潘艷娜,李慧玉,郝新奇(鄭州大學化學與分子工程學院,河南 鄭州45000;上海電力學院數(shù)理學院,上海00090)
Sirtuins蛋白與腫瘤關系的研究進展
潘艷娜1,2,李慧玉2,郝新奇1(1鄭州大學化學與分子工程學院,河南 鄭州450001;2上海電力學院數(shù)理學院,上海200090)
Sirtuins是一類依賴于煙酰胺腺嘌呤二核苷酸NAD+的蛋白去乙?;福甋irtuin蛋白家族通過與多種底物進行去乙?;饔茫òńM蛋白、轉錄因子和代謝酶)來調節(jié)轉錄、細胞存活、DNA損傷和修復以及壽命等多種生物過程.本文將分別對sirtuin家族成員作一介紹,總結有關sirtuins對于癌癥在生物方面的主要發(fā)現(xiàn),并從基因研究層面討論sirtuins與腫瘤的關系.
Sirtuins;HDAC;去乙酰化;腫瘤;抑制劑
表觀遺傳學是研究基因的核苷酸序列不發(fā)生改變的情況下,基因表達的可遺傳的改變,包括DNA修飾、蛋白質翻譯后修飾等[1].常見的蛋白質翻譯后修飾過程有磷酸化、乙酰化、甲基化、泛素化等.近年來,人們對蛋白質翻譯后修飾乙酰過程中經(jīng)典的Ⅰ類和Ⅱ類組蛋白去乙酰化酶(histone deacetylase,HDAC)的研究較為透徹,已成為抗腫瘤藥物設計的熱門靶標,已有多個HDACs抑制劑被美國FDA批準上市用于腫瘤的治療[2],我國首個HDAC抑制劑西達本胺于2014年12月底被CFDA批準上市.
Sirtuins是一類依賴于NAD+和核心區(qū)域高度保守的蛋白去乙酰化酶和ADP核糖基轉移酶[3],在組蛋白的乙酰化/去乙?;虮磉_調控中起重要作用.哺乳動物中主要有七種sirtuins蛋白,即SIRT1-7,可與p53、FOXO、PGC-1α、NF-κB、Ku70等蛋白相互作用,參與細胞的應激反應系統(tǒng),調節(jié)基因表達、DNA損傷修復、代謝和存活等多種生物過程[4-5].具有調節(jié) sirtuins活性能力的小分子被認為具有治療包括癌癥、帕金森、肥胖、糖尿病及其它衰老相關疾病的潛力[6].
過去十幾年的研究揭示出sirtuins在腫瘤發(fā)生發(fā)展中具有雙重作用,即同時具有腫瘤抑制和腫瘤促進的作用,這些研究促進了對sirtuins和小分子抑制劑作用機制的認識,有利于進一步確立sirtuins作為治療靶標的有效性.本文將從基因研究層面綜述SIRT1-7與腫瘤的關系.
1.1 SIRT1的腫瘤抑制作用SIRT1是迄今為止sirtuins家族成員中最為重要,且研究最為廣泛的一員.對SIRT1轉基因小鼠的研究顯示,SIRT1過表達能夠抑制胃腸道腫瘤[7]、惡性腫瘤、原發(fā)性腫瘤,以及肝癌[8]的發(fā)病率.SIRT1的腫瘤抑制作用可能來自其通過調節(jié)染色質和DNA修復而穩(wěn)定基因組的能力.Wang等[9]研究發(fā)現(xiàn),與對照組相比,SIRT1+/-p53+/-小鼠在不同的組織中易產(chǎn)生腫瘤細胞.SIRT1的腫瘤抑制作用也可能是由于其具有通過組蛋白的去乙酰化來抑制促瘤基因轉錄的能力[5].BRCA1與SIRT1啟動子結合并增加SIRT1表達,反過來會通過H3K9的去乙酰化抑制存活蛋白.因此,BRCA1的切除或突變導致存活蛋白水平的增加,并通過抑制SIRT1的表達來促進腫瘤生長[10].SIRT1的腫瘤抑制作用還可能來自于其去乙?;褪Щ钅承┠[瘤促進轉錄因子的能力,比如HIF-1α和NF-κB.在小鼠異種移植模型中通過去乙酰化和失活HIF-1α,SIRT1的過表達可以抑制纖維肉瘤HT1080腫瘤的生長和血管再生[11].SIRT1可將NF-κB的RelA/p65亞單元中的310位賴氨酸殘基去乙?;⒁种扑霓D錄活性,使其對TNF-α所誘導的凋亡敏感性增加[12].
