(xiàn)AML干細胞的存活依賴于BCL-2,選擇性抑制BCL-2可導(dǎo)致AML細胞的死亡[60].ABT-199為一種可口服的強效小分子 BCL-2抑制劑,其在AML細胞和小鼠模型中均顯示出抗白血病效應(yīng).目前正在進行一項2期多中心臨床研究,旨在評估口服生物等效的ABT-199單藥治療高危R/R以及不適合行化療的AML患者的療效和安全性.初步結(jié)果顯示,32例患者中CR+CRi率達15.5%(5例).3/4級AE發(fā)生率為34%,無治療相關(guān)死亡發(fā)生[61].提示ABT-199單藥治療安全性較高,有望成為治療選擇有限的R/R AML患者的一種較有前景的新療法.
1.6 CXCR4拮抗劑CXCR4為G蛋白偶聯(lián)的7次跨膜受體蛋白超家族的一員.由骨髓基質(zhì)產(chǎn)生的CXCR12為CXCR4唯一的配體.CXCR12/CXCR4可通過激活包括PI3K/AKT等在內(nèi)的多條信號轉(zhuǎn)導(dǎo)途徑,促進細胞增殖和存活.研究已發(fā)現(xiàn)CXCR12/CXCR4參與了骨髓微環(huán)境介導(dǎo)的AML耐藥,CXCR4高表達與AML高復(fù)發(fā)率和較差的預(yù)后相關(guān)[62].普樂沙福(plerixafor)為 CXCR4的小分子拮抗劑,可干擾CXCR12/CXCR4介導(dǎo)的骨髓HSC靜止態(tài)的維持[63],目前已在臨床上與G-CSF聯(lián)合用于多發(fā)性骨髓瘤和淋巴瘤患者自體移植前的HSC的動員.一項1/2期臨床研究(NCT00512252)用普樂沙福(0.24 mg/kg/day)輔助MEC方案化療治療了46例R/R AML,結(jié)果顯示CR+CRi率達46%,且動員入外周血的原始細胞增加1倍.研究還發(fā)現(xiàn)該藥輔助化療并未發(fā)生有癥狀的白細胞增多癥或延遲的血象恢復(fù).提示普樂沙福有望提高R/R AML患者的化療敏感性[64].該研究組隨后的一項探討普樂沙福聯(lián)合 G-CSF用于調(diào)節(jié)R/R AML患者骨髓微環(huán)境的臨床研究(NCT00906945)正在進行中[64].
AML細胞表面表達一些特征性的抗原分子,如CD33、CD123等.近10余年間已設(shè)計出針對這些抗原“靶點”的單克隆抗體,以通過抗體依賴的細胞介導(dǎo)的細胞毒效應(yīng)(antibody-dependent cell-mediated cytotoxicity,ADCC)或攜帶細胞毒藥物選擇性攻擊AML細胞,誘導(dǎo)其凋亡.已開展多項1/2期旨在評估其治療R/R AML療效和安全性的早期臨床研究.新近研發(fā)的過繼性細胞治療-嵌合抗原受體T細胞免疫療法(chimeric antigen receptor T-cell immunotherapy,CAR-T)兼具抗原特異性和T細胞免疫效應(yīng),有望發(fā)展為抗R/R AML新療法,目前早期的臨床研究正在進行中.
2.1 單克隆抗體
2.1.1 CD33單抗 CD33可表達于80%~90%的AML患者,而正常造血細胞只有極少數(shù)表達.吉妥珠單抗(gemtuzumab ozogamicin,GO)是一種與結(jié)合了卡奇霉素(calicheamicin)的針對CD33抗原的重組人IgG4單克隆抗體.早期的3項臨床研究均發(fā)現(xiàn)GO單藥治療高危AML獲得相對較高的CR率,基于此,美國FDA于2000年批準了GO用于CD33陽性的老年復(fù)發(fā)AML的治療(劑量為9 mg/m2/day,d1-14).然而4年后的一項臨床研究,SWOG S0106的中期評估顯示,GO聯(lián)合標準誘導(dǎo)化療并未使患者獲得有統(tǒng)計學(xué)意義的收益,并且GO組早期治療相關(guān)死亡率較對照組明顯增高.由此該藥于2010年被撤出了美國市場[65].此后仍有多項評估 GO 聯(lián)合化療治療R/R AML的前瞻性臨床研究顯示出較好療效,但尚缺乏大規(guī)模的3期研究.
