• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deterministic Nulling for Antenna Pattern of Digital Beamforming Radar Systems

    2017-01-06 08:56:34YUKaiborFENNDEZManuel
    現(xiàn)代雷達(dá) 2016年12期
    關(guān)鍵詞:零陷預(yù)置波束

    YU Kai-bor, FENNDEZ Manuel F

    (1. Shanghai Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China) (2. Syracuse University, New York 13035, USA)

    ·DBF在現(xiàn)代雷達(dá)中的應(yīng)用·

    Deterministic Nulling for Antenna Pattern of Digital Beamforming Radar Systems

    YU Kai-bor1, FENNDEZ Manuel F2

    (1. Shanghai Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China) (2. Syracuse University, New York 13035, USA)

    Deterministic nulling arises in digital beamforming radar applications where the locations of interferers and clutter regions are either known a-priori or can be determined by other means. We address this problem of deterministic nulling by specifying the resulting antenna patterns with multiple nulls that include those extending continuously across intervals of prescribed widths. The solution involves determining the basis vectors for the null spaces of such extended regions, or their composite, via the singular value decomposition of the pertinent portions of the antenna response matrix. An efficient practical implementation of this procedure is then provided.

    antenna pattern; array beamforming; array response matrix; null-space; blocking matrix; discrete nulls; extended nulls; mixed-matrix; quiescent pattern

    0 Introduction

    Inserting nulls in an antenna beam pattern is a problem of interest in radar, sonar and sensor array applications where the locations of interferers and clutter regions are either known a-priori or can be determined by other means[1-5]. An approach for affecting such null insertion involves the use of a “blocking matrix” projecting the beamforming weight vector of interest into the space defined by the set of basis vectors orthogonal to that of the region to be nulled. This approach has the attractive feature of involving a simple modification of the antenna beamforming weights chosen per the particulars of the application of concern.

    The techniques for inserting multiple discrete nulls while largely maintaining a desired quiescent beam pat-tern are well-known (reviewedandsummarizedinSection1),while the technique for inserting a broad null can be formulated as a quadratic constraint problem with a solution characterized by the principal eigenvectors of the correlation matrix of the continuum of look-directions defining such null[6]. In this paper we extend the problem to that concerned with inserting both, multiple discrete and multiple broad continuous nulls, and introduce for this purpose the use of quasi-matrices and their factorizations[7]. The resulting solution is further refined as in [8], using a low-rank approximation to balance the null-depth and the pattern distortion. An efficient implementation procedure based on pre-determined basis vectors for various null-widths is then developed.

    Section 1 reviews and summarizes the solution for the deterministic nulling problem of the digital beamforming (DBF) radar system which is formulated as a DBF problem with a prescribed number of discrete nulls. The solution involves a least squares (LS) problem with constraints suppressing (“blocking”) the slices of the anten-

    na array response corresponding to the spatial directions that are to be nulled.

    In Section 2, the problem of deterministic nulling for DBF with continuous extended nulls is formulated. The constraint in this case corresponds to one or multiple spatial regions of the antenna array response; in other words, to a quasi-matrix, a matrix-like construct that is continuous in one dimension (the spatial) and discrete along the other (antenna element)[9]. A way to approach such continuous problem involves discretizing the sources over the constraint extent to then employ the techniques developed for discrete sources discussed in Section 2. Otherwise, an exact approach involves forming the correlation matrix over the continuous sources, as the result is a classical matrix of finite dimension and its eigenvalue decomposition can be used to determine the null space. Alternatively, since the resulting correlation matrix is highly ill-conditioned, the continuous wide-null problem may be approached in a numerically more robust fashion by using quasi-matrix factorization algorithms.

    In Section 3 we give a brief overview of quasi-matrices and related factorization algorithms. We then prescribe an algorithm for obtaining the singular value decomposition (SVD) of the continuously-defined antenna response quasi-matrix which involves forming the QR decomposition using modified Gram Schmidt (MGS) transformations[10-11]. Another approach is to directly generate the extended null′s basis vectors using the MGS procedure with column pivoting.

