黃 俊 袁軍堂 汪振華
南京理工大學(xué),南京,210094
基于NSGA_Ⅱ算法的雙驅(qū)動(dòng)進(jìn)給系統(tǒng)結(jié)構(gòu)優(yōu)化
黃 俊 袁軍堂 汪振華
南京理工大學(xué),南京,210094
為了滿足雙驅(qū)動(dòng)進(jìn)給系統(tǒng)輕量化和高抗振性能要求,提出了以質(zhì)量、最大耦合應(yīng)力和一階固有頻率為目標(biāo)函數(shù)的進(jìn)給系統(tǒng)多目標(biāo)優(yōu)化設(shè)計(jì)方法。采用靈敏度法選取優(yōu)化參數(shù),通過(guò)正交試驗(yàn)設(shè)計(jì)方法建立了進(jìn)給系統(tǒng)的二階響應(yīng)面模型,并將非劣排序遺傳算法Ⅱ(NSGA_Ⅱ)作為求解算法。計(jì)算結(jié)果表明工作臺(tái)質(zhì)量減小0.3%,最大耦合應(yīng)力減小5.9%,一階固有頻率提高了9.32%。以雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的工作臺(tái)為研究對(duì)象進(jìn)行了結(jié)構(gòu)多目標(biāo)優(yōu)化設(shè)計(jì),并將優(yōu)化前后雙驅(qū)動(dòng)進(jìn)給系統(tǒng)進(jìn)行了動(dòng)態(tài)試驗(yàn)測(cè)試,驗(yàn)證了所提出的優(yōu)化方法的正確性。
雙驅(qū)動(dòng)進(jìn)給系統(tǒng);動(dòng)態(tài)特性;響應(yīng)面模型;多目標(biāo)優(yōu)化
雙滾珠絲杠驅(qū)動(dòng)方式又稱重心驅(qū)動(dòng),由于它能夠?qū)Ⅱ?qū)動(dòng)力的合力穿過(guò)被驅(qū)動(dòng)中心,極好地抑制各軸驅(qū)動(dòng)時(shí)所產(chǎn)生的振動(dòng),所以在高精密數(shù)控機(jī)床上得到廣泛應(yīng)用[1]。工作臺(tái)作為雙驅(qū)進(jìn)給系統(tǒng)的重要組成零件和運(yùn)動(dòng)執(zhí)行部件,其動(dòng)靜性能極大地影響進(jìn)給系統(tǒng)的定位精度。當(dāng)機(jī)床工作時(shí),切削力的變化或伺服電機(jī)的啟動(dòng)、停止均會(huì)導(dǎo)致工作臺(tái)發(fā)生振動(dòng),因此工作臺(tái)必須具備較高的抗振性能。
本研究所納入的臨床試驗(yàn)普遍質(zhì)量較低,缺乏高質(zhì)量、標(biāo)準(zhǔn)化的RCT。由于各研究間針刺所選穴位不同、服用的西藥和中成藥不同,且各研究間所納入患者的病情嚴(yán)重程度不一等因素的影響,造成分析過(guò)程中各研究間存在較大異質(zhì)性。在治療前后NIH-CPSI評(píng)分變化量與白細(xì)胞降低有效率作為結(jié)局指標(biāo)的分析中,由于納入的相關(guān)分析較少,得出的結(jié)果可能可靠性不強(qiáng)。故在今后要多進(jìn)行相關(guān)的臨床研究,尤其是與中藥湯劑、中藥坐浴和微波治療等方面的對(duì)比研究,且要進(jìn)行高質(zhì)量、標(biāo)準(zhǔn)化的RCT;盡量多注重治療后隨訪的結(jié)果,為針刺治療CP遠(yuǎn)期療效提供可靠證據(jù)。
目前針對(duì)進(jìn)給系統(tǒng)的結(jié)構(gòu)優(yōu)化設(shè)計(jì)研究相對(duì)較少,文獻(xiàn)[2]以龍門(mén)機(jī)床進(jìn)給系統(tǒng)拖板為優(yōu)化對(duì)象,以加強(qiáng)筋板厚度為設(shè)計(jì)變量,以前四階固有頻率和質(zhì)量為目標(biāo)函數(shù),建立龍門(mén)機(jī)床進(jìn)給系統(tǒng)雙目標(biāo)優(yōu)化模型。文獻(xiàn)[3]采用模態(tài)仿真與試驗(yàn)相結(jié)合的方法對(duì)橫梁式進(jìn)給系統(tǒng)的動(dòng)態(tài)性能進(jìn)行優(yōu)化,總結(jié)出了影響橫梁式進(jìn)給系統(tǒng)動(dòng)態(tài)性能的6個(gè)因素,但是未從理論和優(yōu)化模型方面作進(jìn)一步分析。
本文綜合考慮雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的動(dòng)靜性能,以工作臺(tái)質(zhì)量、進(jìn)給系統(tǒng)耦合應(yīng)力和一階固有頻率為目標(biāo)函數(shù),通過(guò)靈敏度法選擇工作臺(tái)優(yōu)化參數(shù),將有限元分析和正交試驗(yàn)相結(jié)合,得出二階響應(yīng)面樣本值,運(yùn)用NSGA_Ⅱ法求解出Pareto最優(yōu)解集,從而得出進(jìn)給系統(tǒng)工作臺(tái)結(jié)構(gòu)優(yōu)化參數(shù)的最佳組合。
1.1 有限元建模和結(jié)合面處理
如孕婦在孕中晚期出現(xiàn)皮膚瘙癢應(yīng)引起注意,及時(shí)上醫(yī)院就診,以排除膽汁淤積癥的可能,確保孕婦和胎兒的平安。