Chevallier等[66]用GO(9 mg/m2,d4)聯(lián)合中劑量Ara-c及米托蒽醌作為挽救療法治療了62例R/R AML,發(fā)現(xiàn)CR及CRp率分別達50%和13%,2年OS達41%.但4例患者出現(xiàn)早期毒性相關(guān)死亡,且3-4級高膽紅素血癥發(fā)生率達16%.此后Farhat等[67]在一項1/2期臨床研究中發(fā)現(xiàn),采用分割劑量的GO(3 mg/m2,d1,d4,d7)聯(lián)合劑量遞增的DA方案治療20例50~70歲的復(fù)發(fā)AML,可使11例(55%)獲CR,且耐受性較好,無肝靜脈閉鎖癥發(fā)生.Pilorge等[68]用該分割劑量的GO聯(lián)合標準劑量Ara-c治療了24例55歲以上晚期復(fù)發(fā)的AML,發(fā)現(xiàn)有效率達75%,包括16例CR(67%)和2例(8%)CRp,2年OS和RFF均為51%.該18例患者中有9例CR2持續(xù)時間長于CR1.且治療毒性與 GO治療類似.這些提示此分割劑量(3 mg/m2,d1,d4,d7)的GO聯(lián)合標準劑量或減少劑量化療可能具有較好的療效和安全性.
體外研究發(fā)現(xiàn)在AML細胞中,去甲基化藥物可通過恢復(fù)Syk的表達下調(diào)多藥耐藥蛋白1,或增強卡奇霉素誘導(dǎo)的DNA嵌入和降解等機制重建細胞對GO的敏感性.HDAC抑制劑亦可通過下調(diào)凋亡閾值,誘導(dǎo) DNA降解等途徑增強 GO的療效[69-70].Walter等[69]開展了一項GO(3 mg/m2/day,d4,d8)聯(lián)合阿扎胞苷及vorinostat治療老年R/R AML的1/2期多中心臨床研究(NCT00895934),發(fā)現(xiàn)43例患者中有10例獲CR,8例獲CRi,總有效率達41.9%.有4例(9.3%)患者發(fā)生治療早期死亡.有研究[70]評估了GO聯(lián)合地西他濱治療AML和高危MDS的2期臨床資料,研究顯示,在28例CR持續(xù)時間(CRD)<1年的R/R AML中,17%(5/28)患者獲CR/CRi,其中位OS和8周死亡率分別為3.5個月和11%,與常規(guī)化療組相當.另5例CRD≥1年的R/R AML中有3例(60%)獲CR/CRi,提示GO聯(lián)合地西他濱可改善R/R AML的療效,但對OS影響不大.
SGN-CD33A為另一種CD33的單克隆抗體,其與一種新型合成的強效 DNA交聯(lián)細胞毒藥物pyrrolobenzodiazepine二聚體相連接.臨床前研究發(fā)現(xiàn)其在多種耐藥AML模型中顯示出抗白血病活性[71].一項旨在評估SGN-CD33A治療復(fù)發(fā)或拒絕行傳統(tǒng)誘導(dǎo)/鞏固化療的 AML患者的 1期臨床研究(NCT01902329)正在進行中,前期結(jié)果顯示出一定的抗白血病效應(yīng),在40 mg/kg的口服劑量下CR+CRi率可達33%,不良反應(yīng)多與骨髓抑制有關(guān),且可控制.30日治療相關(guān)死亡率較低(6%)[72].
總之,GO聯(lián)合普通化療或表觀遺傳學(xué)療法仍有望使R/R AML尤其是老年患者獲益,但目前臨床研究多為1/2期,入組例數(shù)較少,治療劑量、方案不盡一致,今后有必要開展大規(guī)模統(tǒng)一標準的Ⅲ期臨床研究.而新型CD33單抗制劑的療效亦有待進一步評估.