1.2 SIRT1的腫瘤促進作用SIRT1在體內的致癌活性可從小鼠基因組的角度研究[13].Leko等[14]的研究表明在患有腸道腫瘤的APC(+/min)小鼠模型中,SIRT1的腸上皮細胞特異性失活會減少腫瘤的數(shù)量和大?。谛∈竽P椭械囊豁椦芯恐酗@示,SIRT1的敲除會抑制小鼠骨髓細胞BCRABL的轉錄和慢性骨髓性白血病(chronic myelocytic leukimia,CML)的發(fā)展[10].此外,在多種癌細胞中抑制或減少SIRT1可抑制癌細胞增殖[15].Pten+/-小鼠的SIRT1過表達會導致甲狀腺和前列腺腫瘤的發(fā)生,基于對mRNA分析發(fā)現(xiàn),當SIRT1過表達時,c-MYC的水平增加[16].
SIRT1能夠通過去乙?;鸵种苝53的功能來促進細胞存活[17].該研究支持了SIRT1的致癌作用是通過抑制腫瘤調節(jié)而抑制細胞死亡的[18].SIRT1通過將p53中賴氨酸的382位殘基去乙?;瘜D錄激活進行負調節(jié)[17].過表達的SIRT1通過DNA損傷和氧化應激使p53依賴的細胞凋亡顯著降低.Bizzarri等[19]發(fā)現(xiàn)SIRT1是褪黑激素在癌細胞中凋亡的主要原因.根據(jù)這一理論發(fā)現(xiàn)p53乙?;胶头核氐鞍走B接酶MDM2水平大大降低和下調,而相反的是,p300在褪黑激素中培養(yǎng)的MCF-7乳腺癌細胞則過表達[20],這與褪黑素對肺癌細胞的抑制結果一致[21].
FOXO轉錄因子是腫瘤抑制重要的家庭成員,參與調節(jié)細胞周期控制、凋亡和DNA修復的基因表達.SIRT1可以通過FOXO家族成員的去乙酰化來調節(jié)各種細胞過程.例如SIRT1將FOXO1去乙?;⒁种艶OXO1介導的前列腺癌細胞凋亡[22].SIRT1的FOXO1激活與人乳腺癌MCF-7細胞的他莫昔芬耐藥密切相關[23].此外,SIRT1介導的FOXO3a去乙酰化有助于其泛素化和降解[24].SIRT1雖能抑制FOXO3誘導的細胞死亡,但也會使FOXO3介導的細胞周期和抗氧化應激能力增加[5],這些都表明 SIRT1對FOXO的調節(jié)過程比較復雜.
SIRT1在DNA修復和基因組穩(wěn)定中的作用也可以解釋SIRT1的腫瘤促進作用.Wang等[25]課題組研究表明 SIRT1有助于 CML細胞中耐藥性的突變.SIRT1通過調節(jié)KU70和NBS1這些過程中的關鍵組分來改變同源重組和易錯的非同源末端連接的DNA修復過程.SIRT1增強錯誤DNA損傷修復,導致CML耐藥而引起的基因突變[25].SIRT1也可以通過調節(jié)表觀遺傳標記促進癌癥發(fā)展.SIRT1和Suv39h1在核糖體DNA中建立沉默染色質基因,抑制rRNA轉錄,從而保護細胞免受能量剝奪依賴性的細胞凋亡[26].SIRT1與DNMT1,DNMT3B和PcG蛋白形成多梳抑制復合物4[27],在由可能引起癌癥風險的狀態(tài)下,多梳抑制復合物4的誘導形成和再定位可導致癌癥特異性異常DNA甲基化和轉錄沉默[27].而且,通過去乙?;疕3K9和調節(jié)H3K9me3甲基轉移酶Suv39h1的活性和穩(wěn)定性,SIRT1可促進H3K9me3以及沉默染色質的形成[28].
SIRT1和c-MYC形成陽性的反饋回路,即c-MYC可以增加SIRT1的表達,SIRT1反過來使c-MYC乙?;€(wěn)定并增強c-MYC的轉錄活性.這種SIRT1-c-MYC陽性反饋環(huán)路的激活通過抑制凋亡和衰老促進c-MYC誘導的細胞增殖[29].在神經(jīng)母細胞瘤中,N-MYC使 SIRT1上調,反過來通過參與 MKP3和ERK正反饋環(huán)路促進腫瘤形成.用SIRT1抑制劑cambinol預防性治療可減少TH-MYCN轉基因小鼠的腫瘤發(fā)生[30].然而,SIRT1和c-MYC之間的負反饋環(huán)也被報道會抑制癌細胞增殖[31].