首先對(duì)原有雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的動(dòng)態(tài)特性進(jìn)行分析,并作為優(yōu)化問(wèn)題的約束,其目的是保證優(yōu)化后雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的動(dòng)態(tài)性能不低于優(yōu)化前的性能。雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的主要結(jié)構(gòu)如圖1所示。由于進(jìn)給系統(tǒng)中包含有大量的滾動(dòng)結(jié)合面和固定結(jié)合面,因而采用有限元法對(duì)進(jìn)給系統(tǒng)進(jìn)行動(dòng)態(tài)結(jié)構(gòu)分析的關(guān)鍵在于結(jié)合面的處理。本文采用彈簧阻尼單元MARTIX27對(duì)結(jié)合面進(jìn)行建模,結(jié)合面參數(shù)由本課題組測(cè)試得來(lái)[4-6],部分參數(shù)見(jiàn)表1,熱邊界條件和載荷設(shè)置參考文獻(xiàn)[7]。
圖1 雙驅(qū)動(dòng)進(jìn)給系統(tǒng)結(jié)構(gòu)模型
表1 滾動(dòng)結(jié)合面動(dòng)態(tài)特性參數(shù)
利用Workbench自動(dòng)劃分與人工干預(yù)相結(jié)合的方法劃分網(wǎng)格,同時(shí)在網(wǎng)格劃分后檢查網(wǎng)格質(zhì)量,避免計(jì)算結(jié)果出現(xiàn)較大的誤差。使用10節(jié)點(diǎn)四面體單元(solid187)劃分網(wǎng)格,節(jié)點(diǎn)個(gè)數(shù)為326 550,單元個(gè)數(shù)為143 818。圖2為動(dòng)態(tài)仿真計(jì)算用的進(jìn)給系統(tǒng)有限元模型。
各處理水稻各部位鎘/砷含量見(jiàn)表3。施加零價(jià)鐵未對(duì)稻米鎘含量產(chǎn)生明顯影響;施加腐殖質(zhì)、復(fù)合調(diào)理劑則明顯地降低了水稻各部位鎘的含量。與對(duì)照相比,施加腐殖質(zhì)和復(fù)合調(diào)理劑后,早稻稻米鎘含量分別下降14.3%和35.5%;晚稻稻米中鎘含量分別下降33.3%和57.4%,差異顯著(P<0.05)。施加復(fù)合調(diào)理劑,早稻稻米鎘含量達(dá)到食品安全國(guó)家標(biāo)準(zhǔn)(GB 2762—2012)。
圖2 雙驅(qū)動(dòng)進(jìn)給系統(tǒng)有限元模型
1.2 有限元分析結(jié)果
由于工作臺(tái)是雙驅(qū)動(dòng)進(jìn)給系統(tǒng)關(guān)鍵功能件,其中心回轉(zhuǎn)結(jié)構(gòu)在實(shí)際加工中會(huì)受到工件夾具系統(tǒng)切削力和雙滾珠絲杠螺母副往復(fù)運(yùn)動(dòng)所產(chǎn)生熱量的影響,所以工作臺(tái)會(huì)出現(xiàn)力變形和熱變形耦合現(xiàn)象。目前的優(yōu)化設(shè)計(jì)方法只考慮工作臺(tái)在受靜力情況下引起的應(yīng)力和變形是不準(zhǔn)確的。本文在靜力學(xué)分析結(jié)果的基礎(chǔ)上對(duì)工作臺(tái)進(jìn)行熱力耦合仿真分析,雙驅(qū)動(dòng)進(jìn)給系統(tǒng)熱力耦合求解結(jié)果如圖3所示。
圖3 優(yōu)化前工作臺(tái)應(yīng)力圖
理論上作為多自由度振動(dòng)系統(tǒng)的進(jìn)給系統(tǒng)具有無(wú)限個(gè)模態(tài),而在臥式加工中心進(jìn)給系統(tǒng)工作運(yùn)行時(shí),高階頻率遠(yuǎn)離工作頻段,很難被激發(fā)出來(lái),且模態(tài)振型復(fù)雜,對(duì)進(jìn)給系統(tǒng)運(yùn)行時(shí)的性能影響可以忽略。低階模態(tài)接近進(jìn)給系統(tǒng)正常工作狀態(tài),影響最大,因此只需要提取前四階的固有頻率。運(yùn)用Workbench模態(tài)分析中的模態(tài)疊加法,在熱力耦合應(yīng)力的基礎(chǔ)上,進(jìn)行有預(yù)應(yīng)力的固有頻率和振型的有限元求解。從表2可以得出,工作臺(tái)的一階模態(tài)振型是沿著雙驅(qū)動(dòng)進(jìn)給系統(tǒng)軸向振動(dòng)的,為了降低該階模態(tài)振型的振幅對(duì)進(jìn)給系統(tǒng)定位精度的影響,可對(duì)進(jìn)給系統(tǒng)工作臺(tái)進(jìn)行結(jié)構(gòu)優(yōu)化設(shè)計(jì),從而提高雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的抗振性能。
表2 雙驅(qū)動(dòng)進(jìn)給系統(tǒng)前四階模態(tài)振型描述
待優(yōu)化頻率f1,通過(guò)計(jì)算可以得到頻率-尺寸增量曲線,即待優(yōu)化頻率對(duì)各尺寸參數(shù)的靈敏度曲線。使用二次函數(shù)對(duì)工作臺(tái)的待優(yōu)化頻率-尺寸增量曲線作擬合,得到擬合函數(shù)與尺寸增量關(guān)系的表達(dá)式:
MCH63雙驅(qū)動(dòng)進(jìn)給系統(tǒng)工作臺(tái)是鑄造結(jié)構(gòu)件,其內(nèi)部有大量的圓孔、內(nèi)槽結(jié)構(gòu),幾何參數(shù)變量較多,無(wú)法直接確定哪些參數(shù)變量對(duì)雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的動(dòng)靜性能影響較大,為了提高進(jìn)給系統(tǒng)的多目標(biāo)建模的準(zhǔn)確性以及避免增大計(jì)算難度,需分析相關(guān)結(jié)構(gòu)參數(shù)對(duì)進(jìn)給系統(tǒng)結(jié)構(gòu)動(dòng)靜性能的敏感程度,三維模型及主要優(yōu)化尺寸如圖5所示,工作臺(tái)的主要優(yōu)化尺寸參數(shù)如表3所示。
回望歷史,民族自信、政黨自信、國(guó)家自信、人民自信都不是從天上掉下來(lái)的,而是在波瀾壯闊的歷史實(shí)踐中形成和積累起來(lái)的;凝望現(xiàn)實(shí),中國(guó)特色社會(huì)主義道路自信、理論自信、制度自信、文化自信,都是進(jìn)行時(shí)、不是完成時(shí),沒(méi)有最自信、只有更自信;展望未來(lái),“四個(gè)自信”必將凝聚和鼓舞中華民族和中國(guó)人民的磅礴力量,勠力同心實(shí)現(xiàn)中華民族偉大復(fù)興。
圖4 雙驅(qū)動(dòng)進(jìn)給系統(tǒng)優(yōu)化分析流程
2.1 基于靈敏度分析的優(yōu)化參數(shù)選擇
因?yàn)槎A響應(yīng)面法同時(shí)具備較高的計(jì)算精度和求解效率,所以被廣泛用于機(jī)械設(shè)計(jì)過(guò)程的多目標(biāo)優(yōu)化建模中[9]。因此,本文也采用二階響應(yīng)面模型來(lái)建立雙驅(qū)動(dòng)進(jìn)給系統(tǒng)多目標(biāo)優(yōu)化模型。
據(jù)官方統(tǒng)計(jì),自1990年參加聯(lián)合國(guó)維和行動(dòng)以來(lái)到2015年4月,中國(guó)軍隊(duì)已參加24項(xiàng)聯(lián)合國(guó)維和行動(dòng),累計(jì)派出維和官兵30178人,先后有10名官兵在執(zhí)行任務(wù)中犧牲。當(dāng)前,中國(guó)軍隊(duì)共有2720名官兵在聯(lián)合國(guó)9個(gè)任務(wù)區(qū)為和平值守。20世紀(jì)90年代中期以來(lái),中國(guó)對(duì)聯(lián)合國(guó)維和活動(dòng)的貢獻(xiàn)穩(wěn)步增加,參與的任務(wù)類型也趨多樣化。2013年12月3日,中國(guó)維和部隊(duì)先遣隊(duì)飛赴馬里執(zhí)行為期8個(gè)月的維和任務(wù),這是中國(guó)軍隊(duì)首次派出安全部隊(duì)參與維和。從輔助后勤部隊(duì)到作戰(zhàn)部隊(duì),中國(guó)已經(jīng)具備了執(zhí)行多樣化、全面性和高風(fēng)險(xiǎn)地區(qū)的維和任務(wù)的行動(dòng)能力。中國(guó)參與聯(lián)合國(guó)維和行動(dòng)的價(jià)值顯而易見(jiàn)。
改變有限元模型中工作臺(tái)的相關(guān)尺寸參數(shù),通過(guò)模態(tài)分析得到一階固有頻率。定義工作臺(tái)的
圖5 工作臺(tái)三維模型及主要優(yōu)化尺寸示意圖
表3 工作臺(tái)主要優(yōu)化尺寸參數(shù) mm
以工作臺(tái)質(zhì)量最小、進(jìn)給系統(tǒng)最大耦合應(yīng)力最小和一階固有頻率最高為目標(biāo)的雙驅(qū)動(dòng)進(jìn)給系統(tǒng)優(yōu)化流程如圖4所示。以工作臺(tái)結(jié)構(gòu)參數(shù)為設(shè)計(jì)變量,建立多目標(biāo)優(yōu)化模型。采用靈敏度法選取設(shè)計(jì)變量,以降低構(gòu)建目標(biāo)函數(shù)的難度。通過(guò)有限元計(jì)算獲取正交試驗(yàn)設(shè)計(jì)的二階響應(yīng)面模型的樣本數(shù)據(jù),并在此基礎(chǔ)上建立多目標(biāo)優(yōu)化設(shè)計(jì)目標(biāo)函數(shù),并采用NSGA_Ⅱ算法求解出Pareto最優(yōu)解集。
(1)
i=1,2,…,n
式中,ai、bi、ci為固有頻率-尺寸擬合函數(shù)的系數(shù);Δxi為優(yōu)化參數(shù)x1,x2,…,x10的增量。
根據(jù)式(1)可求得一階固有頻率對(duì)各待優(yōu)化尺寸的靈敏度:
在學(xué)生學(xué)習(xí)階段,不論在哪個(gè)崗位,都要按照雙方共同制定的人才培養(yǎng)方案,在該上課時(shí)都要到指定地點(diǎn)完成相應(yīng)的理論學(xué)習(xí)、實(shí)踐操作任務(wù)。在學(xué)習(xí)形式,上課時(shí)間上更靈活些。比如連續(xù)幾天下雨,就以理論講授為主;每周的前幾天打球客人少,以上課為主,后幾天打球客人多,學(xué)生就回到各自的崗位上。
(2)
由式(2)可以看出,在設(shè)計(jì)允許尺寸范圍內(nèi),一階固有頻率與待優(yōu)化尺寸參數(shù)成線性關(guān)系,可用矩陣表示為