2.1.2 CD123單抗 白介素-3受體α鏈(CD123)在AML干細胞高表達,而不表達于正常造血干細胞,因此可作為免疫治療AML的靶點.CSL362為一種新型人源化親和力成熟的CD123單克隆抗體,其Fc結(jié)構(gòu)域經(jīng)過了基因工程修飾,提高了對其受體FcγRIIIa的親和力,從而增強對白血病干細胞和原始細胞的ADCC效應(yīng).一項評估CSL362用于具有高復(fù)發(fā)風(fēng)險的CR/CRp AML患者維持治療的 1期臨床研究(NCT01632852)正在進行中,前期結(jié)果顯示,在隨訪6個月以上的20例患者中有半數(shù)持續(xù)CR,中位CR持續(xù)時間達34周,且具有良好的安全性和耐受性[73].
2.2 CAR-T療法CAR-T通過基因工程修飾使自身T細胞表達嵌合抗原受體,特異性識別腫瘤細胞表面的相應(yīng)抗原,從而增強T細胞的抗腫瘤效應(yīng).近年來CAR-T技術(shù)進展迅速,已成為難治性腫瘤疾病的新療法,尤其是在靶向治療CD19陽性急、慢性淋巴細胞白血病方面取得了較大成果[74].CAR-T治療AML的研究起步稍晚,多集中在臨床前研究階段.目前研究較多的靶向特異性抗原為CD33和CD123.多項在AML細胞和小鼠模型中的研究已證實抗CD33 CAR-T(CART-33)和CD123 CAR-T(CART-123)具有良好的相似殺傷性,但普遍存在對正常髓系造血干/祖細胞及單核細胞的治療毒性,相比之下,CART-123的靶位脫離毒性輕于CART-33[75].近年一項用CART-33治療R/R AML的臨床研究(NCT01864902)正在開展中,已報道的一例41歲男性患者在CAR-T細胞回輸2周后骨髓原始細胞比例明顯減低(由50%降至6%),但疾病于第5周復(fù)發(fā),患者于回輸后第13周死亡.CAR-T回輸后2周內(nèi)出現(xiàn)了較明顯的細胞因子釋放綜合征(cytokine release syndrome,CRS),但經(jīng)TNF抑制劑干預(yù)后明顯改善[76].Luo等[77]在第57屆ASH上報告了首例 CART123治療初診FLT3/ITD+的成人AML-M2案例.該患者回輸4代CAR-T細胞(4SCAR123)后獲得部分療效,治療第20日骨髓原始細胞由59%降至45%.輸注后出現(xiàn)嚴重但可控制的CRS.國外正在計劃開展一項評估CART123治療R/R AML的 1期臨床研究 (NCT02159495)[78].總之,CAR-T有望成為治療R/R AML的一種新手段,但需要通過大規(guī)模臨床研究進一步探討其有效性,評估靶位脫離毒性以及CRS等安全性問題.
近年來越來越多的針對AML生物學(xué)特性的分子或免疫靶向治療藥物及技術(shù)相繼被開發(fā),其以較高的特異性和較低的毒性為R/R AML,尤其是不能耐受高強度挽救治療的患者提供了新的治療選擇.部分靶向藥物單藥治療可表現(xiàn)出一定療效,而多數(shù)藥物與傳統(tǒng)挽救化療聯(lián)用能夠進一步提高治療有效率,降低化療毒性.然而,由于AML的異質(zhì)性和復(fù)雜性,靶向治療的適用人群,提高總體療效和生存期的作用仍較有限.目前大部分臨床研究仍處在1/2期,且多為單臂、單中心研究,只有極少藥物已獲批用于臨床.今后的研究突破仍有待于對AML發(fā)病和復(fù)發(fā)機制的深入研究,對新療法的系統(tǒng)性研發(fā),以及更多大規(guī)模統(tǒng)一標準的前瞻性隨機對照臨床研究的開展.相信隨著基礎(chǔ)和臨床研究的深入,靶向治療有望使更多的R/R AML患者獲益.
[1]Xiao X,Yang J,Li R,et al.Deregulation of mitochondrial ATPsyn-β in acute myeloid leukemia cells and with increased drug resistance[J].PLoS One,2013,8(12):e83610.
[2]Kell J.Considerations and challenges for patients with refractory and relapsed acute myeloid leukaemia[J].Leuk Res,2016,47:149-160.
[3]National Comprehensive Cancer Network.NCCN clinical practice guidelines in oncology(NCCN Guidelines?):acute myeloid leukemia.Version 1.2016[R].Fort Washington,PA:National Comprehensive Cancer Network,2016.