    Section 4 uses simulation examples to illustrate the techniques for the continuous extended null-insertion problem using the quasi-matrix approach, and show the trade-offs involved between null-depth and pattern distortion.

    Section 5 presents an efficient implementation procedure using pre-determined sets of basis vectors for different null widths. Simulations illustrate the efficiency of this approach for inserting multiple discrete and continuous nulls.

    Section 6 summarizes our results.

    1 Deterministic Nulling Problem of DBF Radar

    (1)

    whereu= sin(Θ),Θis the direction-of-arrival angle, andnis the antenna element index. In many applications it is desired to form nulls at discrete directionsuk,k= 1, 2, …,K; that is,

    (2)

    The nulls may correspond to radio frequency interference (RFI) and discrete clutter with known locations. The null insertion process can thus be formulated as

    (3)

    whereGis the antenna array response matrix to the desired null directions given by the following

    (4)

    (5)

    which results in

    wq-GH(GGH)-1Gwq

    (6)

    Notice that the matrix operating onwq, namely

    (7)

    Direct implementation of solution (6) involves inverting theK×KHermitian matrixGGH, which whenK<

    GH=Q[RH∶0T]H

    (8)

    whereQis aK×Kunitary matrix (i.e.,QHQ=QQH=I),Ris anN×Nupper-triangular matrix, and 0 is a (K-N)×Nzero matrix. Note that substituting (8) in (6) yields

    (9)

    When the conditionK<N), requiring making provisions in the algorithm implementation to handle such eventuality. The most stable approach (albeit computationally the costliest) involves computing the SVD ofG

    G =USVH

    (10)

    where theK×KmatrixUand theN×NmatrixVare unitary, and theK×NmatrixSis diagonal with non-negative diagonal elements arranged in a non-ascending order[10]. WhenGis ill-conditioned, one may set to zero those elements ofSfalling below a thresholdτselected based on criterions to be discussed in the following sections of this paper. Expression (10) can then be expressed as

    (11)

    where theL×Lnon-negative diagonal matrixS1contains the elements ofSexceedingτ(Lis the rank ofG),U1andU2respectively represent the firstLand lastK-Lcol-umns ofU, andV1andV2represent the firstLand lastN-Lcolumns ofV. One can verify that

    (12)

    The modified weight vector can thus be obtained using eitherV1or byV2, as convenient; that is,

    (13)

    ItshouldbenotedthatthematrixVofrightsingularvectorsVcanalsobedeterminedfromtheeigenvaluedecompositionthecorrelationmatrix

    GHG = V S2VH

    (14)

    whereSandVare as previously defined for expression (10). Algorithms exist that exploit the fact that correlation matrices are Hermitian to compute the eigenvalue decomposition in (14) more efficiently[10], although as will be seen later, particular care may be required as, in the particular case of (14), the problem will be rank-deficient or, in the case of extended nulls, highly ill-conditioned. Anyway, once the decomposition is effected, the null space is determined by the eigenvectors corresponding to the zero or “near-zero” eigenvalues. In practice, as in the case of (11), such eigenvalues are determined by some thresholding procedure.

    It should be noted that a numerically more stable solution than (14) involves computing the QR-decomposition with column pivoting[10]ofGH; that is

    (15)

    SplittingQas [Q1∶Q2] yields

    GH=[Q1∶Q2][RH∶0T]HP

    (16)

    whereQ1andQ2now denote respectively the firstLand the lastK-Lcolumns of matrixQ. Ideally, matricesQiare related to theViin (11) asVi=QiTi, where theTiare square unitary transformations, thus enabling expressing (13) using the sets of basis vectorsQ1and/orQ2via

    (17)

    This yields an algorithm that is far cheaper to implement than either (11) or (14), as well as numerically more stable than (6) and (14), as no correlation matrix is involved; however, determining the rankLofGvia the QR decomposition may not be as accurate as that provided by the SVD.