Sf=AΔxi+B
(3)
式中,A、B為參數(shù)ai、bi矩陣。
2.2 建立結(jié)構(gòu)優(yōu)化設(shè)計(jì)的數(shù)學(xué)模型
工作臺(tái)一階固有頻率增量對(duì)各尺寸參數(shù)的靈敏度曲線如圖6所示。
(a)一階固有頻率增量對(duì)圓孔、內(nèi)槽尺寸的靈敏度
(b)一階固有頻率增量對(duì)其他尺寸的靈敏度
通過(guò)式(3)計(jì)算出工作臺(tái)一階固有頻率對(duì)各尺寸參數(shù)的靈敏度為
Sf=10-3(4Δx1-128,-26Δx2+327,2Δx3+125,
6Δx4+109,-2Δx5+69,8Δx6+116,22Δx7+
79,2Δx8-81,2Δx9-111,-10Δx10-420)
圖7為工作臺(tái)質(zhì)量對(duì)各尺寸參數(shù)的靈敏度。
為了方便在后續(xù)MATLAB軟件設(shè)計(jì)優(yōu)化程序時(shí)設(shè)置約束條件,用直線擬合質(zhì)量以及最大耦合應(yīng)力隨著優(yōu)化尺寸變量的變化關(guān)系,直線的斜率即為工作臺(tái)質(zhì)量對(duì)各尺寸參數(shù)的靈敏度和工作臺(tái)最大耦合應(yīng)力對(duì)各尺寸參數(shù)的靈敏度。
①低NLR組(NLR≤2.5)患者1 5 2例(59.1%),高 NLR組 (NLR>2.5)患者 105例(40.9%)。兩組患者在T分期、N分期、TNM分期方面差異有統(tǒng)計(jì)學(xué)意義(P<0.05),高NLR組患者的腫瘤浸潤(rùn)深、淋巴結(jié)轉(zhuǎn)移數(shù)多、TNM分期晚。
(a)工作臺(tái)質(zhì)量對(duì)圓孔、內(nèi)槽尺寸的靈敏度
(b)工作臺(tái)質(zhì)量對(duì)其他尺寸的靈敏度
可計(jì)算出工作臺(tái)質(zhì)量對(duì)各尺寸參數(shù)的靈敏度Sm為
Sm=(1.65,2.15,0.4,0.6,0.1,0.56,0.55,0.125,0.2,0.17)
(a)最大耦合應(yīng)力對(duì)圓孔、內(nèi)槽尺寸的靈敏度
(b)最大耦合應(yīng)力對(duì)其他尺寸的靈敏度
工作臺(tái)最大耦合應(yīng)力對(duì)各尺寸參數(shù)的靈敏度如圖8所示。可計(jì)算出工作臺(tái)最大耦合應(yīng)力對(duì)各尺寸參數(shù)的靈敏度Sδ為
Sδ=10-3(-38,-52,-8,-13,-7,-26,
-22,-15,-13,22)
從圖6~圖8可以看出,工作臺(tái)的低階頻率對(duì)中心圓孔直徑x1、工作臺(tái)長(zhǎng)度x2以及端面矩形孔高度x6靈敏度較大;工作臺(tái)的質(zhì)量對(duì)中心圓孔直徑x1、工作臺(tái)長(zhǎng)度x2靈敏度較大;工作臺(tái)最大耦合應(yīng)力對(duì)中心圓孔直徑x1、工作臺(tái)長(zhǎng)度x2以及端面矩形孔高度x6靈敏度較大。其他尺寸參數(shù)相對(duì)x1、x2和x6而言,對(duì)工作臺(tái)低階頻率、質(zhì)量以及耦合應(yīng)力影響不大。所以選擇x1、x2和x6三個(gè)結(jié)構(gòu)參數(shù)作為多目標(biāo)優(yōu)化的參數(shù)。
“玩陰術(shù)”表面隱晦莫測(cè),其實(shí)不堪一擊,乃典型的“見(jiàn)光死”。無(wú)論是政府機(jī)構(gòu)還是各行各業(yè)乃至民間交往,只要一切事務(wù)均在法規(guī)之下公然運(yùn)作,堵塞“暗箱操作”“私相授受”漏洞,履行各類監(jiān)督機(jī)制,建立各類誠(chéng)信檔案,使違法違規(guī)者付出相應(yīng)代價(jià)——“玩陰術(shù)”自然會(huì)失去滋生的土壤和瘋長(zhǎng)的空間。
優(yōu)化設(shè)計(jì)的關(guān)鍵是聯(lián)系實(shí)際問(wèn)題建立數(shù)學(xué)模型,并通過(guò)模型計(jì)算得到最優(yōu)設(shè)計(jì)結(jié)果。以輕量化設(shè)計(jì)準(zhǔn)則、動(dòng)態(tài)性能最優(yōu)準(zhǔn)則、最優(yōu)熱力耦合性能準(zhǔn)則建立優(yōu)化設(shè)計(jì)數(shù)學(xué)模型。運(yùn)用各種優(yōu)化方法,在滿足設(shè)計(jì)要求的前提下對(duì)模型進(jìn)行迭代計(jì)算,求解出目標(biāo)函數(shù)的極值,獲得最優(yōu)設(shè)計(jì)方案。
多目標(biāo)優(yōu)化設(shè)計(jì)的數(shù)學(xué)模型可表示為
2016年曾來(lái)到過(guò)阿斯哈圖石陣腳下而失之交臂,本以為此處景觀不過(guò)差強(qiáng)人意,親臨之下才發(fā)現(xiàn)“那也就是幾堆石頭(兩年前語(yǔ))”之處,卻原來(lái)大有可觀。那些個(gè)在上千公里大興安嶺中唯此一處、突兀而生的片狀巨石們各呈其勢(shì),在白樺樹(shù)林東倒西歪的穿插環(huán)抱中石頁(yè)般層壘高疊,仿佛真有天外神“書(shū)”的傲然氣度。
(4)
式中,F(xiàn)m為工作臺(tái)質(zhì)量函數(shù);Fσ為最大耦合應(yīng)力函數(shù);Ff為固有頻率函數(shù);σmax為最大耦合應(yīng)力;[σ]為材料許用應(yīng)力。