[4]Cortes JE,Kantarjian H,F(xiàn)oran J,et al.Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status[J].J Clin Oncol,2013,31(29):3681-3687.
[5]Konig H,Levis M.Targeting FLT3 to treat leukemia[J].Expert Opin Ther Targets,2015,19(1):37-54.
[6]Llovet JM,Ricci S,Mazzaferro V,et al.Sorafenib in advanced hepatocellular carcinoma[J].New Engl J Med,2008,359(4):378-390.
[7]Zhang W,Konopleva M,Shi Y,et al.Mutant FLT3:a direct target of sorafenib in acute myelogenous leukemia[J].J Natl Cancer Inst,2008,100(3):184-198.
[8]Chen YB,Li S,Lane AA,et al.Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation forfms-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia[J].Biol Blood Marrow Transplant,2014,20(12):2042-2048.
[9]Pratz KW,Cho E,Levis MJ,et al.A pharmacodynamic study of sorafenib in patients with relapsed and refractory acute leukemias[J].Leukemia,2010,24(8):1437-1444.
[10]Man CH,F(xiàn)ung TK,Ho C,et al.Sorafenib treatment of FLT3-ITD(+)acute myeloid leukemia:favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation[J].Blood,2012,119(22):5133-5143.
[11]劉筱姝,龍 慧,黃宇賢,等.索拉非尼聯(lián)合小劑量阿糖胞苷治療FLT3+復(fù)發(fā)、難治性急性髓系白血病的初步臨床研究[J].中國實驗血液學(xué)雜志,2016,24(2):394-398.
[12]Ravandi F,Alattar ML,Grunwald MR,et al.Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation[J].Blood,2013,121(23):4655-4662.
[13]Levis M,Allebach J,Tse KF,et al.A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo[J].Blood,2002,99(11):3885-3891.
[14]Smith BD,Levis M,Beran M,et al.Single-agent CEP-701,a novel FLT3 inhibitor,shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia[J].Blood,2004,103(10):3669-3676.
[15]Levis M,Ravandi F,Wang ES,et al.Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse[J].Blood,2011,117(12):3294-3301.
[16]Zarrinkar PP,Gunawardane RN,Cramer MD,et al.AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia(AML)[J].Blood,2009,114(14):2984-2992.
[17]Levis M,Perl A,Dombret H,et al.Final results of a phase 2 openlabel,monotherapy efficacy and safety study of quizartinib(AC220)in patients with FLT3-ITD positive or negative relapsed/refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transplantation[J].Blood,2012,120(21):673.
[18]Tallman MS,Schiller G,Trone D,et al.Results of a phase 2 randomized,open-label,study of lower doses of quizartinib(AC220;ASP2689)in subjects with FLT3-ITD positive relapsed or refractory acute myeloid leukemia(AML)[J].Blood,2013,122(21):494.
[19]Cortes J,Gammon G,Khaled S,et al.Phase 3 study of quizartinib(AC220)monotherapy vs salvage chemotherapy(SC)in patients(pts)with FLT3-ITD+acute myeloid leukemia(AML)refractory to or relapsed(R/R)after 1st-line treatment with or without hematopoietic stem cell transplant(HSCT)consolidation:the QuANTUMR study[J].Annals of Oncology,2016,27(6):948TiP.
[20]Grunwald MR,Levis MJ.FLT3 inhibitors for acute myeloid leukemia:a review of their efficacy and mechanisms of resistance.International journal of hematology[J].Int J hematol,2013,97(6):683-694.
[21]Randhawa JK,Kantarjian HM,Borthakur G,et al.Results of a phase II study of crenolanib in relapsed/refractory acute myeloid leukemia patients(Pts)with activating FLT3 mutations[J].Blood,2014,124(21):389.
[22]Kralovics R,Passamonti F,Buser AS,et al.A gain-of-function mutation of JAK2 in myeloproliferative disorders[J].N Engl J Med,2005,352(17):1779-1790.
[23]O’Shea JJ,Holland SM,Staudt LM.JAKs and STATs in immunity,immunodeficiency,and cancer[J].N Engl J Med,2013,368(2):161-170.
[24]Xiang Z,Zhao Y,Mitaksov V,et al.Identification of somatic JAK1 mutations in patients with acute myeloid leukemia[J].Blood,2008,111(9):4809-4812.