針對小鼠的SIRT2敲除實驗表明,SIRT2具有腫瘤抑制作用.SIRT2敲除的小鼠比野生型小鼠長有更多的腫瘤.這種影響是在細胞周期中通過SIRT2對APC/C的乙?;{節(jié)實現(xiàn)的[32].該假設說明SIRT2對細胞周期有重要的作用,因此如果沒有SIRT2,細胞就會異常分裂而導致腫瘤產(chǎn)生.但是在另一項研究[33]中并未發(fā)現(xiàn)SIRT2-/-小鼠會增加自發(fā)性腫瘤形成,與野生型細胞相比,SIRT2-/-細胞增加了DNA的損傷和異常細胞周期的進展.在達到一歲的小鼠敲除實驗研究中發(fā)現(xiàn),雖然沒有觀察到自發(fā)性腫瘤增加的發(fā)生,但在誘導皮膚腫瘤模型中觀察到腫瘤發(fā)生增加[33].Lin等[34]研究認為SIRT2可以去乙酰化并促進ATP-檸檬酸裂解酶的降解,ATP-檸檬酸裂解酶的降解對脂質生物合成非常重要,并能促進腫瘤生長.SIRT2的抑制促進了ATP-檸檬酸裂解酶的穩(wěn)定性并可促進腫瘤生長.此外,SIRT2可以通過表觀遺傳沉默腫瘤抑制因子控制組蛋白乙?;l(fā)揮腫瘤促進作用,如乳腺癌細胞中的ARRDC3[35].
與SIRT2的腫瘤抑制作用相反,在許多癌細胞中,已經(jīng)被證明SIRT2的敲低或藥理學抑制可以抑制癌細胞的增殖和生長[36].抑制SIRT2腫瘤抑制蛋白的水平增加,如p53和p21[37].通過調節(jié)p53的乙?;絹碓黾觩53,但對于如何增加p21,機制尚不清楚.SIRT2抑制或降低可以干擾癌細胞的代謝,例如,Warburg效應.LDH-A在許多癌細胞中過表達,是癌細胞中乳酸產(chǎn)生量增加的原因,而SIRT2可以去乙?;⒓せ頛DH-A[38].因此抑制SIRT2可以潛在地抑制癌細胞中乳酸的產(chǎn)生并破壞癌細胞代謝[38].
對于抑制或敲低SIRT2可以抵抗惡性細胞增生,研究人員提出了幾種可能的機制.一種機制是SIRT2有助于穩(wěn)定或激活癌基因蛋白,如MYC,K-RAS和FOXO.因此,抑制SIRT2將使這些癌蛋白失去穩(wěn)定性或失活,從而抑制腫瘤.據(jù)報道,K-RAS在許多癌癥中可引起激活突變,并促進其活動和癌細胞生長,而SIRT2可以使K-RAS去乙?;?9].Liu等[40]課題組研究報道在神經(jīng)母細胞瘤和胰腺癌細胞中,抑制或敲低SIRT2可以使c-MYC和N-MYC癌蛋白下調,這是通過抑制SIRT2而影響泛素連接酶NEDD4的轉錄來實現(xiàn)的.SIRT2也已被報道去乙?;⒔档虵OXO1的水平/活性[41],F(xiàn)OXO1可以通過激活自噬而增加細胞死亡.因此,SIRT2抑制可以通過增加FOXO1活性來促進細胞死亡[42].此外,SIRT2與AKT的結合對胰島素的活化至關重要,這顯示抑制SIRT2對癌癥的治療具有重要的作用[43].
SIRT3主要存在于線粒體,可以調節(jié)許多線粒體蛋白的活性。SIRT3-/-小鼠或細胞可以減少ATP產(chǎn)生和增加ROS水平[5],因此SIRT3的主要功能可能是促進線粒體代謝并抑制活性氧(reactive oxygen species,ROS)的產(chǎn)生.