通過(guò)求解待定系數(shù)矩陣,即可得到工作臺(tái)質(zhì)量Fm(x1,x2,x6)、最大耦合應(yīng)力Fδ(x1,x2,x6)、一階固有頻率Ff(x1,x2,x6)這3個(gè)目標(biāo)函數(shù)的響應(yīng)面模型的系數(shù)矢量:
2.3 正交試驗(yàn)法確定優(yōu)化方案
從雙驅(qū)動(dòng)進(jìn)給系統(tǒng)優(yōu)化設(shè)計(jì)的約束條件可以看出,設(shè)計(jì)變量是在約束范圍內(nèi)的一系列可變組合,采用正交試驗(yàn)法可以減少分析次數(shù),提高優(yōu)化設(shè)計(jì)的效率。將3個(gè)設(shè)計(jì)變量作為正交試驗(yàn)的因素,設(shè)計(jì)如表4所示的三因素四水平正交表。
表4 正交試驗(yàn)因素水平表
根據(jù)表4的正交試驗(yàn)設(shè)計(jì)方案,需要進(jìn)行L16(43)=16次有限元仿真計(jì)算,得到各參數(shù)組合下的熱力耦合應(yīng)力與模態(tài)分析結(jié)果,設(shè)計(jì)變量和優(yōu)化目標(biāo)函數(shù)的試驗(yàn)值如表5所示。
3.1 響應(yīng)面優(yōu)化模型的建立
表5 正交試驗(yàn)結(jié)果
雙驅(qū)動(dòng)進(jìn)給系統(tǒng)是一個(gè)復(fù)雜的系統(tǒng),受熱力耦合影響,兩根絲杠的變形及應(yīng)力不一致,且工作臺(tái)的振動(dòng)呈現(xiàn)非線性。對(duì)于多自由度振動(dòng)系統(tǒng)而言,在多約束、多接觸及多結(jié)合面的限制下,目標(biāo)函數(shù)和約束條件與設(shè)計(jì)變量之間存在復(fù)合、不連續(xù)和高次非線性的函數(shù)關(guān)系,然而這類問(wèn)題很難準(zhǔn)確地進(jìn)行數(shù)學(xué)建模[8]。根據(jù)有限元計(jì)算的結(jié)果即表5樣本數(shù)據(jù),采用響應(yīng)面法結(jié)合數(shù)值擬合的方法來(lái)構(gòu)造雙驅(qū)動(dòng)進(jìn)給系統(tǒng)工作臺(tái)質(zhì)量、最大耦合應(yīng)力及一階固有頻率的優(yōu)化近似數(shù)學(xué)模型。
響應(yīng)面建模是通過(guò)一系列數(shù)學(xué)和統(tǒng)計(jì)的方法,將目標(biāo)函數(shù)的響應(yīng)同與之相對(duì)應(yīng)的輸入變量建立聯(lián)系的一種建模方法。響應(yīng)面模型為一種回歸模型,一般采用高階多項(xiàng)式模型。在常用的響應(yīng)面模型中,以二階響應(yīng)面模型應(yīng)用最為廣泛,該模型含有線性項(xiàng)、二次項(xiàng)和交叉項(xiàng),其函數(shù)模型如下式所示:
(5)
式中,xi為設(shè)計(jì)變量,a0、ai、aii、api均為待定回歸系數(shù),回歸系數(shù)的個(gè)數(shù)N=(n+2)(n+1)/2。
1949年新中國(guó)成立后,中國(guó)在聯(lián)合國(guó)的合法席位被剝奪。1951年朝鮮戰(zhàn)爭(zhēng)中,中國(guó)與美國(guó)主導(dǎo)的聯(lián)合國(guó)軍隊(duì)發(fā)生沖突,當(dāng)時(shí),美國(guó)把聯(lián)合國(guó)當(dāng)成了手中的工具,拿維和行動(dòng)作為獲取自身利益的手段。因此,主觀上看,那個(gè)時(shí)期中國(guó)對(duì)聯(lián)合國(guó)持比較負(fù)面的看法,對(duì)聯(lián)合國(guó)事務(wù)(包括維和行動(dòng))抱持懷疑和反對(duì)的態(tài)度。另一方面,由于東西方意識(shí)形態(tài)領(lǐng)域的差異,再加上聯(lián)合國(guó)在特定歷史時(shí)期存在的局限性,中國(guó)一直被排除在聯(lián)合國(guó)之外,恢復(fù)聯(lián)合國(guó)席位的進(jìn)程被拖延22年之久,因此客觀上沒(méi)有可能參加已經(jīng)有些歷史的維和行動(dòng)。
這樣將雙驅(qū)動(dòng)進(jìn)給系統(tǒng)工作臺(tái)的優(yōu)化問(wèn)題轉(zhuǎn)為如式(4)所示的數(shù)學(xué)問(wèn)題,從而求解出最佳組合x(chóng)(x1,x2,x6)使得目標(biāo)函數(shù)F(x1,x2,x6)最優(yōu)。
3) ?zg?kme等[7]基于Leeway模型和拉格朗日模型建立的海上不規(guī)則流場(chǎng)下的物體漂移軌跡預(yù)測(cè)模型,研究風(fēng)場(chǎng)和流場(chǎng)密度對(duì)預(yù)測(cè)精度的影響。ZHANG等[8]建立同構(gòu)流場(chǎng)下失蹤物體漂移軌跡預(yù)測(cè)概率模型,通過(guò)風(fēng)速和流速的預(yù)測(cè)不斷更新物體的位置,仿真結(jié)果表明該模型具有較高的精度和可靠性。