[25]Lee HJ,Daver N,Kantarjian HM,et al.The role of JAK pathway dysregulation in the pathogenesis and treatment of acute myeloid leukemia[J].Clin Cancer Res,2013,19(2):327-335.
[26]Eghtedar A,Verstovsek S,Estrov Z,et al.Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias,including postmyeloproliferative neoplasm acute myeloid leukemia[J].Blood,2012,119(20):4614-4618.
[27]Pemmaraju N,Kantarjian H,Kadia T,et al.A phase I/II study of the Janus kinase(JAK)1 and 2 inhibitor ruxolitinib in patients with relapsed or refractory acute myeloid leukemia[J].Clin Lymphoma Myeloma and Leuk,2015,15(3):171-176.
[28]Récher C,Beyne-Rauzy O,Demur C,et al.Antileukemic activity of rapamycin in acute myeloid leukemia[J].Blood,2005,105(6):2527-2534.
[29]Xu Q,Thompson JE,Carroll M.mTOR regulates cell survival after etoposide treatment in primary AML cells[J].Blood,2005,106(13):4261-4268.
[30]Perl AE,Kasner MT,Tsai DE,et al.A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia[J].Clin Cancer Res,2009,15(21):6732-6739.
[31]Amadori S,Stasi R,Martelli AM,et al.Temsirolimus,an mTOR inhibitor,in combination with lower-dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia:results of a phase II GIMEMA study(AML-1107)[J].Br J haematol,2012,156(2):205-212.
[32]Park S,Chapuis N,Saint Marcoux F,et al.A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse[J].Leukemia,2013,27(7):1479-1486.
[33]Yang J,Lyu X,Zhu,X,et al.Chromosome t(7;11)(p15;p15)translocation in acute myeloid leukemia coexisting with multilineage dyspoiesis and mutations in NRAS and WT1:A case report and literature review[J].Oncology Letters,2017,13:3066-3070.
[34]Bowen DT,F(xiàn)rew ME,Hills R,et al.RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years[J].Blood,2005,106(6):2113-2119.
[35]Jabbour E,Kantarjian H,Ravandi F,et al.A phase 1-2 study of a farnesyltransferase inhibitor,tipifarnib,combined with idarubicin and cytarabine for patients with newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndrome[J].Cancer,2011,117(6):1236-1244.
[36]Figueroa ME,Lugthart S,Li Y,et al.DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia[J].Cancer Cell,2010,17(1):13-27.
[37]Kroeger H,Jelinek J,Estécio M,et al.Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse[J].Blood,2008,112(4):1366-1373.
[38]Yang J,Xiao X,Li R,et al.Hypermethylation of CpG sites at the promoter region is associated with deregulation of mitochondrial ATPsyn-β and chemoresistance in acute myeloid leukemia[J].Cancer Biomark,2016,16(1):81-88.
[39]Ritchie EK,F(xiàn)eldman EJ,Christos PJ,et al.Decitabine in patients with newly diagnosed and relapsed acute myeloid leukemia[J].Leuk Lymphoma,2013,54(9):2003-2007.
[40]Khan N,Hantel A,Knoebel RW,et al.Efficacy of single-agent decitabine in relapsed and refractory acute myeloid leukemia[J].Leuk Lymphoma,2017,17:1-7.
[41]Song LX,Xu L,Li X,et al.Clinical outcome of treatment with a combined regimen of decitabine and aclacinomycin/cytarabine for patients with refractory acute myeloid leukemia[J].Ann Hematol,2012,91(12):1879-1886.
[42]Zhu CY,Liu SY,Niu JH,et al.Clinical resarch of decitabine combined with modified CAG regimen for treatment of relapsed or refractory acute myeloid leukemia[J].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2015,23(1):88-93.
[43]Jiang X,Wang Z,Ding B,et al.The hypomethylating agent decitabine prior to chemotherapy improves the therapy efficacy in refractory/relapsed acute myeloid leukemia patients[J].Oncotarget,2015,6(32):33612-33622.
[44]Hagelkruys A,Sawicka A,Rennmayr M,et al.The biology of HDAC in cancer:the nuclear and epigenetic components.Histone Deacetylases:the Biology and Clinical Implication[J].Handb Exp Pharmacol,2011,206:13-37.
