陳 哲,盧曉聞,許烈鵬,李欽喜,涂艷陽,袁 軍
(1汕頭大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院神經(jīng)外科,廣東汕頭515041;2第四軍醫(yī)大學(xué)唐都醫(yī)院試驗外科,陜西西安710038)
熒光顯像劑在膠質(zhì)瘤熒光顯像技術(shù)中的應(yīng)用概況
陳 哲1,盧曉聞1,許烈鵬1,李欽喜1,涂艷陽2,袁 軍1
(1汕頭大學(xué)醫(yī)學(xué)院第一附屬醫(yī)院神經(jīng)外科,廣東汕頭515041;2第四軍醫(yī)大學(xué)唐都醫(yī)院試驗外科,陜西西安710038)
膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)最常見的惡性腫瘤.大部分膠質(zhì)瘤呈浸潤性生長,治療預(yù)后差.目前除了手術(shù)、放化療等傳統(tǒng)治療手段,越來越多針對膠質(zhì)瘤的診療技術(shù),如伽馬刀、超聲刀、術(shù)中磁共振、光動力治療,包括目前最前沿的各種基因、免疫治療等已被應(yīng)用到膠質(zhì)瘤診療的臨床實踐中.相關(guān)研究證實,更廣泛、精確的手術(shù)切除可以延長低級別膠質(zhì)瘤和高級別膠質(zhì)瘤患者的預(yù)期壽命.但由于腫瘤特殊生長的部位及腫瘤生長特性,臨床上往往很難單純依靠手術(shù)就可以將腫瘤細胞完全切除干凈.因此越來越多的證據(jù)表明,更廣泛,精確的手術(shù)切除可以延長膠質(zhì)瘤患者的預(yù)期壽命.然而,目前神經(jīng)外科導(dǎo)航技術(shù)在彌漫性膠質(zhì)瘤的邊緣缺乏相對靈敏性與特異性,想要通過現(xiàn)有的影像學(xué)輔助技術(shù)下完全切除腫瘤較為困難.目前已有越來越多的證據(jù)支持對手術(shù)范圍最大化切除所帶來的益處.許多神經(jīng)膠質(zhì)瘤的研究也都致力于改善長期預(yù)后的新手術(shù)方法.熒光引導(dǎo)手術(shù)(FGS)是一項在膠質(zhì)瘤術(shù)中用來增強腫瘤邊緣可視化以提高腦膠質(zhì)瘤手術(shù)切除范圍的技術(shù).各種熒光劑,包括5?氨基乙酰丙酸(5?ALA)、熒光素鈉、ICG、納米熒光技術(shù)等已在臨床以及臨床前研究中被廣泛應(yīng)用.本文主要對各種熒光劑在膠質(zhì)瘤熒光顯像技術(shù)中的應(yīng)用概況進行介紹.
膠質(zhì)瘤;熒光素;熒光引導(dǎo)手術(shù);5?氨基乙酰丙酸
膠質(zhì)瘤是包含一組以表達不同程度侵襲性的神經(jīng)膠質(zhì)細胞(例如星形膠質(zhì)細胞、少突膠質(zhì)細胞)為特征的原發(fā)性中樞神經(jīng)系統(tǒng)(central nervous system,CNS)腫瘤,具有高度的侵襲性、異質(zhì)性、復(fù)雜性和致死性.過去的20年里,許多輔助技術(shù)被廣泛應(yīng)用于膠質(zhì)瘤的治療,使得膠質(zhì)瘤的治療取得了迅速的發(fā)展.通過應(yīng)用影像技術(shù)如PET、fMRI、術(shù)中MRI、腦磁圖、DTI,神經(jīng)外科醫(yī)生能在術(shù)前精準勾畫出腫瘤的解剖結(jié)構(gòu),以期在術(shù)中精確定位功能區(qū)、腫瘤的邊界,達到最大程度地切除腫瘤.盡管現(xiàn)有的技術(shù)可以提示何種腫瘤、腫瘤的壞死程度、皮質(zhì)水腫等影像學(xué)特征,然而手術(shù)的主要焦點還在于最大限度地切除腫瘤浸潤邊緣.許多證據(jù)表明,更廣泛、精確的手術(shù)切除可以延長低級別膠質(zhì)瘤和高級別膠質(zhì)瘤患者的預(yù)期壽命[1].鑒于此,研究人員一直致力于利用先進的成像技術(shù)使腫瘤任何隱匿的、未能看清的邊緣顯像.
熒光引導(dǎo)手術(shù) (fluorescence?guided surgery,F(xiàn)GS)是一種可以用來提升腫瘤邊緣可視化,精確腦膠質(zhì)瘤手術(shù)切除范圍的技術(shù).本文就目前臨床上以及臨床前研究已用于膠質(zhì)瘤診療的各種主要的熒光劑進行介紹.
1.15?氨基乙酰丙酸(5?aminolevulinic acid,5?ALA) 5?氨基乙酰丙酸(5?ALA)是體內(nèi)血紅素生物合成的前體物質(zhì),可以被惡性腫瘤細胞攝取并轉(zhuǎn)化為具有光敏活性的原卟啉 IX(protoporphyrin IX,PpIX).其引導(dǎo)的術(shù)中熒光顯像技術(shù)早在90年代后期由Walter Stummer引進神經(jīng)外科領(lǐng)域[2].近年來,該技術(shù)已成功應(yīng)用于膠質(zhì)瘤手術(shù)中,可以輔助界定膠質(zhì)瘤邊界,提高膠質(zhì)瘤切除率.