Am=(1102,1699,-1617,2216.6,-1.7,1.3,-0.9,0.3,-1.4,-2.3)Aδ=(23.2,79.15,-42.18,-164.27,0.1387,0.1741,-0.13,-0.3724,0.1469,0.178)Af=(114.1,355.41, -246.07,-356.37,-0.5105,0.0759,0.00111,0.2382,0.3844,0.223)
工作臺(tái)多目標(biāo)優(yōu)化設(shè)計(jì)的響應(yīng)面模型如下式所示:
(6)
其中,F(xiàn)1、F2、F3分別對(duì)應(yīng)Fm、Fδ、Ff。為了驗(yàn)證所建立響應(yīng)面模型的準(zhǔn)確性,分別對(duì)Fm、Fδ、Ff進(jìn)行原始數(shù)據(jù)和擬合數(shù)據(jù)對(duì)比,響應(yīng)面模型計(jì)算值與原始數(shù)據(jù)相接近,工作臺(tái)質(zhì)量與最大耦合應(yīng)力的誤差均在2%之內(nèi),一階固有頻率誤差大多在5%以內(nèi),最大誤差不超過(guò)10%。因此本文所建立的工作臺(tái)多目標(biāo)結(jié)構(gòu)優(yōu)化設(shè)計(jì)的響應(yīng)面模型具有較高的準(zhǔn)確性,可以用于優(yōu)化。
3.2 工作臺(tái)多目標(biāo)優(yōu)化模型的求解
非劣排序遺傳算法Ⅱ(non-dominated sorting genetic algorithm Ⅱ)是目前最流行的多目標(biāo)進(jìn)化算法之一[10],其主要流程為:①隨機(jī)產(chǎn)生一個(gè)初始規(guī)模為N的父代種群P0;②令t=0,采用二進(jìn)制錦標(biāo)賽法從Pt種群中選擇個(gè)體進(jìn)行交叉變異操作,產(chǎn)生新一代規(guī)模為N的種群Qt,合并Pt和Qt產(chǎn)生規(guī)模為2N的組合種群Rt;③對(duì)種群Rt進(jìn)行快速非支配排序,通過(guò)比較擁擠因子從種群Rt中選擇出N個(gè)個(gè)體,組成新一代種群Pt+1;④令t←t+1,轉(zhuǎn)回步驟②,重復(fù)循環(huán),直至滿足終止條件。
采用NSGA_Ⅱ計(jì)算式(6)中三個(gè)目標(biāo)函數(shù)的非劣解集,F(xiàn)1、F2、F3作為算法的指標(biāo),算法根據(jù)目標(biāo)函數(shù)求取相應(yīng)最優(yōu)點(diǎn),其中種群數(shù)量為5000,迭代次數(shù)為50,交叉概率為0.95,變異率為0.02,如圖9所示。Pareto前沿面收斂性良好,最優(yōu)解集分布均勻,曲面特征明顯。X軸代表目標(biāo)函數(shù)F1(x)工作臺(tái)質(zhì)量,在950~965 kg范圍之內(nèi)變化;Y軸代表目標(biāo)函數(shù)F2(x)雙驅(qū)動(dòng)進(jìn)給系統(tǒng)最大耦合應(yīng)力,在46~51 MPa范圍內(nèi)變化;Z軸代表目標(biāo)函數(shù)F3(x)雙驅(qū)動(dòng)進(jìn)給系統(tǒng)一階固有頻率,在112~124 Hz范圍內(nèi)變化。沿著Z軸負(fù)方向俯視Pareto前沿面,得到最優(yōu)解集散點(diǎn)圖的Z方向投影如圖10所示。
圖9 工作臺(tái)三目標(biāo)優(yōu)化所得Pareto前沿面
從圖10中可以發(fā)現(xiàn),三目標(biāo)優(yōu)化的三維Pareto前沿面的Z向投影圖就是由無(wú)數(shù)條工作臺(tái)質(zhì)量和最大耦合應(yīng)力的Pareto二維曲線組成。將圖中一階固有頻率F3(x)相同的點(diǎn)連接成線,三目標(biāo)優(yōu)化的三維Pareto前沿面分割成由不同一階固有頻率作為約束條件的二維Pareto前沿面。根據(jù)Pareto最優(yōu)解集理論,對(duì)每一條一階固有頻率f1取固定值的二維Pareto曲線求出期望解集,則三維Pareto前沿面的期望解集為所有二維Pareto前沿線的期望解集的集合,即圖10中A、B、C、D所組成的虛線附近的點(diǎn)。
圖10 Pareto前沿面Z負(fù)方向投影圖
本文雙驅(qū)動(dòng)進(jìn)給系統(tǒng)工作臺(tái)的優(yōu)化設(shè)計(jì)原則是“輕量化,高抗振性,最佳耦合力學(xué)性能”,故選擇A、B點(diǎn)附近解集作為最優(yōu)解取值區(qū)域,其取值情況如表6所示。
表6 A、B點(diǎn)附近最優(yōu)解數(shù)據(jù)信息
從表6得出A、B區(qū)域的解集中,工作臺(tái)質(zhì)量約為954.8 kg,最大耦合應(yīng)力約為46.3 MPa,一階固有頻率約為123 Hz,在此區(qū)間下的工作臺(tái)優(yōu)化參數(shù)中心孔徑x1為514 mm,工作臺(tái)長(zhǎng)度x2為633.5 mm,端面矩形孔高度x6為80 mm。
工作臺(tái)多目標(biāo)優(yōu)化設(shè)計(jì)前后各參數(shù)和目標(biāo)函數(shù)的對(duì)比如表7所示,結(jié)果表明多目標(biāo)優(yōu)化設(shè)計(jì)后,工作臺(tái)質(zhì)量減小了0.3%,最大耦合應(yīng)力減小了5.9%。工作臺(tái)結(jié)構(gòu)優(yōu)化前雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的第一階固有頻率為112.56 Hz,優(yōu)化后進(jìn)給系統(tǒng)的第一階固有頻率提高到123.06 Hz,增大了9.32%,其動(dòng)靜態(tài)性能均得到改善。從而將滾珠絲杠及主軸的轉(zhuǎn)速提升至7200 r/min,提高了加工效率。