[45]Schaefer EW,Loaiza-Bonilla A,Juckett M,et al.A phase 2 study of vorinostat in acute myeloid leukemia[J].Haematologica,2009,94(10):1375-1382.
[46]Kirschbaum M,Gojo I,Goldberg SL,et al.A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome[J].Br J Haematol,2014,167(2):185-193.
[47]Gojo I,Tan M,F(xiàn)ang H,et al.Translational phase I trial of vorinostat(suberoylanilide hydroxamic acid)combined with cytarabine and etoposide in patients with relapsed,refractory,or high-risk acute myeloid leukemia[J].Clin Cancer Res,2013,19(7):1838-1851.
[48]Yen K,Travins J,Wang F,et al.AG-221,a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations[J].Cancer Discov,2017.
[49]Stein E,DiNardo C,Altman J,et al.Safety and efficacy of AG-221,a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies:results of a phase 1/2 trial[J].Blood,2015,126(23):323.
[50]Dinardo C,De Botton S,Pollyea D et al.Molecular profiling and relationship with clinical response in patients with IDH1 mutationpositive hematologic malignancies receiving AG-120,a first-in-class potent inhibitor of mutant IDH1,in addition to data from the completed dose escalation portion of the Phase 1 study[J].Blood,2015,126(23):1306.
[51]Basak NP,Banerjee S.Mitochondrial dependency in progression of acute myeloid leukemia[J].Mitochondrion,2015,21:41-48.
[52]Stuart SD,Schauble A,Gupta S,et al.A strategically designed small molecule attacks alpha-ketoglutarate dehydrogenase in tumor cells through a redox process[J].Cancer Metab,2014,2(1):4.
[53]Pardee T,Stadelman K,Isom S,et al.The mitochondrial metabolism inhibitor CPI-613 is highly active in combination with high dose ARA-C(HIDAC)and mitoxantrone in a phase I study for relapsed or refractory acute myeloid leukemia(AML)[J].Blood,2014,124(21):3744.
[54]Li HY,Appelbaum FR,Willman CL,et al.Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses[J].Blood,2003,101(9):3628-3634.
[55]Kornblau SM,Banker DE,Stirewalt D,et al.Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin+high-dose Ara-C:a phase 1 study[J].Blood,2007,109(7):2999-3006.
[56]Advani AS,McDonough S,Copelan E,et al.SWOG0919:a Phase 2 study of idarubicin and cytarabine in combination with pravastatin for relapsed acute myeloid leukaemia[J].Br J Haematol,2014,167(2):233-237.
[57]Krige D,Needham LA,Bawden LJ,et al.CHR-2797:an antiproliferative aminopeptidase inhibitor that leads to amino acid deprivation in human leukemic cells[J].Cancer Res,2008,68(16):6669-6679.
[58]L?wenberg B,Morgan G,Ossenkoppele GJ,et al.Phase I/II clinical study of Tosedostat,an inhibitor of aminopeptidases,in patients with acute myeloid leukemia and myelodysplasia[J].J Clin Oncol,2010(28):4333-4338.
[59]Cortes J,F(xiàn)eldman E,Yee K,et al.Two dosing regimens of tosedostat in elderly patients with relapsed or refractory acute myeloid leukaemia(OPAL):a randomised open-label phase 2 study[J].The Lancet Oncology,2013,14(4):354-362.
[60]Lagadinou ED,Sach A,Callahan K,et al.BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells[J].Cell stem cell,2013,12(3):329-341.
[61]Leverson JD,Konopleva M,Pollyea DA,et al.A phase 2 study of ABT-199(GDC-0199)in patients with acute myelogenous leukemia(AML)[J].Blood,2014,124(21):118.
[62]Nervi B,Ramirez P,Rettig MP,et al.Chemosensitization of acute myeloid leukemia(AML)following mobilization by the CXCR4 antagonist AMD3100[J].Blood,2009,113(24):6206-6214.
[63]Sugiyama T,Kohara H,Noda M,et al.Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches[J].Immunity,2006,25(6):977-988.
[64]Uy GL,Rettig MP,Motabi IH,et al.A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia[J].Blood,2012,119(17):3917-3924.
[65]Thol F,Schlenk RF.Gemtuzumab ozogamicin in acute myeloid leukemia revisited[J].Expert Opin Biol l Ther,2014,14(8):1185-1195.