    WhenK>N, as may be the case when modeling extended continuous nulls (see Section 2), computation of the QR-decomposition ofG, followed by the SVD of the resultingR, yields a computational efficient and numerically stable procedure for obtaining the matrixVcontaining the desired sets of range and null basis vectors. In such case, albeitGwill likely be extremely ill-conditioned, obtaining its range and null basis will technically require thresholding the singular values ofR; that is

    G=Q[RH∶0T]H≈Q[(U[S∶0T]TVH)H∶0T]T

    (18)

    whereQisK×K,UandVareN×N, andSisL×L, withLthe estimated rank ofG. MatrixVcan now be split asV=[V1∶V2], withV1(N×L) andV2(N×(N-L)) respectively containing the basis vectors for the range and null spaces ofG(observe that explicit computation ofQis not needed).

    In summary, for a set of discrete nulls, the following algorithms can be used to determine the modified weight vector resulting from a constrained LS minimization problem: (a) direct computation of the projection operator as in (6); (b) obtaining the projection operator in terms of theQmatrix from the QR-decomposition ofGH(as in (8) or (15)); (c) computation of the range and null-space basis vectors ofGvia the SVD (expressions (11) or (18)); and (d) computation of the null-space basis vectors ofGvia the eigenvalue decomposition (EVD) ofGGH(14).

    (19)

    Unfortunately, as shown in the example of Section 4, the pattern nulls produced by such direct LS solution are extremely shallow.

    2 Continuous Wide Null Insertion

    Consider inserting a continuous, extended null in a sine-space region bounded byua≤u≤ub. This is often done not only to suppress extended sources of clutter or interference, but also to provide robust procedures that account for moving sources and/or sensors, as well as for uncertainties in prior direction or angle estimates. The correspondingGfor such null is called a quasi-matrix of dimension [ua,ub]×Nwhere each column is an element response function continuously defined on interval [ua,ub].

    One convenient approach to addressing this continuous problem is to approximate the extended nulls by inserting discrete nulls at multiple, closely-spaced look directions. The techniques discussed in Section 1 for discrete null insertion can then be applied. However, issues with this method are the possibilities of inadequate null-depth and of “l(fā)eakage” (i.e., of lacking enough suppression in the spaces between discrete nulls) when not enough discrete sources are modeled.

    When modeling continuous nulls as a number of discrete sources, the number of rows of the corresponding constraint matrixGmay be relatively large compared to the number of antenna elements, perhaps even exceeding it for the case of large extended nulls. In such cases, the algorithm described by Expression (18) can be used to obtain the proper sets of basis vectors.

    The same situation carries over to the continuous null case, when the antenna null response is a quasi-matrixG(u). An overview of quasi-matrices including their factorization is addressed in Section 3, so we will address here the problem by considering instead theN×Ncorrelation matrixPGresulting from the quasi-matrix product

    PG=G(u)HG(u)

    (20)

    with (m,n)thelement given by the following

    我們?cè)谔锢飳?duì)話就像家中一般平常,幾乎忘記是站在龐大的雨陣中,母親大概是看到我愣頭愣腦的樣子,笑了,說(shuō):“打在頭上會(huì)痛吧!”然后順手割下一片最大的芋葉,讓我撐著,芋葉遮不住西北雨,卻可以暫時(shí)擋住雨的疼痛。

    (21)

    Note that this can be written in matrix form as

    (22)

    whereDis theN×Ndiagonal unitary matrix of phases

    D=diag(ejπ(n-1)uc), n=1,2,…,N

    (23)

    m=1,2,…,N;n=1,2,…,N

    (24)

    with

    uc=(ua+ub)/2

    (25)

    and

    W=ub-ua

    (26)

    That is,ucis the center point of the null in sine space, whileWdenotes the desired null width, also in sine space. Therefore

    (27)

    (28)

    (29)

    The IND improves with increasingL; that is, null-depth will increase as our approximation uses more and more of the singular values ofG. On the other hand, increasingLwill increase beam pattern distortion (PD) as defined by

    (30)

    For the continuous extended null case, the singular values can be determined by computing the SVD of quasi-matrix G(u) (this is addressed in Section 3) or they can be derived from the EVD of the correlation matrix given by (21).