Finley等[44]研究報道SIRT3-/-小鼠超過24個月后會生長乳腺腫瘤,而SIRT3+/+小鼠則沒有,這類似于癌細胞中的Warburg效應,SIRT3-/-MEF細胞的ROS水平增加和糖酵解功能增強.相應地,SIRT3-/-MEF細胞比SIRT3+/+細胞增殖更快,這種效應是由于ROS的增加和脯氨酸羥化酶活性的減少引起的,從而導致缺乏 SIRT3時 HIF-1α 的水平增加[44-45].SIRT3-/-MEF細胞中ROS水平升高與線粒體DNA損傷的增加緊密相關[46].SIRT3敲除本身不會轉化MEF細胞,但當另一個致癌基因,Ras或Myc過表達時就容易轉化MEF細胞.與此相反,SIRT3+/+MEF細胞不能通過Ras或Myc的過表達而被轉化[46].在人類癌細胞中,SIRT3的過表達逆轉Warburg效應并減少細胞增殖[44].
Ozden等[47]指出SIRT3可以脫乙?;?,其可以增加線粒體生物能量和糖酵解,從而增加丙酮酸脫氫酶癌細胞的活性.此外,SIRT3結合并將線粒體丙酮酸載體1(MPC1)去乙?;鰪娖涔δ埽瑥亩种平Y腸癌細胞生長[48].SIRT3部分通過親環(huán)蛋白D的脫乙?;团c之相伴的從線粒體中解離來的己糖激酶Ⅱ來促進氧化磷酸化(與 Warburg效應相反)[49].通過對心臟肥厚的研究提出SIRT3腫瘤抑制作用的另一種可能的分子機制[50].SIRT3顯示通過激活FOXO3a能夠抑制心臟肥大[51],而FOXO3a可增加MnSOD的水平同時降低ROS的水平[50].ROS可以激活RAS,進而通過激活MAPK和AKT途徑來促進細胞生長和增殖[50].SIRT3可以使F-box蛋白Skp2去乙酰化,并使其變得不穩(wěn)定,而Skp2是一種通過多種腫瘤抑制因子的泛素化和降解來促進腫瘤發(fā)生的蛋白質[52].
SIRT3也被報道存在于細胞核中.細胞核中的SIRT3抑制核編碼的線粒體和一些應激相關基因表達,包括Zfat和Wapal,ZFAT和WAPAL具有抗凋亡和致癌功能.通過抑制它們的表達,SIRT3可以抑制腫瘤形成[53].相比之下,SIRT3也可以結合并使KU70去乙?;?,保護細胞免受心肌細胞中細胞死亡的應激壓力[54].
SIRT4分布于線粒體中,具有ADP核糖基轉移酶活性,脂酰胺酶和生物素酶活性[55].SIRT4可抑制GDH,從而抑制氨基酸誘導胰腺β細胞胰島素的分泌[56],這可能有助于SIRT4的腫瘤抑制作用.SIRT4在許多癌癥中有所下調,抑制SIRT4使mTORC1上調,谷氨酰胺代謝以及細胞增殖[57].SIRT4已被證明通過調節(jié)谷氨酰胺代謝作為腫瘤抑制因子,提示在谷氨酰胺依賴性腫瘤中具有你潛在的治療用途,如β細胞淋巴瘤[58].另外,C末端結合蛋白SIRT4的抑制和GDH的酶修飾已被證明可促進乳腺癌細胞中的谷氨酸分解[59].除了抑制谷氨酰胺代謝,SIRT4與DNA損傷和修復也有關系[60].在同種異體移植腫瘤形成測試中,轉化的SIRT4-/-MEF細胞比轉化的SIRT4+/+MEF細胞形成更大的腫瘤[60].18~26個月齡的SIRT4-/-小鼠比SIRT4+/+小鼠長出更多的肺腫瘤[60].
SIRT5是另一種存在于線粒體的Sirtuins家族蛋白.蛋白質組學研究表明當敲除SIRT5時,可以增加數(shù)百種蛋白質的琥珀?;剑@示SIRT5參與調節(jié)多種代謝途徑[61].此外,SIRT5介導FOXO3的去乙酰化在保護香煙提取物誘導凋亡的肺上皮細胞中起著至關重要的作用[62].
SIRT6去乙酰基底物包括組蛋白 H3K56[5]和H3K9[63].SIRT6通過去乙?;疕3與不同的轉錄因子相聯(lián)系,如HIF-1α和MYC,SIRT6抑制這些轉錄因子靶基因的轉錄[64].SIRT6的去除長鏈脂肪酰基的活性比去乙?;幕钚砸邤?shù)百倍,并且該去長鏈脂?;钚阅軌虼龠MTNFα分泌[65].SIRT6的脫乙酰酶活性可以在特定條件下被刺激,例如細胞核小體[66]和游離脂肪酸[67]可以增加SIRT6在體外的去乙?;钚?,顯示出SIRT6的去長鏈脂?;腿ヒ阴;钚远伎梢员徽{節(jié).