5?ALA的合成是一種血紅素合成的限速步驟.正常生理情況下,細胞中可以存在低水平的原卟啉IX,而腫瘤細胞中亞鐵螯合酶活性低,在給予外源性5?ALA后,能夠產(chǎn)生高水平的原卟啉IX聚積.且原卟啉IX是一種熒光物質(zhì),在特定波激發(fā)光下,能夠發(fā)射特征性的紅色熒光.利用這個特性,患者需要在麻醉誘導(dǎo)前約3 h口服5?ALA,術(shù)中通過特定波長的激發(fā)光照射術(shù)野,即能顯示出腫瘤組織的邊界.5?ALA無法通過完整的血腦屏障,但由于GBM已廣泛破壞了血腦屏障,5?ALA對惡性膠質(zhì)瘤的治療不存在問題.所以上述情況只是限制了其在低級別膠質(zhì)瘤病例中的效果,其中熒光顯像通常在Ⅱ級膠質(zhì)瘤中沒有顯示,在Ⅲ級膠質(zhì)瘤中有局部顯示[3].
此外,隨著手術(shù)顯微鏡濾光片的不斷改良,人們已可以探測到來源于原卟啉IX中逃逸的藍紫光及最大限度的紅色熒光(使其紅色熒光的探測達到最大化).膠質(zhì)瘤熒光的陽性預(yù)測值已超過90%,且已被不同的研究團隊所證實[4].5?ALA固有的特性使得術(shù)中不僅可以標識熒光顯像下呈深紅色的實體膠質(zhì)瘤,也可以標識出膠質(zhì)瘤細胞周圍組織的浸潤梯度.熒光顯示的強度會隨著浸潤梯度的減少而逐漸變?nèi)?,直至消?據(jù)此,神經(jīng)外科醫(yī)生不僅能夠在手術(shù)過程中直接從術(shù)野區(qū)清晰地區(qū)分正常腦組織與腫瘤組織,還可以以一種接近組織病理學(xué)的方式評估膠質(zhì)瘤的浸潤程度.有報道在2006年發(fā)布的臨床Ⅲ期隨機試驗中表明,使用5?ALA引導(dǎo)的手術(shù)中,強化病灶全切(complete resection of enhancing tumor,CRET)比率為65%,而常規(guī)手術(shù)為36%[5].應(yīng)該指出的是,5?ALA僅僅作為術(shù)中一種可視化工具,不會對腫瘤的生長及轉(zhuǎn)歸產(chǎn)生影響;如果術(shù)中所觀察到的腫瘤沒被完整切除,殘留的5?ALA也不會有任何負面作用.隨機試驗后,許多研究團隊報道了更好的結(jié)果,其中CRET率已達到80%,甚至更高.
5?ALA聯(lián)合FGS的推廣使用將引領(lǐng)惡性膠質(zhì)瘤手術(shù)發(fā)生根本性的變化.第一,在大多數(shù)情況下能夠?qū)δz質(zhì)瘤進行完全切除.這種改變意味著實現(xiàn)腫瘤完全切除的患者百分比將更高,同時也意味著較高百分比的患者將會有很少的殘留膠質(zhì)瘤[6].重要的是,除了在膠質(zhì)瘤完全切除率方面的增加,手術(shù)治療惡性膠質(zhì)瘤也將會有一個可預(yù)測的結(jié)果.第二,超過80%的GBM患者都存在局部復(fù)發(fā),而遠期復(fù)發(fā)很可能來源于遠離腫塊的侵襲細胞.FGS獨有的鑒別體內(nèi)實體細胞和浸潤區(qū)域的能力可使局部復(fù)發(fā)的問題得到更好的控制,也使選取周圍區(qū)域作為樣本成為可能.相關(guān)文獻已經(jīng)表明,腫瘤邊緣的腫瘤起始細胞不同于從腫塊中央來源的腫瘤起始細胞[7-8].這一發(fā)現(xiàn)意味著針對腫瘤中央部分的治療,包括幾乎所有的靶向治療,對防止遠處復(fù)發(fā)的效果可能是不同的.而隨著FGS的日益普及,越來越多的研究團隊將獲得有選擇性的組織樣品,同時也能對腫瘤的侵襲性有更多的了解.第三,當(dāng)膠質(zhì)瘤侵入大腦的功能區(qū)時,切除所有的熒光組織可能會產(chǎn)生神經(jīng)功能缺損.FGS結(jié)合術(shù)中神經(jīng)電生理監(jiān)測,是一種行之有效的技術(shù),這種聯(lián)合應(yīng)用已有報道[9-10],結(jié)果表明,即使是對于侵入大腦功能區(qū)的惡性腫瘤,這種聯(lián)合應(yīng)用仍可在確保最小范圍組織切除的同時明顯提高腫瘤切除率.目前,膠質(zhì)瘤的不完全切除相當(dāng)普遍,且被認為是可以接受的.在許多研究中心,并沒有常規(guī)應(yīng)用神經(jīng)電生理監(jiān)測.在一些不確定的病例中,部分腫瘤被留下,以規(guī)避風(fēng)險.但基于5?ALA,我們有理由相信,在不久的將來,受神經(jīng)生理監(jiān)測限制的CRET應(yīng)成為規(guī)則而不是例外,同時神經(jīng)外科醫(yī)生對治療的期望將會更高.
總的來說,5?ALA顯像技術(shù)已成為一種在輔助切除惡性膠質(zhì)瘤越來越普遍的技術(shù)手段.它是一種易于使用、經(jīng)濟有效,且已被證明可以提高手術(shù)切除范圍的有效手段[11].
1.2 熒光素鈉熒光素(fluorescein)是一種呈綠色熒光的合成有機化合物,其作為一種熒光示蹤物被廣泛應(yīng)用于多個領(lǐng)域,其中也包括在醫(yī)學(xué)方面的用途.熒光素鈉(fluorescein sodium,F(xiàn)LS)是熒光素的一種水溶性鹽的形式.雖然它主要應(yīng)用于眼科,但由于它可以聚集在腦部血腦屏障受損區(qū)域,因此尤其適合作為腦部腫瘤手術(shù)中的一種可視化染料,F(xiàn)LS被用來輔助術(shù)中導(dǎo)航和顱內(nèi)腫瘤切除術(shù)早在1948已有報道.