    3 Quasi-matrix Model for Continuous Nulls

    In this section, we first give an overview of the quasi-matrix concept and then prescribe an algorithm to obtain the SVD of G(u), which can be used for solving the continuous null insertion problem.

    As described in [7, 9, 11, 13-14], quasi-matrices are arrays whose columns are comprised of continuous functions. This means they lack individual rows in the usual “matrix” sense of the word, thus differing from classical matrices, even those with an infinite number of rows. The term “quasi-matrix” was coined by Stewart[9], who proposed using such constructs to bridge the fields of matrix and approximation theory, hence enabling the latter to exploit the former’s simplicity of notation and its rich trove of data transformations.

    The dimensions of a quasi-matrix with N columns consisting of functions defined over interval [ua,ub] is said to be [ua,ub]×N[11]. Notice that vertically stacking conventional matrices and quasi-matrices is perfectly acceptable as long as they all have the same number of columns. This stacking yields “mixed-matrices” that, from the application and implementation perspectives, are far more general and practical than the individual blocks, as they enable exploiting the properties of the two array types (e.g., mixed-matrices can be used to specify both, multiple discrete and extended nulls).

    The inner-product of two quasi-vectors x(u) and y(u), specified over interval u in [a, b], is the definite integral of the direct product of the underlying functions x(u) and y(u); thus

    (31)

    Thisdefinitionenablestranslating,withminorvariations,thematrixdecompositionalgorithmsofSection1toencompassmixed-andquasi-matrices.Themostseamlesswaytoperformquasi-matrixQR-typedecompositionsinvolvesusingtheMGSdecompositionmethod[11,13];infact,attemptsatextendingtoquasi-matricesothercommonmatrixQR-decompositiontechniques(e.g.,HouseholdertransformationsorGivensrotations)havethusfarbeenunsuccessful[13].

    UsingMGSmeansthattheresultingdecompositionswillbeofthe“economy”form;thatis,offormG(u) =Q1(u)Rratherthan[Q1(u)∶Q2(u)][RH∶0T]H.NoticethatwhiletheQ(u)factorisitselfaquasi-matrtix, Risaclassicalmatrix,apropertythatenablescomputingthe“economyform”ofaquasi-matrix′sSVDasfollows[11,13]

    SVD(G(u))= SVD(Q1(u)R)=Q1(u)(USVH)=

    (Q1(u)U)SVH=U1(u)SVH

    (32)

    TheimportantadvantageofusingtheQR-decompositionand/ortheSVDofG(u)isthattheydon’trequireformingthecorrelationmatrixof(21),thusavoidingsquaringthesingularvaluesofG(u)andtheill-conditioningthiscreates[10,12].

    4 Continuous Null-insertion Examples

    Considerthecasewhere,givenaHamming-weighteduniformlineararray(ULA)withN = 120elements,wewishtoplaceanextendednullbetweenua=sin(30°)andub=sin(40°)andanevenwidernullbetweenua=sin(10°)andub=sin(40°).Fig.1showstheplotsoftheextendednullsthatareobtainedwhenformulatingtheproblemasanunconstrainedLSminimizationprocedure,solvingfortheweightsprovidinganoptimalLSmatchtotheHammingbeampatternwiththeinsertednulls.Theseweightswereobtainedvia(19),usingPG= G(u)HG(u)asprovidedby(21).Observethattheresultingunconstrained-LSnullsareextremelyshallowinbothcases,particularlyascomparedtothosethat,aswillbeshown,canbeobtainedusingconstrainedLS.