SIRT6能夠促進DNA修復和基因組穩(wěn)定性并抑制腫瘤的發(fā)生[68].永生化的SIRT6-/-MEF細胞比永生化的SIRT6+/+MEF更具致瘤作用[64],主要是由于通過對轉錄因子HIF-1α和MYC的作用引起代謝的重新編碼,而不是因為基因組不穩(wěn)定或癌基因的激活[64].
SIRT7是一種核沉默調節(jié)蛋白,富含于核仁[69].SIRT7也是H3K18的特異性去乙?;福?0],它通過控制rRNA,tRNA和核糖體蛋白質合成[71]來調節(jié)核糖體的生物過程.SIRT7mRNA在乳腺癌和甲狀腺癌中高表達,顯示SIRT7可能參與癌癥的發(fā)生過程[72].SIRT7可以通過特定的轉錄因子招募,如ELK4[71]和MYC[73],并通過H3K18的去乙酰化來抑制基因的表達.SIRT7的敲低會抑制軟瓊脂上的纖維肉瘤細胞系HT1080和骨肉瘤細胞系U2OS腫瘤細胞的形成,并使小鼠異種移植模型中膠質瘤細胞系U251的腫瘤減?。?1].SIRT7敲低也抑制腺病毒E1A誘導的細胞轉化,這可能由某些增加的基因表達所調控,如NME1和通過H3K18乙?;暮颂求w蛋白基因[71].SIRT7在人類胃癌組織中具有高表達的能力,敲低SIRT7能夠抑制細胞增殖過程和體外克隆形成.皮下移植瘤實驗同樣證明SIRT7表達降低能夠顯著抑制胃癌細胞生長,這種促癌作用主要是通過SIRT7的組蛋白去乙?;赣绊懢哂锌拱┳饔玫膍icroRNA-34a的表達來實現(xiàn)的[74].
前期研究表明sirtuins與腫瘤的發(fā)生和發(fā)展密切相關,雖然在腫瘤治療方面表現(xiàn)出了一定的潛在應用前景,但還需要通過深入研究以闡明sirtuins家族每一成員的生物功能.雖然目前HDAC抑制劑已經(jīng)上市,但是對于同屬去乙?;傅膕irtuins家族則沒有抑制劑上市.因此,針對sirtuins的結構及功能的認識還需要更全面和深入的研究.隨著人們對sirtuins結構和功能的認識加深,大量與sirtuins結構及功能的信息被研究報道,這些研究結果正是創(chuàng)新藥物研發(fā)的重要基礎,因此將來基于sirtuins結構與功能的新藥發(fā)現(xiàn)策略將有可能推動藥物研發(fā)的進一步發(fā)展,從而為基于sirtuins為靶點的藥物研發(fā)打下堅實的基礎.
[1]Conway SJ,Woster PM,Greenlee WJ,et al.Epigenetics:Novel Therapeutics Targeting Epigenetics[J].J Med Chem,2016,59(4):1247-1248.
[2]Guha M.HDAC inhibitors still need a home run,despite recent approval[J].Nat Rev Drug Discov,2015,14(4):225-226.
[3]Finkel T,Deng CX,Mostoslavsky R.Recent progress in the biology and physiology of sirtuins[J].Nature,2009,460(7255):587-591.
[4]Mouchiroud L,Houtkooper RH,Moullan N,et al.The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling[J].Cell,2013,154(2):430-441.
[5]Carafa V,Rotili D,F(xiàn)orgione M,et al.Sirtuin functions and modulation:from chemistry to the clinic[J].Clin Epigenetics,2016,8:61.
[6]Yao Y,Yang Y,Zhu WG.Sirtuins:nodes connecting aging,metabolism and tumorigenesis[J].Curr Pharm Des,2014,20(11):1614-1624.
[7]Firestein R,Blander G,Michan S,et al.The SIRT1 deacetylase suppresses intestinal tumorigenesis andcolon cancer growth[J].PLoS ONE,2008,3(4):e2020.
[8]Herranz D,Mu?oz-Martin M,Ca?amero M,et al.Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer[J].Nat Commun,2010,1:3.