FLS引導(dǎo)的手術(shù)具有獨特的優(yōu)勢.首先,F(xiàn)LS能在普通白光下或在專用手術(shù)顯微鏡下使用,在膠質(zhì)瘤手術(shù)中的顯影質(zhì)量好.在特質(zhì)的熒光手術(shù)顯微鏡下,可以觀察到膠質(zhì)瘤組織呈現(xiàn)明顯的黃綠色熒光,而正常腦組織無熒光顯示,且容易進行術(shù)中切割、電凝等操作,而無需切換普通白光模式,極大程度地簡化了手術(shù)流程.其次,F(xiàn)LS成本相對較低,且副作用少.相對于5?ALA,F(xiàn)LS雖特異性稍遜[12],但其無需避光,亦無嚴重的皮膚過敏反應(yīng).此外,F(xiàn)LS在24 h內(nèi)即可以完全排泄.Kuroiwa等[13]1998年即開始結(jié)合FLS與熒光手術(shù)顯微鏡指導(dǎo)切除膠質(zhì)瘤,術(shù)中熒光清晰地顯示了正常腦組織與病灶的邊界,熒光區(qū)與術(shù)前CT和MRI增強區(qū)吻合,且熒光持續(xù)了近4 h.另有研究應(yīng)用高劑量FLS對32例GBM患者進行了膠質(zhì)瘤切除,CRET達到84.4%[14].Okuda等[15]在2007年對顱內(nèi)轉(zhuǎn)移瘤患者應(yīng)用高劑量FLS指導(dǎo)進行了腫瘤切除,取得了滿意的效果.國內(nèi)學(xué)者也對大腦半球和功能區(qū)惡性膠質(zhì)瘤患者應(yīng)用FLS引導(dǎo)的切除手術(shù)進行了研究,CRET率均高達80%左右,效果顯著[16-17].
然而,熒光素引導(dǎo)手術(shù)在膠質(zhì)瘤的療效方面還仍存在一些爭議.由于通過FLS顯像是血腦屏障破壞的標志,一些學(xué)者推測,目前仍缺乏一定的特異性,所以病變的可視化針對性不夠[18].但是這樣的擔(dān)心是沒有必要的,因為FLS介導(dǎo)技術(shù)已多次取得較高的腫瘤完全切除率,特別是在高級別膠質(zhì)瘤(high grade glioma,HGG)方面.總之,目前已有相當(dāng)多的實驗對于FLS引導(dǎo)的膠質(zhì)瘤切除手術(shù)提供了科學(xué)的前提條件,其在神經(jīng)腫瘤外科領(lǐng)域的臨床應(yīng)用成效顯著[19].
1.3 吲哚菁綠(indocyanine green,ICG) ICG是一種近紅外線熒光的三碳染色劑,在靜脈注射ICG后,染料在1~2 s內(nèi)幾乎能完全結(jié)合到球蛋白,尤其是α1?脂蛋白上[20],其在體內(nèi)的半衰期為3~4 min,10 min后,最初注射的ICG量只有一小部分能夠在血液中檢測到,主要經(jīng)肝臟排泄出體外.
目前ICG已廣泛應(yīng)用于視網(wǎng)膜血管造影,在腦血管手術(shù)過程中也用于評估腦血流以及腦血管通暢程度.通常的視頻血管造影成像的劑量為0.2~0.5 mg/kg體重,每日總劑量不超過5 mg/kg體重.有研究[21]在對所有小鼠大腦凸面暴露后馬上靜脈注射標準劑量為0.4 mg/kg的ICG到尾靜脈后發(fā)現(xiàn),腫瘤細胞的ICG熒光顯像具有時間依賴性,相對于剛注射ICG,注射后15 min將提供更高信號.單純口服ICG后未得到熒光顯像的平均周期數(shù)據(jù),但研究者能夠檢測到連續(xù)成像1 h后鮮明的熒光信號[21].這一發(fā)現(xiàn)表明,當(dāng)被ICG浸潤的腫瘤細胞在近紅外激光連續(xù)照射后仍保留其熒光特性,并且不會褪色,這一特點相對于可見光波長的熒光顯像具有潛在的優(yōu)勢.早在1993年,Hansen等[22]即對大鼠顱內(nèi)膠質(zhì)瘤模型應(yīng)用了ICG染色,結(jié)果發(fā)現(xiàn),ICG染色可使腫瘤邊界的誤差控制在1 mm以內(nèi),且腫瘤顯示強綠色熒光時間可達1 h.因ICG可以在人膠質(zhì)瘤組織內(nèi)高度濃集而在正常腦組織中很快被清除,它的使用比熒光素的風(fēng)險少很多,ICG已被批準并且常規(guī)用于腦血管外科.有研究[23-24]在對膠質(zhì)瘤患者給予ICG后行熒光引導(dǎo)手術(shù)發(fā)現(xiàn),通過組織熒光強度的變化曲線和持續(xù)時間可有效區(qū)分各級別膠質(zhì)瘤組織及正常腦組織,為ICG的廣泛應(yīng)用奠定了基礎(chǔ).
不像熒光素可以提供即時熒光顯像,ICG注射具有時間依賴性.因此,最佳ICG顯像至少應(yīng)該在成像前15 min給予ICG給藥.有趣的是,ICG熒光在手術(shù)損傷區(qū)域可被檢測到,提示ICG可能從受損血管外滲,這一特性也意味著在近紅外成像下予以ICG給藥可能在相對具有完整的血腦屏障中的良性膠質(zhì)瘤切除術(shù)中有用.在良性病變切除術(shù)中,熒光顯像可能是由腫瘤新生血管的破壞使ICG泄漏而獲得的,因此可被結(jié)合到腫瘤細胞,然后劃定出腫瘤區(qū)域.如近紅外激光共聚焦顯微內(nèi)鏡聯(lián)合ICG熒光可大大增強肉眼觀測的靈敏度,并且可更精確地實時提供活體內(nèi)所在位置的顯微組織信息,使腦組織內(nèi)獨特的腫瘤細胞被識別,并確定一個明確的腫瘤邊界.這種技術(shù)已應(yīng)用于活體內(nèi)檢測癌癥,并可提供關(guān)于腫瘤區(qū)域、正常腦實質(zhì)以及交界區(qū)的重要組織信息,可應(yīng)用于腦腫瘤的診斷和指導(dǎo)切除術(shù)的設(shè)置[25].