    Fig.1UncostrainedLSantennapatternsynthesisexample:Hammingbeampatternfor120omni-directionalelementULA(lightcolor).LSfittoaHammingpatternwitha100-sidenullcentredat35°(topplot)andtoa30°-sidenullcenteredat20°(bottomplot)

    Fig.2 For a 120-element ULA, the bottom curve shows the normalized singular value spectrum,and the top and middle curves show the INDs and PDs for varous low-rank approximationsof the antenna response quasi-matrixG(u)when inserting a null extending from 30°to 40°

    Fig.3 Quiesent Hamming pattern (light color) and patterns with the prescribed 30°to 40° extended nuill(dark color) for various low-rank approximations of costraint quasi-matrixG(u)

    Fig. 4 repeats the exercise of Fig. 2 for a larger null extending between 10° and 40°. It again plots the singular value spectrum, the IND and the PD as function of low-rank approximation. Fig. 5 shows the resulting patterns for different values ofL.

    Fig.4 Given a 120-element ULA, the bottom curve shows thenormalized singular value spectrum, and the top and the middle curves show the INDs and PDs as function of low-rank approximation of the antenna response matrix for a null extending from 10°to 40°

    Fig.5 Quiescent Hamming pattern (light color) and patterns with the prescribed 10° to 40°extended null(dark color) for various low-rank approximations forconstraint quasi-matrixG(u)

    5 Techniques for Efficient Implementation

    The procedure can be summarized as follows:

    (a) AssumingMfundamental nulls of interest centered atu=0, each of widthWmin sine space, determine theMsets of basis SVs, one for each null, to be used as constraint matrix, call itGm(0). Note from comparing Fig.3 and Fig.5 that the number of basis vectors depends on specified null-widthWm.

    (b) Exploit the fact that the constraint matrixGm(uc), representing an extended null of widthWmcentered atu=ucin sine space, is related toGm(0) as

    Gm(uc)=Gm(0)Φc

    (33)

    with phase-shifting matrixΦcgiven by

    Φc=diag(exp(j(n-1)uc)),n=0,1,…,N-1

    (34)

    (c) Address multiple constraints of various widths and locations by retrieving the set of basis vectors for each width, phase-shifting the basis vectors to the desired null centers, stacking them up and then re-orthonormalizing the resulting super-matrix.

    An example using the above procedure to insert two discrete nulls, at -30° and 60°, and a wide-null extending from 30° to 40°, is shown in Fig.6.

    Fig.6 Plot of the antenna pattern with discrete nulls at -30°and 60°and a continuous null extending for 30°to 40°. This plotwas generated using the implementation procedure of Section 5

    6 Summary

    We have developed a set of techniques for deterministic nulling of DBF radar system with prescribed multiple discrete and continuous nulls. For a finite number of constraints the problem is formulated as a constrained LS problem whose solution involves projecting the vector of quiescent weights into the null-space of the matrixGof basis vectors supporting the antenna responses for the desired null regions. This null-space can be determined either by using the SVD ofGor by computing the EVD of the correlation matrixGHG.

    When the constraint is continuous or when the number of constraints exceeds the number of degrees of freedom, the exact solution to the constraints is the zero vector; however, this solution obliterates the desired beam pattern in its entirety. Fortunately, a non-superfluous solution can be determined by finding a low-rank approximation to constraint matrixGand using it as our new constraint set. The rank of this approximation can be determined based on the spectrum of the singular values ofG, together with the corresponding IND and PD values. Simulations showed these trade-offs as well as the antenna patterns achieved for various low-rank approximations.

    The paper also included a discussion of quasi-and mixed-matrices, the mechanics of their operation, and algorithms for their factorization. Use of these constructs enabled applying matrix techniques to data with both, discrete and continuous components, and hence to the practical problems of inserting extended and mixtures of extended and discrete nulls. This resulted in the development of a scheme enabling specifying extended nulls at prescribed angles without having to compute in real-time the number of uniform basis vectors required, as the basis matrices can be pre-determined. This produced an efficient implementation procedure that makes use of stored basis vectors, pre-determined according to the desired null-widths, phase-shifting them then to the prescribed null location centers and re-orthonormalizing them as needed.