利用BP人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)天然氣中重組分對(duì)凈化裝置的影響……………………………………………………………(6):1
表7 優(yōu)化前后參數(shù)對(duì)比
為了驗(yàn)證本文所建立的雙驅(qū)動(dòng)進(jìn)給系統(tǒng)多目標(biāo)優(yōu)化設(shè)計(jì)方法的合理性,在恒溫車(chē)間對(duì)優(yōu)化設(shè)計(jì)前后的雙驅(qū)動(dòng)進(jìn)給系統(tǒng)工作臺(tái)進(jìn)行動(dòng)態(tài)試驗(yàn),模態(tài)試驗(yàn)的目的是獲取進(jìn)給系統(tǒng)前6階固有頻率。需要完成的主要工作流程如下:①根據(jù)工作臺(tái)的結(jié)構(gòu)特點(diǎn)和測(cè)試精度要求設(shè)計(jì)測(cè)試方案,建立試驗(yàn)?zāi)P?;②試?yàn)獲得激振和響應(yīng)信號(hào);③試驗(yàn)信號(hào)數(shù)據(jù)分析和處理;④獲得工作臺(tái)的固有頻率和振型。試驗(yàn)設(shè)備采用南京安正研發(fā)的CRAS模塊對(duì)采集到的信號(hào)數(shù)據(jù)進(jìn)行參數(shù)識(shí)別。試驗(yàn)儀器主要有:力錘(PCB-086D05,靈敏度0.23 mV/N),加速度傳感器AC586(靈敏度0.23 mV/g),數(shù)據(jù)采集器AZ316s,信號(hào)調(diào)理儀AZ808。利用單點(diǎn)激振多點(diǎn)拾振的方法,分別在X、Y、Z方向進(jìn)行激勵(lì),將工作臺(tái)離散為44個(gè)節(jié)點(diǎn),試驗(yàn)現(xiàn)場(chǎng)如圖11所示,獲取每個(gè)試驗(yàn)點(diǎn)的頻響函數(shù),最終識(shí)別了前6階模態(tài)。
1.采集器 2.調(diào)理儀 3.PC機(jī)及信號(hào)處理軟件4.加速度傳感器 5.力錘
分析表8和圖12結(jié)果可知,優(yōu)化后一階固有頻率增大12.04%,振動(dòng)幅值減小25%,其余各階固有頻率均有不同程度的增大,對(duì)應(yīng)于各階固有頻率下的工作臺(tái)振動(dòng)變形均減小,優(yōu)化后工作臺(tái)的抗振性能得到很大的提高。對(duì)比表7和表8,可以得出優(yōu)化前后仿真與試驗(yàn)的一階固有頻率誤差率分別為0.45%和-1.99%,從而證明本文所提出的雙驅(qū)動(dòng)進(jìn)給系統(tǒng)的多目標(biāo)優(yōu)化設(shè)計(jì)方法是可行的。
表8 進(jìn)給系統(tǒng)優(yōu)化前后固有頻率對(duì)比
圖12 優(yōu)化前后工作臺(tái)頻響函數(shù)曲線對(duì)比
(1)以工作臺(tái)質(zhì)量、最大耦合應(yīng)力和雙驅(qū)動(dòng)進(jìn)給系統(tǒng)一階固有頻率為目標(biāo)函數(shù),以工作臺(tái)結(jié)構(gòu)參數(shù)為設(shè)計(jì)變量,建立多目標(biāo)優(yōu)化模型。采用靈敏度法選取設(shè)計(jì)變量,降低構(gòu)建目標(biāo)函數(shù)的難度。通過(guò)有限元計(jì)算獲取正交試驗(yàn)設(shè)計(jì)的二階響應(yīng)面模型的基礎(chǔ)數(shù)據(jù),并在此基礎(chǔ)上建立多目標(biāo)優(yōu)化設(shè)計(jì)目標(biāo)函數(shù),并采用NSGA_Ⅱ算法求解出Pareto最優(yōu)解集。
在此背景下,以往日本式的成功模式已經(jīng)發(fā)展到了極限。本文將在厘清日本對(duì)開(kāi)放式創(chuàng)新概念的認(rèn)知的基礎(chǔ)上,對(duì)日本政府近年來(lái)為促進(jìn)開(kāi)放式創(chuàng)新所制定的相關(guān)政策情況進(jìn)行分析,進(jìn)而通過(guò)系列數(shù)據(jù)展現(xiàn)日本開(kāi)放式創(chuàng)新現(xiàn)狀,以期為我國(guó)的創(chuàng)新發(fā)展提供借鑒。
(2)解決了既要輕量化,又要?jiǎng)屿o性能最優(yōu)的難題,為以后的機(jī)床進(jìn)給系統(tǒng)設(shè)計(jì)提供了一種思路和方法,通過(guò)仿真與試驗(yàn)對(duì)比得出,優(yōu)化后進(jìn)給系統(tǒng)的一階固有頻率提高了12.04%,振動(dòng)幅值減小了25%,驗(yàn)證了此方法的可行性和準(zhǔn)確性。
[1] Zaeh M F, Oertli T.Finite Element Modeling of Ball Screw Feed Drive Systems[J].CIRP Annals—Manufacturing Technology, 2004, 53(1):289-292.