1.4 納米探針(nanoparticles) 隨著納米技術(shù)在生物醫(yī)學(xué)領(lǐng)域的廣泛應(yīng)用,納米顆粒以其體積小、易通過血腦屏障等特點被人們作為MRI的增強造影劑,腫瘤靶向治療藥物的載體來研究[26-28].
1.4.1 金屬納米殼(metal nanoshells) 金屬納米殼能夠應(yīng)用在膠質(zhì)瘤的顯像方面,是一種具有良好分辨率的化合物.金屬納米殼由一薄層金屬外殼或銀色、金色的超薄涂層包裹的硅芯所組成[29].這些納米粒子可以產(chǎn)生吸收或散射光[30-31],已被用來治療小鼠膠質(zhì)瘤.不僅如此,金屬納米殼還被作為造影劑應(yīng)用于光學(xué)成像中,有研究已報道其可以增加周圍的T1加權(quán)圖像水質(zhì)子信號,減少在 T2加權(quán)圖像信號[32-33].不過,這些納米粒子在600~800 nm范圍表現(xiàn)出很強的吸收能力,其光學(xué)性能非常依賴于金銀合金外殼的厚度,靜脈注射能引起有限的腫瘤積聚,其臨床應(yīng)用前景還有待進一步的研究[32-33].
1.4.2 量子點(quantum dots,QDs) QDs是由以鎘為核心的、惰性金屬外殼包圍的半導(dǎo)體化合物組成的[34-35].如同金納米顆粒一樣,量子點具有取決于粒子大小的較好光學(xué)性能.這些造影劑的可調(diào)光學(xué)性能主要用于各種癌癥的應(yīng)用,包括腦腫瘤的細胞和分子成像,也包括神經(jīng)膠質(zhì)瘤的前臨床光學(xué)成像[36-38].其還可以通過與各種抗體、蛋白、脂肪酸及其它一些有機化合物的結(jié)合并經(jīng)過巨噬細胞的吞噬作用選擇性地進入各種組織,在區(qū)分腫瘤與正常組織邊界和靶向治療腫瘤方面具有廣闊的前景[39-44].近年來,量子點已成為許多以熒光為基礎(chǔ)的生物分析技術(shù)中傳統(tǒng)染料的替代品,他們在580~800 nm的范圍內(nèi)表現(xiàn)出強烈的熒光顯像,光穩(wěn)定性高,如CdHgTe/明膠納米微球的熒光顯像能夠抗某些內(nèi)源性生物分子如人血清白蛋白、轉(zhuǎn)鐵蛋白、血紅蛋白的干擾[45].體內(nèi)研究表明,CdHgTe/明膠納米微球在經(jīng)過注射后迅速分布到全身血液循環(huán)當(dāng)中.血管網(wǎng)絡(luò)可以在熒光顯像中清晰可見,并且可以清楚地觀察到納米微球在淺表血管的動態(tài)變化.在目前的研究中,這些顆??梢宰鳛榈鞍踪|(zhì)、DNA、小分子比較有前景的納米載體,在不久的將來還可用于實時監(jiān)測藥物釋放和治療效果的研究[46].
1.4.3 交聯(lián)氧化鐵顆粒(cross?linked iron oxide nano?paticle,CLIO) 用熒光試劑Cy5.5標記的CLIO是一種代謝靶向納米粒子,它在腫瘤細胞內(nèi)的內(nèi)化和積聚在注射24 h后達到高峰.Cy5.5?CLIO的攝取也出現(xiàn)在膠質(zhì)瘤邊界的小膠質(zhì)細胞和巨噬細胞,導(dǎo)致在小鼠和大鼠模型中熒光增強的腫瘤邊界有約2~24 μm的過度估計[47].據(jù)此,Veiseh等[48-49]在 Cy5.5?CLIO的基礎(chǔ)上合成了更具靶向性的Cy5.5?Fe3O4?Cltx探針,其與在膠質(zhì)瘤、髓母細胞瘤等顱內(nèi)惡性腫瘤中高表達的MMP?2蛋白具有高度的親和力,具有更高的膠質(zhì)瘤靶向性,并在后續(xù)的研究中實現(xiàn)了Cltx?Cy5.5在小鼠膠質(zhì)瘤模型中的熒光顯像,確定了Cltx對小鼠等哺乳動物的無毒性,為后續(xù)的納米探針熒光顯像的臨床應(yīng)用奠定了基礎(chǔ).
納米粒子已成為膠質(zhì)瘤診斷和治療的很好的選擇.其不僅可作為一種有用的成像工具來進行膠質(zhì)瘤的診斷并且實現(xiàn)對患者的隨訪;還可用于評估和監(jiān)測抗血管生成或其他抗腫瘤治療的效果,從而改善膠質(zhì)瘤的臨床治療.盡管具有許多優(yōu)勢,但納米探針目前還屬于一種未知長期副作用的新技術(shù),對膠質(zhì)瘤的診斷和治療也沒有應(yīng)用于臨床,其應(yīng)用前景還需進一步的證實.
1.5 內(nèi)源性熒光物質(zhì)(endogenous fluorophores)
在特定波長光的激發(fā)下,人體組織內(nèi)源性熒光光譜是多種不同物質(zhì)成分同時誘發(fā)產(chǎn)生的光譜疊加,其強度和形狀取決于組織的生化特性和形態(tài)結(jié)構(gòu),并受到組織吸收和散射的影響.組織在癌變過程中,細胞新陳代謝的變化將引起熒光物質(zhì)的濃度、血液濃度、細胞核大小和上皮層厚度等發(fā)生變化,因此可根據(jù)組織內(nèi)源性熒光特性的差異區(qū)分正常和癌變組織.