    [1] WU W, WANG Y. A study of beam-pattem generation methods for antenna array systems[J]. Journal of Science and Engineer Technology, 2005, 1(2): 7-12.

    [2] SALONEN I, ICHELN C, VAINKKAINEN P. Beamforming with wide null sectors for realistic arrays using directional weighting[R]. Report S 274, Helsinki University of Technology, 2009.

    [3] MANGOUD M A, ELRAGAL H M. Antenna array pattern synthesis and wide null control using enhanced particle swarm optimization[J]. Progress in Electromagnetics Research B, 2009, 17(17): 1-14.

    [4] VEEN K V. Eigenstructure based partially adaptive array design[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(3): 357-362.

    [6] ER M H. Linear antenna array pattern synthesis with prescribed broad nulls[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(9): 1496-1498.

    [8] YU K B, FERNNDEZ M F. Antenna pattern synthesis with multiple discrete and continuous nulls[C]// 2015 IET International Radar Conference. Hangzhou, China: IET, 2015: 7-12.

    [9] STEWART G W. Afternotes goes to graduate school: lectures on advanced numerical analysis. [S.l.]: SIAM, 1998.

    [10] GOLUB G, LOAN C V. Matrix computations[M]. 3rd ed. Maryland: John Hopkins University Press, 1996.

    [11] TOWNSEND A, TREFETHEN L. Continuous analogues of matrix factorizations. [EB/OL]. [2015-05-29]. http://eprints. maths.ox.ac.uk/1766/.

    [12] HOGAN J A, LAKEY J D. Duration and bandwidth limiting: prolate functions, sampling and applications[M]. Berlin: Springer Science & Business Media, 2011.

    [13] TREFETHEN L. Householder triangularization of a quasimatrix[J]. IMA Journal of Numerical Analysis, 2010(30): 887-897.

    [14] BATRLES Z, TREFETHEN L. An extension of MATLAB to continuous functions and operators[J]. SIAM Journal of Science Computation, 2004, 25(5): 1743-1770.

    專家介紹

    國(guó)家自然科學(xué)基金資助項(xiàng)目(61571294);航空科學(xué)基金資助項(xiàng)目(2015ZD07006)

    余啟波 Email:kbyu77@yahoo.com

    2016-09-20

    2016-11-21

    TN957.51

    A

    1004-7859(2016)12-0001-08

    數(shù)字波束形成雷達(dá)的天線方向圖預(yù)置零技術(shù)

    余啟波1,F(xiàn)ENNDEZ Manuel F2

    (1. 上海交通大學(xué) 上海市智能探測(cè)與識(shí)別重點(diǎn)實(shí)驗(yàn)室, 上海 200240) (2. 錫拉丘茲大學(xué), 紐約 13035 )

    基于數(shù)字波束形成體制的相控陣?yán)走_(dá)系統(tǒng),如果雜波和干擾的角度先驗(yàn)信息可以獲知,則可采用方向圖預(yù)置零技術(shù)進(jìn)行相關(guān)的抑制處理。文中提出一種能夠?qū)崿F(xiàn)可控制方向圖零陷寬度和零陷數(shù)量的處理方法。該方法采用對(duì)陣列方向圖響應(yīng)矩陣的奇異值分解和重構(gòu),進(jìn)行擴(kuò)展的零空間基向量的求解。同時(shí),針對(duì)提出的新方法的實(shí)際應(yīng)用,論文給出了一種可實(shí)用的求解算法