[9]Wang RH,Sengupta K,Li C,et al.Impaired DNA damage response,genome instability,and tumorigenesis in SIRT1 mutant mice[J].Cancer Cell,2008,14(4):312-323.
[10]Wang RH,Zheng Y,Kim HS,et al.Interplay among BRCA1,SIRT1,and Survivin during BRCA1-associated tumorigenesis[J].Mol Cell,2008,32(1):11-20.
[11]Yeung F,Hoberg JE,Ramsey CS,et al.Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase[J].EMBO J,2004,23(12):2369-2380.
[12]Lim JH,Lee YM,Chun YS,et al.Sirtuin 1 modulates cellular responses to hypoxia by deacetylatinghypoxia-inducible factor 1alpha[J].Mol Cell,2010,38(6):864-878.
[13]Roth M,Chen WY.Sorting out functions of sirtuins in cancer[J].Oncogene,2014,33(13):1609-1620.
[14]Leko V,Park GJ,Lao U,et al.Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min)mouse model[J].PLoS ONE,2013,8(6):e66283.
[15]Chen L.Medicinal chemistry of sirtuin inhibitors[J].Curr Med Chem,2011,18(13):1936-1946.
[16]Herranz D,Maraver A,Ca?amero M,et al.SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency[J].Oncogene,2013,32(34):4052-4056.
[17]Luo J,Nikolaev AY,Imai S,et al.Negative control of p53 by Sir2alpha promotes cell survival under stress[J].Cell,2001,107(2):137-148.
[18]Lin Z,F(xiàn)ang D.The Roles of SIRT1 in Cancer[J].Genes Cancer,2013,4(3-4):97-104.
[19]Bizzarri M,Proietti S,Cucina A,et al.Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer:a review[J].Expert Opin Ther Targets,2013,17(12):1483-1496.
[20]Proietti S,Cucina A,Dobrowolny G,et al.Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells[J].J Pineal Res,2014,57(1):120-129.
[21]Ma Z,Yang Y,F(xiàn)an C,et al.Melatonin as a potential anticarcinogen for non-small-cell lung cancer[J].Oncotarget,2016,7(29):46768-46784.
[22]Yang Y,Hou H,Haller EM,et al.Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation[J].EMBO J,2005,24(5):1021-1032.
[23]Choi HK,Cho KB,Phuong NT,et al.SIRT1-mediated FoxO1deacetylation is essential for multidrugresistance-associated protein 2 expression in tamoxifen-resistant breast cancer cells[J].Mol Pharm,2013,10(7):2517-2527.
[24]Wang F,Chan CH,Chen K,et al.Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation[J].Oncogene,2012,31(12):1546-1557.
[25]Wang Z,Yuan H,Roth M,et al.SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells[J].Oncogene,2013,32(5):589-598.
[26]Murayama A,Ohmori K,F(xiàn)ujimura A,et al.Epigenetic control of rDNA loci in response to intracellular energy status[J].Cell,2008,133(4):627-639.
[27]O’Hagan HM,Wang W,Sen S,et al.Oxidative damage targets complexes containing DNAmethyltransferases,SIRT1,and polycomb members to promoter CpG Islands[J].Cancer Cell,2011,20(5):606-619.
[28]Bosch-Presegué L,Raurell-Vila H,Marazuela-Duque A,et al.Stabilization of Suv39H1 by SirT1 is partof oxidative stress response and ensures genome protection[J].Mol Cell,2011,42(2):210-223.
[29]Menssen A,Hydbring P,Kapelle K,et al.The c-MYC oncoprotein,the NAMPT enzyme,the SIRT1-inhibitor DBC1,and the SIRT1 deacetylase form a positive feedback loop[J].Proc Natl Acad Sci USA,2012,109(4):E187-E196.
[30]Marshall GM,Liu PY,Gherardi S,et al.SIRT1 promotes N-Myc oncogenesis through a positivefeedback loop involving the effects of MKP3 and ERK on N-Myc protein stability[J].PLoS Genet,2011,7(6):e1002135.
[31]Yuan J,Minter-Dykhouse K,Lou Z.A c-Myc-SIRT1 feedback loop regulates cell growth and transformation[J].J Cell Biol,2009,185(2):203-211.
[32]Kim HS,Vassilopoulos A,Wang RH,et al.SIRT2 maintains genome integrity and suppressestumorigenesis through regulating APC/C activity[J].Cancer Cell,2011,20(4):487-499.
[33]Serrano L,Martínez-Redondo P,Marazuela-Duque A,et al.The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation[J].Genes Dev,2013,27(6):639-653.