自體熒光技術(shù)能夠反映人體組織中內(nèi)源性熒光物質(zhì)和形態(tài)結(jié)構(gòu)的微小變化,對于提高腫瘤診斷的靈敏度具有十分重要的臨床意義.內(nèi)源性熒光物質(zhì)可在腦及膠質(zhì)瘤組織中接受刺激后發(fā)射不同的熒光信號.目前關(guān)于內(nèi)源性熒光物質(zhì)的運用研究,其中包括通過運用光學(xué)分光法(optical spectroscopy)對內(nèi)源性熒光物質(zhì)進行評估[50-53],以及圍繞多光子激發(fā)體層攝影術(shù)(multiphoton excitation tomography)展開的研究[54].運用分光法,通過在目標組織對面放置一個光纖探針來檢測熒光信號的強弱,運用特定的算法來區(qū)分正常腦組織與病變的腫瘤組織[50].在對高級別與低級別膠質(zhì)瘤患者運用該技術(shù)的研究中表明,運用該方法,對正常腦組織與浸潤性腫瘤組織辨別的敏感性為94%~100%,特異性為76%~93%[51-52].熒光信號適時的衰減提供了更多的信息,把這個因素添加進算法中,對低級別膠質(zhì)瘤與正常組織進行區(qū)分的敏感性為90%~100%,而特異性則提升至98%~100%.然而,對于高級別膠質(zhì)瘤,由于壞死和高度的異質(zhì)性,其敏感性為47%~95%,特異性為94%~96%[50,53].在紅外線光譜中不同波長的多個激發(fā)光束可從不同角度進行激發(fā),這減少了光毒性、光的散射及來自血液中的產(chǎn)物,并增加了滲透深度.而激發(fā)只發(fā)生在兩個低能量級別的光子同時被吸收時.Kantelhardt等[54]首次將多光子激發(fā)體層攝影運用在人類術(shù)中,并從分子及亞分子層面報道了其區(qū)分腫瘤與正常組織的能力,無不良反應(yīng)發(fā)生.
1.6 抗表皮生長因子/受體(EGFR/EGF) EGFR
是調(diào)節(jié)生長和存活的酪氨酸激酶細胞表面受體,參與腫瘤的粘附、遷移、分化等過程[55],在大多數(shù)惡性腫瘤中過表達,其與腫瘤的發(fā)生發(fā)展密切相關(guān),是一種可靠的腫瘤標記物[56-57].在膠質(zhì)瘤中,EGFR的陽性表達率高達90%.因此,使用靶向EGFR受體的近紅外熒光分子指導(dǎo)膠質(zhì)瘤手術(shù)是膠質(zhì)瘤治療的一種可能有效手段[58].
熒光標記的親和力分子ABY?029具有高EGFR親和力和高潛在特異性,具有相當(dāng)快的血漿清除率.已有研究在大鼠中完成了ABY?029的藥理學(xué)、受體活性和生物分布研究.研究者還用膠質(zhì)瘤細胞系U251對裸鼠進行了移植瘤實驗,并在不同的時間點(1~48 h)和以不同的注射劑量(25~122 μg/kg)對裸鼠進行了ABY?029的注射,獲得腦切片后進行熒光離體成像.他們發(fā)現(xiàn),膠質(zhì)瘤在注射1 h后最清晰可見,相對于正常腦組織,平均對比度為8~16倍.然而,膠質(zhì)瘤仍然可以在48 h后被鑒定.在所有情況下,ABY?029熒光優(yōu)先定位在EGFR陽性區(qū)域.將注射劑量從微劑量水平增加至5倍,信號將提高10倍,對比度為8~16倍,顯示劑量值略高于微劑量限制.這些結(jié)果表明,NIR標記的親和力分子提供了增加EGFR陽性腫瘤區(qū)域的手術(shù)可視化的極好潛力[59-60].總的來說,分子靶向EGFR在未來是熒光引導(dǎo)手術(shù)中具有一定的發(fā)展前景,但是它依賴于EGFR在腫瘤細胞中的表達的問題仍需克服.
1.7 金絲桃素(hypericin) 金絲桃素是貫葉連翹(hypericum peforatum L)中最具生物活性的物質(zhì),屬于二蒽酮類,是一種可以對光反應(yīng)活性較弱物質(zhì)起到增效作用的增敏劑,并且有通過獨立的 p53途徑發(fā)揮金絲桃素光動力療法(hyperium photodynamic ther?apy,HY?PDT)的作用.已有報道應(yīng)用金絲桃素光動力輔助診斷了膀胱癌,相對于對照組5?ALA來說有非常高的敏感性和特異性.另一項病例研究和臨床前期試驗也對金絲桃素進行了評估,對接受手術(shù)治療的高級別膠質(zhì)瘤患者靜脈注射作為被動腫瘤靶向因子金絲桃素,其組織樣本熒光對腫瘤組織與正常腦組織辨別率的敏感性和特異性分別為91%~94%和90%~100%,且無不良反應(yīng)發(fā)生[61].而在一項動物實驗中,大鼠被植入多形性膠質(zhì)瘤細胞,并靜脈注射了金絲桃素.研究者通過熒光顯微鏡對腦組織中聚集的金絲桃素進行觀察,其校正后的腫瘤/正常組織的比達19.8,實驗中亦無不良反應(yīng)發(fā)生[62].
1.8 5?氨基熒光人血白蛋白(5?aminofluorescein hu?man serum albumin,AFLHSA) 目前關(guān)于該熒光劑的報道較少,有研究表明[63],5?氨基熒光劑為一被動的腫瘤靶向因子,其可示蹤于人血清白蛋白(hu?man serum albumin,HSA).該研究納入了13例高級別膠質(zhì)瘤,以AFLHSA為熒光劑進行了熒光導(dǎo)向切除術(shù),其總體切除率達69%,過程中未發(fā)現(xiàn)光毒性、過敏或其他相關(guān)副作用.
膠質(zhì)瘤多呈浸潤生長,術(shù)中腫瘤邊界顯示不清,手術(shù)中做到真正意義上的腫瘤全切是非常困難的,而且術(shù)后放、化療效果差,故手術(shù)中采用熒光劑結(jié)合影像學(xué)技術(shù),爭取腫瘤更大的切除范圍,有助于提高患者生存率,Senders等[1]在2016年11月發(fā)布的一篇meta分析中表明,對比于傳統(tǒng)手術(shù),此類患者的平均生存時間可由原來的4~5個月提高到5~9個月.