[2] Liu Shihao, Ye Wenhua, Lou Peihuang. Structural Dynamic Optimization Foe Carriage of Gantry Machining Center Using Orthogonal Experimental Design and Response Surface Method [J]. Journal of the Chinese Society of Mechanical Engineers, 2012, 33(3):211-219.
[3] Jiang Shuyun, Zhu Shulong. Dynamic Characteristic Parameters of Linear Guideway Joint with Ball Screw[J]. Journal of Mechanical Engineering, 2010, 46(1):92-99.
[4] Bian Wei, Wang Zhenhua, Yuan Juntang. Thermo-mechanical Analysis of Angular Contact Ball Bearing[J]. Journal of Mechanical Science and Technology, 2016, 30(1):297-306.
[5] 張華,袁軍堂,汪振華.滾動(dòng)導(dǎo)軌結(jié)合面動(dòng)態(tài)特性參數(shù)識(shí)別試驗(yàn)研究[J]. 中國(guó)機(jī)械工程,2011,22(4): 415-418. Zhang Hua, Yuan Juntang, Wang Zhenhua. Experimental Research on Identification of Dynamic Characteristic Parameters of Rolling Guide’s Joint[J]. China Mechanical Engineering, 2011, 22(4): 415-418.
[6] 顧思閩, 胡小秋, 汪振華. 機(jī)床固定結(jié)合面動(dòng)態(tài)特性參數(shù)試驗(yàn)研究[J]. 機(jī)床與液壓,2011,39(17):12-14. Gu Simin, Hu Xiaoqiu, Wang Zhenhua. Experimental Research on Dynamic Characteristic Parameters of Fixed Joints[J]. Machine Tool & Hydraulics, 2011, 39(17): 12-14.
[7] 黃俊,袁軍堂,汪振華. 基于有限元法的滾珠絲杠進(jìn)給系統(tǒng)熱特性分析[J]. 組合機(jī)床與自動(dòng)化加工技術(shù),2014(3):5-8. Huang Jun, Yuan Juntang, Wang Zhenhua. Analysis of the Thermal Characteristics for Ball Screw Feed System Based on Finite Element Method[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2014(3):5-8.
[8] Gardenghi M, Wiecek M M. Efficiency for Multiobjective Multidisciplinary Optimization Problems with Quasiseparable Subproblems[J]. Optimization and Engineering, 2012, 13 (2): 293-318.
[9] Hambli R, Mkaddem A, Potiron A. Application of Response Surface Method for FEM Bending Analysis[J]. International Journal of Vehicle Design, 2005, 39(1/2): 1-13.
[10] Deb K, Prata P A, Agrawal S. A Fast and Elitist Multi Objective Genetie Algorithm: NSGA_Ⅱ[J]. Evolutionary Computation, 2002, 6(2):182-197.
(編輯 王艷麗)
Multi-objective Optimization Model for Double-drive Feed System Based on NSGA_Ⅱ Algorithm
Huang Jun Yuan Juntang Wang Zhenhua
Nanjing University of Science and Technology,Nanjing,210094
In order to satisfy lightweight and higher vibration performance requirements of the double drive feed system, a multi objective optimization design method was proposed based on the lightest mass, the best coupling mechanical properties and the higher first order natural frequency of the feed system. The optimization parameters were selected by the sensitivity method. A two order response surface model of the feed system is established by the orthogonal experimental design and the NSGA_Ⅱ algorithm is used as the solution algorithm. The calculation results show that the table mass is reduced by 0.3%, the maximum coupling stress is reduced by 5.9%, and first order natural frequency is increased by 9.32%. Finally, the correctness of double-drive feed system’s optimization design method proposed herein was verified by the dynamic experiments.
double drive feed system; dynamic characteristic; response surface model; multi-objective optimization
2016-07-20
江蘇省自然科學(xué)基金資助項(xiàng)目(BK20141400);國(guó)家科技重大專項(xiàng)(2015ZX04014021)
TH16
10.3969/j.issn.1004-132X.2016.24.006
黃 俊,男,1987年生。南京理工大學(xué)機(jī)械工程學(xué)院博士研究生。主要研究方向?yàn)闄C(jī)床進(jìn)給系統(tǒng)動(dòng)力學(xué),熱力學(xué)建模與分析。袁軍堂,男,1962年生。南京理工大學(xué)機(jī)械工程學(xué)院教授、博士研究生導(dǎo)師。汪振華,男,1980年生。南京理工大學(xué)機(jī)械工程學(xué)院副教授。