[34]Lin R,Tao R,Gao X,et al.Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis andtumor growth[J].Mol Cell,2013,51(4):506-518.
[35]Soung YH,Pruitt K,Chung J.Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells[J].Sci Rep,2014,4:3846.
[36]Heltweg B,Gatbonton T,Schuler AD,et al.Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes[J].Cancer Res,2006,66(8):4368-4377.
[37]McCarthy AR,Sachweh MC,Higgins M,et al.Tenovin-D3,a novel small-molecule inhibitor of sirtuinSirT2,increases p21(CDKN1A)expression in a p53-independent manner[J].Mol Cancer Ther,2013,12(4):352-360.
[38]Zhao D,Zou SW,Liu Y,et al.Lysine-5 acetylation negatively regulates lactate dehydrogenase A and isdecreased in pancreatic cancer[J].Cancer Cell,2013,23(4):464-476.
[39]Yang MH,Laurent G,Bause AS,et al.HDAC6 and SIRT2 regulate the acetylation state and oncogenicactivity of mutant K-RAS[J].Mol Cancer Res,2013,11(9):1072-1077.
[40]Liu PY,Xu N,Malyukova A,et al.The histone deacetylase SIRT2 stabilizes Myc oncoproteins[J].Cell Death Differ,2013,20(3):503-514.
[41]Jing E,Gesta S,Kahn CR.SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation[J].Cell Metab,2007,6(2):105-114.
[42]Zhao Y,Yang J,Liao W,et al.Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity[J].Nat Cell Biol,2010,12(7):665-675.
[43]Ramakrishnan G,Davaakhuu G,Kaplun L,et al.Sirt2 deacetylase is a novel AKT binding partnercritical for AKT activation by insulin[J].J Biol Chem,2014,289(9):6054-6066.
[44]Finley LW,Carracedo A,Lee J,et al.SIRT3 opposes reprogramming of cancer cell metabolism throughHIF1α destabilization[J].Cancer Cell,2011,19(3):416-428.
[45]Bell EL,Emerling BM,Ricoult SJ,et al.SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production[J].Oncogene,2011,30(26):2986-2996.
[46]Kim HS,Patel K,Muldoon-Jacobs K,et al.SIRT3 is a mitochondria-localized tumor suppressorrequired for maintenance of mitochondrial integrity and metabolism during stress[J].Cancer Cell,2010,17(1):41-52.
[47]Ozden O,Park SH,Wagner BA,et al.SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells[J].Free Radic Biol Med,2014,76:163-172.
[48]Liang L,Li Q,Huang L,et al.Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity[J].Biochem Biophys Res Commun,2015,468(4):807-812.
[49] Shulga N,Wilson-Smith R,Pastorino JG.Retraction:Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinaseⅡfrom the mitochondria[J].J Cell Sci,2016,129(13):2684.
[50]Sundaresan NR,Gupta M,Kim G,et al.Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice[J].J Clin Invest,2009,119(9):2758-2771.
[51]Tseng AH,Shieh SS,Wang DL.SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage[J].Free Radic Biol Med,2013,63:222-234.
[52]Inuzuka H,Gao D,F(xiàn)inley LW,et al.Acetylation-dependent regulation of Skp2 function[J].Cell,2012,150(1):179-193.
[53]Iwahara T,Bonasio R,Narendra V,et al.SIRT3 functions in the nucleus in the control of stress-relatedgene expression[J].Mol Cell Biol,2012,32(24):5022-5034.
[54]Sundaresan NR,Samant SA,Pillai VB,et al.SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stressmediated cell death by deacetylation of Ku70[J].Mol Cell Biol,2008,28(20):6384-6401.
[55]Mathias RA,Greco TM,Oberstein A,et al.Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenasecomplex activity[J].Cell,2014,159(7):1615-1625.
[56]Haigis MC,Mostoslavsky R,Haigis KM,et al.SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells[J].Cell,2006,126(5):941-954.
[57]Csibi A,F(xiàn)endt SM,Li C,et al.The mTORC1 pathway stimulates glutamine metabolism and cellproliferation by repressing SIRT4[J].Cell,2013,153(4):840-854.
[58]Jeong SM,Lee A,Lee J,et al.SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma[J].J Biol Chem,2014,289(7):4135-4144.
[59]Wang L,Zhou H,Wang Y,et al.CtBP maintains cancer cell growth and metabolic homeostasis via regulating SIRT4[J].Cell Death Dis,2015,6:e1620.