用于膠質(zhì)瘤熒光顯像的熒光劑應(yīng)該使用方便,安全,并且具有腫瘤特異性.熒光信號應(yīng)該強而且易于檢測.在各種熒光劑中,5?ALA是應(yīng)用較廣的一種方式,其介導(dǎo)的光敏劑物質(zhì)原卟啉IX具有對腫瘤組織敏感性高、特異性強、對組織穿透性強等特點,增加了腫瘤細胞對5?ALA吸收,從而增加了原卟啉IX的聚集濃度.目前,5?ALA是唯一一種已在一個多中心隨機對照試驗(Randomized controlled trial,RCT)進行試驗的熒光劑,同時已在某些國家批準應(yīng)用于臨床.5?ALA聯(lián)合FGS再結(jié)合術(shù)中神經(jīng)電生理監(jiān)測可明顯提高惡性膠質(zhì)瘤的全切率.未來的研究方向應(yīng)該在于聯(lián)合運用更多術(shù)中可視化新技術(shù),提高5?ALA的特異性和敏感性,以更精確地實施對惡性膠質(zhì)瘤的切除.熒光素鈉應(yīng)用相對簡單,而且相比5?ALA價格較低廉.FLS介導(dǎo)技術(shù)雖然以在多次實踐中取得較高的切除率,但在對于膠質(zhì)瘤的特異性上仍不如5?ALA.雖然在其他臨床試驗的外源物質(zhì)還包括ICG,AFLH?SA和Hypericin等.盡管它們也有助于腫瘤的完全切除,然而由于其缺乏特異性,許多仍處于基礎(chǔ)研究當(dāng)中,臨床前研究可能更傾向于分子靶向方面的研究(如抗表皮生長因子受體).目前,想要對各種熒光技術(shù)進行直接比較仍較為困難,這還需要更多研究.隨著對完全手術(shù)切除(gross total resection,GTR)定義的改進和更廣泛的測試成果涌現(xiàn),未來的研究可以通過使用更加規(guī)范、統(tǒng)一的設(shè)計進行比較.隨著各種熒光素的發(fā)現(xiàn)以及術(shù)中可視化技術(shù)的改良和進步,熒光顯像技術(shù)對于膠質(zhì)瘤在未來的診療中,必定會給更多膠質(zhì)瘤患者帶來福音.
[1]Senders JT,Muskens IS,Schnoor R,et al.Agents for fluorescence?guided glioma surgery:a systematic review of preclinical and clinical results[J].Acta Neurochir(Wien),2017,159(1):151-167.
[2]Walter S,Susanne S,Simon W,et al.Intraoperative detection of malignant gliomas by 5?aminolevulinic acid?induced porphyrin fluo?rescence[J].Neurosurgery,1998,42(3):518-526.
[3]Widhalm G,Wolfsberger S,Minchev G,et al.5?Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement[J].Cancer,2010,116(6):1545-1552.
[4]Idoate MA,Díez Valle R,Echeveste J,et al.Pathological character?ization of the glioblastoma border as shown during surgery using 5?aminolevulinic acid?induced fluorescence[J].Neuropathology,2011,31(6):575-582.
[5]Cortnum S,Laursen R.Fluorescence?guided surgery with 5?aminole?vulinic acid for resection of malignant gliomas??a new treatment modality[J].Ugeskr Laeg,2013,175(9):570-573.
[6]Díez Valle R,Tejada Solis S,Idoate Gastearena MA,et al.Surgery guided by 5?aminolevulinic fluorescence in glioblastoma:volumetric analysis of extent of resection in single?center experience[J].J Neu?rooncol,2011,102(1):105-113.
[7]Piccirillo SG,Dietz S,Madhu B,et al.Fluorescence?guided surgical sampling of glioblastoma identifies phenotypically distinct tumour?ini?tiating cell populations in the tumour mass and margin[J].Br J Cancer,2012,107(3):462-468.
[8]Rampazzo E,Della Puppa A,F(xiàn)rasson C,et al.Phenotypic and functional characterization of Glioblastoma cancer stem cells identi?fied through 5?aminolevulinic acid?assisted surgery[corrected][J].J Neurooncol,2014,116(3):505-513.
[9]Schucht P,Beck J,Abu?Isa J,et al.Gross total resection rates in contemporary glioblastoma surgery:results of an institutional protocol combining 5?aminolevulinic acid intraoperative fluorescence imaging and brain mapping[J].Neurosurgery,2012,71(5):927-935.
[10]Della Puppa A,De Pellegrin S,D'avella E,et al.5?aminolevulinic acid(5?ALA)fluorescence guided surgery of high?grade gliomas in eloquent areas assisted by functional mapping.Our experience and review of the literature[J].Acta Neurochir(Wien),2013,155(6):965-972.
[11]Watts C,Sanai N.Surgical approaches for the gliomas[J].Handb Clin Neurol,2016,134:51-69.
[12]Kajimoto Y,Miyatake SI,Kuroiwa T.Fiber?optic spectroscopic detection of neoplasm by intraoperative fluorescence labeling[J].International Congress Series,2004,1259:33-38.
[13]Kuroiwa T,Kajimoto Y,Ohta T.Development of a fluorescein opera?tive microscope for use during malignant glioma surgery:a technical note and preliminary report[J].Surg Neurol,1998,50(1):41-48.
[14] Shinoda J,Yano H,Yoshimura S,et al.Fluorescence?guided resection of glioblastoma multiforme by using high?dose fluorescein sodium.Technical note[J].J Neurosurg,2003,99(3):597-603.
[15]Okuda T,Kataoka K,Taneda M.Metastatic brain tumor surgery using fluorescein sodium:technical note[J].Minim Invasive Neuro?surg,2007,50(6):382-384.