[66]Chevallier P,Delaunay J,Turlure P,et al.Long-term disease-free survival after gemtuzumab,intermediate-dose cytarabine,and mitoxantrone in patients with CD33(+)primary resistant or relapsed acute myeloid leukemia[J].J Clin Oncol,2008,26(32):5192-5197.
[67]Farhat H,Reman O,Raffoux E,et al.Fractionated doses of gemtuzumab ozogamicin with escalated doses of daunorubicin and cytarabine as first acute myeloid leukemia salvage in patients aged 50~70-year old:A phase 1/2 study of the acute leukemia French association[J].Am J Hematol,2012,87(1):62-65.
[68]Pilorge S,Rigaudeau S,Rabian F,et al.Fractionated gemtuzumab ozogamicin and standard dose cytarabine produced prolonged second remissions in patients over the age of 55 years with acute myeloid leukemia in late first relapse[J].Am J Hematol,2014,89(4):399-403.
[69]Walter RB,Medeiros BC,Gardner KM,et al.Gemtuzumab ozogamicin in combination with vorinostat and azacitidine in older patients with relapsed or refractory acute myeloid leukemia:a phase 1/2 study[J].Haematologica,2014,99(1):54-59.
[70]Daver N,Kantarjian H,Ravandi F,et al.A phase II study of decitabine and gemtuzumab ozogamicin in newly diagnosed and relapsed acute myeloid leukemia and high-risk myelodysplastic syndrome[J].Leukemia,2016,30(2):268-273.
[71]Kung Sutherland MS,Walter RB,Jeffrey SC,et al.SGN-CD33A:a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML[J].Blood,2013,122(8):1455-1463.
[72]Stein A,Walter R,Erba H,et al.A phase 1 trial of SGN-CD33A as monotherapy in patients with CD33-positive acute myeloid leukemia(AML)[J].Blood,2015,126(23):324.
[73]Smith B,Roboz G,Walter R,et al.First-in man,phase 1 study of CSL362(anti-IL3Rα/anti-CD123 monoclonal antibody)in patients with CD123+acute myeloid leukemia(AML)in CR at high risk for early relapse[J].Blood,2014,124(21):120.
[74]Geiger TL,Rubnitz JE.New approaches for the immunotherapy of acute myeloid leukemia[J].Discov Med,2015,19(105):275-284.
[75]Gill S,Tasian SK,Ruella M,et al.Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells[J].Blood,2014,123(15):2343-2354.
[76]Wang QS,Wang Y,Lv HY,et al.Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia[J].Mol Ther,2015,23(1):184-191.
[77]Luo Y,Chang L,Hu Y,et al.First-in-man CD123-specific chimeric antigen receptor-modified T cells for the treatment of refractory acute myeloid leukemia[J].Blood,2015,126(23):3778.
[78]Ramos NR,Mo CC,Karp JE,et al.Current approaches in the treatment of relapsed and refractory acute myeloid leukemia[J].J Clin Med,2015,4(4):665-695.
Current clinical trials of targeted therapies for adult relapsed or refractory acute myeloid leukemia
YANG Jing-Ke,AI Hao
Department of Hematology,Affiliated Cancer Hospital of Zhengzhou University,Zhengzhou 450008,China
It is still a great challenge to treat adult relapsed or refractory acute myeloid leukemia(R/R AML).The response and prognosis for conventional salvage therapies are commonly poor.A variety of abnormalities about gene,epigenetics,enzyme activity,surface antigens exist in AML cells,which are associated with the pathogenesis and pathophysiology of AML.Based on these findings,more and more small molecular agents and immunotherapies have been explored to target these abnormal changes.Because of their higher specificity and lower toxicity,these targeted therapies broaden the therapeutic choices for R/R AML patients.In this review,we outlined novel investigational efforts of targeted therapies for adult R/R AML currently in clinical trials using small molecular targeted agents and immunotherapy based approaches.
acute myeloid leukemia;relapsed or refractory;clinical trial;targeted therapy
R733.71
A
2095-6894(2017)05-81-08
2017-03-29;接受日期:2017-04-13
河南省醫(yī)學(xué)科技攻關(guān)計劃項目(201602292)
楊景柯.博士,副主任醫(yī)師.研究方向:惡性血液病.Tel:0371-65587513 E-mail:yangjingke@gmail.com