[60]Jeong SM,Xiao C,F(xiàn)inley LW,et al.SIRT4 has tumor-suppressive activity and regulates the cellularmetabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism[J].Cancer Cell,2013,23(4):450-463.
[61]Park J,Chen Y,Tishkoff DX,et al.SIRT5-mediated lysine desuccinylation impacts diverse metabolicpathways[J].Mol Cell,2013,50(6):919-930.
[62]Wang Y,Zhu Y,Xing S,et al.SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3[J].Cell Stress Chaperones,2015,20(5):805-810.
[63]Michishita E,McCord RA,Berber E,et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J].Nature,2008,452(7186):492-496.
[61]Park J,Chen Y,Tishkoff DX,et al.SIRT5-mediated lysine desuccinylation impacts diverse metabolicpathways[J].Mol Cell,2013,50(6):919-930.
[62]Wang Y,Zhu Y,Xing S,et al.SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3[J].Cell Stress Chaperones,2015,20(5):805-810.
[63]Michishita E,McCord RA,Berber E,et al.SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J].Nature,2008,452(7186):492-496.
[64] Sebastián C,Zwaans BM,Silberman DM,et al.The histone deacetylase SIRT6 is a tumor suppressorthat controls cancer metabolism[J].Cell,2012,151(6):1185-1199.
[65]Jiang H,Khan S,Wang Y,et al.SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine[J].Nature,2013,496(7443):110-113.
[66]Gil R,Barth S,Kanfi Y,et al.SIRT6 exhibits nucleosome-dependent deacetylase activity[J].Nucleic Acids Res,2013,41(18):8537-8545.
[67]Feldman JL,Baeza J,Denu JM.Activation of the protein deacetylase SIRT6 by long-chain fatty acidsand widespread deacylation by mammalian sirtuins[J].J Biol Chem,2013,288(43):31350-31356.
[68]Mostoslavsky R,Chua KF,Lombard DB,et al.Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J].Cell,2006,124(2):315-329.
[69]Michishita E,Park JY,Burneskis JM,et al.Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J].Mol Biol Cell,2005,16(10):4623-4635.
[70]Barber MF,Michishita-Kioi E,Xi Y,et al.SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation[J].Nature,2012,487(7405):114-118.
[71]Chen S,Seiler J,Santiago-Reichelt M,et al.Repression of RNA polymerase I upon stress is caused byinhibition of RNA-dependent deacetylation of PAF53 by SIRT7[J].Mol Cell,2013,52(3):303-313.
[72]Ashraf N,Zino S,Macintyre A,et al.Altered sirtuin expression is associated with node-positive breast cancer[J].Br J Cancer,2006,95(8):1056-1061.
[73]Shin J,He M,Liu Y,et al.SIRT7 represses Myc activity to suppress ER stress and prevent fatty liverdisease[J].Cell Rep,2013,5(3):654-665.
[74]Zhang S,Chen P,Huang Z,et al.Sirt7 promotes gastric cancer growth and inhibits apoptosis by epigenetically inhibiting miR-34a[J].Sci Rep,2015,5:9787.
Research progress of relationship between sirtuins family and cancer
PAN Yan-Na1,2,LI Hui-Yu2,HAO Xin-Qi11College of Chemistry and Molecular Engineering,Zhengzhou University,Zhengzhou 450001,China;2College of Mathematics and Physics,Shanghai University of Electric Power,Shanghai 200090,China
Sirtuins are a class of III histone deacetylase(HDAC)with nicotinamide adenine dinucleotide (NAD+)-dependent.By deacylating various substrate proteins,including histones,transcription factors,and metabolic enzymes, the sirtuin family of enzymes can regulate transcription,cell survival,DNA damage and repair,and longevity.This article will introduce the sirtuin family members respectively and summarize the major biological findings that connect sirtuins to cancer.The relationship between the sirtuins and cancer from the genetic studies will be discussed.
Sirtuins;HDAC;deacetylase;cancer;inhibitor
R392.12
A
2095-6894(2017)05-15-06
2017-04-16;接受日期:2017-05-03
鄭州大學優(yōu)秀青年教師發(fā)展基金(1421316036);上海市教育委員會創(chuàng)新基金(13ZZ129)
潘艷娜.碩士.研究方向:有機合成與不對稱催化.E-mail:panyannalw@163.com
郝新奇.博士,副教授.E-mail:xqhao@zzu.edu.cn