[16]胡新華,張巖松,劉 翔,等.熒光導(dǎo)航輔助下切除功能區(qū)惡性膠質(zhì)瘤[J].中國微侵襲神經(jīng)外科雜志,2006,11(8):343-344.
[17]張巖松,常 義,劉宏毅,等.熒光導(dǎo)航技術(shù)在顱內(nèi)惡性膠質(zhì)瘤手術(shù)中的應(yīng)用[J].臨床神經(jīng)病學(xué)雜志,2006,19(1):56-57.
[18]Ewelt C,Nemes A,Senner V,et al.Fluorescence in neurosurgery:Its diagnostic and therapeutic use.Review of the literature[J].J Photochem Photobiol B,2015,148:302-309.
[19]Schebesch KM,Brawanski A,Hohenberger C,et al.Fluorescein sodium?guided surgery of malignant brain tumors:history,current concepts,and future project[J].Turk Neurosurg,2016,26(2):185-194.
[20]Baker KJ.Binding of sulfobromophthalein(BSP)sodium and indo? cyanine green(ICG)by plasma alpha?1 lipoproteins[J].Proc Soc Exp Biol Med,1966,122(4):957-963.
[21]Raabe A,Beck J,Gerlach R,et al.Near?infrared indocyanine green video angiography:a new method for intraoperative assessment of vascular flow[J].Neurosurgery,2003,52(1):132-139.
[22]Hansen DA,Spence AM,Carski T,et al.Indocyanine green/ICG/staining and demarcation of tumor margins in a rat glioma model[J].Surg Neurol,1994,40(6):451-456.
[23]Haglund MM,Hochman DW,Spence AM,et al.Enhanced optical imaging of rat gliomas and tumor margins[J].Neurosurgery,1994,35(5):930-940.
[24]Haglund MM,Berger MS,Hochman DW.Enhanced optical imaging of human gliomas and tumor margins[J].Neurosurgery,1996,38(2):308-317.
[25]Martirosyan NL,Cavalcanti DD,Eschbacher JM,et al.Use of in vivo near?infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor[J].J Neurosurg,2011,115(6):1131-1138.
[26]Nikanjam M,Blakely EA,Bjornstad KA,et al.Synthetic nano?low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme[J].Int J Pharm,2007,328(1):86-94.
[27]Nikanjam M,Gibbs AR,Hunt CA,et al.Synthetic nano?LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme[J].J Control Release,2007,124(3):163-171.
[28]Sun C,Veiseh O,Gunn J,et al.In vivo MRI detection of gliomas by chlorotoxin?conjugated superparamagnetic nanoprobes[J].Small,2008,4(3):372-379.
[29]Hirsch LR,Gobin AM,Lowery AR,et al.Metal nanoshells[J].Ann Biomed Eng,2006,34(1):15-22.
[30]Loo C,Hirsch L,Lee MH,et al.Gold nanoshell bioconjugates for molecular imaging in living cells[J].Opt Lett,2005,30(9):1012-1014.
[31]West JL,Halas NJ.Engineered nanomaterials for biophotonics appli?cations:improving sensing,imaging,and therapeutics[J].Annu Rev Biomed Eng,2003,5:285-292.
[32]Lin AW,Lewinski NA,West JL,et al.Optically tunable nanoparticle contrast agents for early cancer detection:model?based analysis of gold nanoshells[J].J Biomed Opt,2005,10(6):064035.
[33]Talley CE,Jackson JB,OUBRE C,et al.Surface?enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates[J].Nano Lett,2005,5(8):1569-1574.
[34]Reiss P,Protière M,Li L.Core/Shell semiconductor nanocrystals[J].Small,2009,5(2):154-168.
[35]Arya H,Kaul Z,Wadhwa R,et al.Quantum dots in bio?imaging:Revolution by the small[J].Biochem Biophys Res Commun,2005,329(4):1173-1177.
[36]Smith AM,Duan H,Mohs AM,et al.Bioconjugated quantum dots for in vivo molecular and cellular imaging[J].Adv Drug Deliv Rev,2008,60(11):1226-1240.
[37]Popescu MA,Toms SA.In vivo optical imaging using quantum dots for the management of brain tumors[J].Expert Rev Mol Diagn,2006,6(6):879-890.
[38]Jackson H,Muhammad O,Daneshvar H,et al.Quantum dots arephagocytized by macrophages and colocalizewith experimental gliomas[J].Neurosurgery,2007,60(3):524-529.
[39]Arndt?Jovin DJ,Kantelhardt SR,Caarls W,et al.Tumor?targeted quantum dots can help surgeons find tumor boundaries[J].IEEE Trans NanoBioscience,2009,8(1):65-71.
[40]Cai W,Shin DW,Chen K,et al.Peptide?labeled near?infrared quantum dots for imaging tumor vasculature in living subjects[J].Nano Lett,2006,6(4):669-676.
[41]Jackson H,Muhammad O,Daneshvar H,et al.Quantum dots are phagocytized by macrophages and colocalizewith experimental gliomas[J].Neurosurgery,2007,60(3):524-529.
[42]Jung J,Solanki A,Memoli KA,et al.Selective inhibition of human brain tumor cells through multifunctional quantum?dot?based siRNA delivery[J].Angew Chem Int Ed Engl,2010,49(1):103-107.
[43]Taghva A,Khalessi AA,Kim PE,et al.From atom to brain:appli?cations of molecular imaging to neurosurgery[J].World Neurosurg,2010,73(5):477-485.
[44]Wang J,Yong WH,Sun Y,et al.Receptor?targeted quantum dots:fluorescent probes for brain tumor diagnosis[J].J Biomed Opt,2007,12(4):044021.
[45]Wang Y,Ye C,Wu L,et al.Synthesis and characterization of self?assembled CdHgTe/gelatin nanospheres as stable near infrared fluorescent probes in vivo[J].J Pharm Biomed Anal,2010,53(3):235-242.
[46]Wang HJ,Yang L,Yang HY,et al.Antineoplastic activities of protein?conjugated silver sulfidenano?crystals with different shapes[J].J Inorg Biochem,2010,104(1):87-91.
[47]Kircher MF,Mahmood U,King RS,et al.A multimodal nanoparti?cle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation[J].Cancer Res,2003,63(23):8122-8125.
[48]Veiseh O,Sun C,Gunn J,et al.Optical and MRI multifunctional nanoprobe for targeting gliomas[J].Nano Lett,2005,5(6):1003-1008.
[49]Veiseh M,Gabikian P,Bahrami SB,et al.Tumor paint:a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci[J].Cancer Res,2007,67(14):6882-6888.
[50]Butte PV,Mamelak AN,Nuno M,et al.Fluorescence lifetime spec?troscopy for guided therapy of brain tumors[J].Neuroimage,2011,54(Suppl 1):S125-S135.
[51]Lin WC,Toms SA,Johnson M,et al.In vivo brain tumor demarca?tion using optical spectroscopy[J].Photochem Photobiol,2001,73(4):396-402.
[52]Toms SA,Lin WC,Weil RJ,et al.Intraoperative optical spectrosco?py identifies infiltrating glioma margins with high sensitivity[J].Neurosurgery,2005,57(4 Suppl):382-391.
[53]Yong WH,Butte PV,Pikul BK,et al.Distinction of brain tissue,low grade and high grade glioma with time?resolved fluorescence spectroscopy[J].Front Biosci,2006,11:1255-1263.
[54]Kantelhardt SR,Kalasauskas D,K?nig K,et al.In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue[J].J Neurooncol,2016,127(3):473-482.
[55]Nagane M,Levitzki A,Gazit A,et al.Drug resistance of human glioblastoma cells conferred by a tumor?specific mutant epidermal growth factor receptor through modulation of Bcl?XL and caspase?3?like proteases[J].Pro Natl Acad Sci U S A,1998,95(10):5724-5729.
[56]Libermann TA,Nusbaum HR,Razon N,et al.Amplification,enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin[J].Nature,1985,313(5998):144-147.
[57]Schlegel J,Merdes A,Stumm G,et al.Amplification of the epider?mal?growth?factor?receptorgene correlateswith differentgrowth behaviour in human glioblastoma[J].Int J Cancer,1994,56(1):72-77.
[58]Agnes RS,Broome AM,Wang J,et al.An optical probe for nonin?vasive molecular imaging of orthotopic brain tumors overexpressing epidermal growth factor receptor[J].Mol Cancer Ther,2012,11(10):2202-2211.
[59]De Souza ALR,Marra K,Gunn J,et al.Fluorescent affibody mole?cule administered in vivo at a microdose level labels egfr expressing glioma tumor regions[J].Mol Imaging Biol,2016,19(1):41-48.
[60]Samkoe KS,Gunn JR,Marra K,et al.Toxicity and pharmacokinetic profile for single?dose injection of aby?029:a fluorescent anti?egfr synthetic affibody molecule for human use[J].Mol Imaging Biol,2016.
[61]Ritz R,Daniels R,Noell S,et al.Hypericin for visualization of high grade gliomas:first clinical experience[J].Eur J Surg Oncol,2012,38(4):352-360.
[62] Noell S,Mayer D,Strauss WS,et al.Selective enrichment of hypericin in malignant glioma:pioneering in vivo results[J].Int J Oncol,2011,38(5):1343-1348.
[63]Kremer P,F(xiàn)ardanesh M,Ding R,et al.Intraoperative fluorescence staining of malignant brain tumors using 5?aminofluorescein?labeled albumin[J].Neurosurgery,2009,64(3 Suppl):ons53-60;discus?sion ons60-1.
Application of fluorescent imaging agent in fluorescence imaging of glioma
CHEN Zhe1,LU Xiao?Wen1,XU Lie?Peng1,LI Qin?Xi1,TU Yan?Yang2,YUAN Jun1
1Department of Neurosurgery,F(xiàn)irst Affiliated Hospital of Medical College,Shantou University,Shantou 515041,China;2Department of Experimental Surgery, Fourth Military Medical University,Xi'an 710038,China
Glioma is the most common malignant tumor of the central nervous system.Most of gliomas are invasive,and with poor prognosis.In addition to surgery,radiotherapy,chemotherapy and other traditional treatments,more and more diagnosis and treatment techniques,such as gamma knife,ultrasound knife,intraoperative magnetic resonance,photodynamic therapy,and the most cutting?edge gene therapy and immunotherapy,and so on,have been applied to the clinical practice of glioma diagnosis and treatment.Relevant studies have confirmed that a more extensive and accurate surgical resection can extend the life expectancy of patients both with low grade and high grade gliomas.However,due to the special growth sites and growth characteristics of gliomas,it is difficult to entirely remove the tumor merely relying on surgery.There is increasing evidence that a wider and more accurate surgical resection can extend the life expectancy of patients with gliomas.However,the neurosurgical guidance techniques relatively lack sensitivity and specificity at the margins of diffuse gliomas,and it is difficult to completely remove tumors by existing imaging?assisted techniques.There is growing evidence to support the benefits of maximizing resection.Many studies of gliomas are also committed to improving the long?term prognosis with new surgical methods.Fluorescence?guided surgery(FGS)is a technique used in glioma surgery,which can enhance the visualization of tumor margins and improve the surgical resection of gliomas.Various fluorescent agents,including 5?aminolevulinic acid(5?ALA),fluorescein sodium,ICG and nanofluorescence techniques,have been widely used in clinical and preclinical studies.This paper gives an intro? duction of the application of various fluorescent agents in glioma fluorescence imaging technology.
glioma;fluorescein;fluorescence?guided resection;5?ALA
R739.41
A
2095?6894(2017)07?86?07
2017-04-28;接受日期:2017-05-10
廣東省科技計劃項目(2016ZC0167)
陳 哲.碩士生.研究方向:腦血管病、腦腫瘤.E?mail:17246622@qq.com
袁 軍.博士,副教授,副主任醫(yī)師.E?mail:yjun116@163.com