    天線方向圖; 陣列波束形成; 陣列響應(yīng)矩陣; 零空間; 阻塞矩陣; 離散零陷; 零陷擴(kuò)展; 混合矩陣; 靜態(tài)方向圖

    10.16592/ j.cnki.1004-7859.2016.12.001

    猜你喜歡
    零陷預(yù)置波束
    幾種發(fā)射波束零陷展寬算法仿真分析
    科技視界(2022年26期)2023-01-16 03:50:36
    基于排隊(duì)論的水下預(yù)置反艦導(dǎo)彈部署優(yōu)化
    毫米波大規(guī)模陣列天線波束掃描研究*
    用友U8軟件預(yù)置會(huì)計(jì)科目的維護(hù)
    圓陣多波束測(cè)角探究
    Helix陣匹配場(chǎng)三維波束形成
    混料設(shè)計(jì)在6061鋁合金激光焊預(yù)置Al-Si-Ni粉末中的應(yīng)用
    焊接(2016年8期)2016-02-27 13:05:12
    一種基于MSNR準(zhǔn)則的零陷控制方法
    基于二階錐優(yōu)化的指定零陷寬度方向圖綜合研究
    基于非正交變換的局域波束空時(shí)自適應(yīng)處理
    久久精品国产亚洲av涩爱| 亚洲欧洲日产国产| 久久午夜福利片| 亚洲成人一二三区av| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| av片东京热男人的天堂| av国产精品久久久久影院| 亚洲五月色婷婷综合| 亚洲国产毛片av蜜桃av| 一级毛片黄色毛片免费观看视频| 久久久久视频综合| a级毛片黄视频| 国产成人精品一,二区| 亚洲人成77777在线视频| 观看av在线不卡| 男女高潮啪啪啪动态图| 日韩一区二区三区影片| 午夜福利,免费看| 1024视频免费在线观看| 久久久精品94久久精品| 三级国产精品片| 国产精品香港三级国产av潘金莲 | av视频免费观看在线观看| 精品国产露脸久久av麻豆| 最新中文字幕久久久久| 卡戴珊不雅视频在线播放| 婷婷色av中文字幕| 捣出白浆h1v1| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 最近的中文字幕免费完整| 国产xxxxx性猛交| 中文字幕另类日韩欧美亚洲嫩草| 免费不卡的大黄色大毛片视频在线观看| 久久韩国三级中文字幕| 亚洲精品久久久久久婷婷小说| 日本vs欧美在线观看视频| 午夜福利视频精品| 亚洲少妇的诱惑av| 欧美激情高清一区二区三区 | 卡戴珊不雅视频在线播放| 婷婷成人精品国产| 国产白丝娇喘喷水9色精品| 欧美日韩一级在线毛片| 国产免费视频播放在线视频| 国产一级毛片在线| 捣出白浆h1v1| 亚洲av男天堂| 一区二区三区乱码不卡18| 女人高潮潮喷娇喘18禁视频| 欧美日韩一区二区视频在线观看视频在线| 国产麻豆69| 卡戴珊不雅视频在线播放| a级毛片在线看网站| 最近最新中文字幕免费大全7| 大片免费播放器 马上看| 熟妇人妻不卡中文字幕| 日本免费在线观看一区| 国产男女内射视频| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频| 又大又黄又爽视频免费| 国产免费一区二区三区四区乱码| 少妇精品久久久久久久| av网站免费在线观看视频| 日韩av免费高清视频| 夜夜骑夜夜射夜夜干| tube8黄色片| 久久人妻熟女aⅴ| 成年女人毛片免费观看观看9 | 国产成人免费观看mmmm| 亚洲四区av| 97在线人人人人妻| 考比视频在线观看| freevideosex欧美| 一区二区三区四区激情视频| 欧美成人午夜精品| 久久毛片免费看一区二区三区| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 国产日韩欧美亚洲二区| 满18在线观看网站| 久久午夜综合久久蜜桃| 韩国高清视频一区二区三区| 高清视频免费观看一区二区| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 精品亚洲乱码少妇综合久久| 丝袜美腿诱惑在线| 久久久国产一区二区| 亚洲一区中文字幕在线| 另类亚洲欧美激情| 婷婷色综合大香蕉| 午夜福利影视在线免费观看| 国产色婷婷99| 亚洲人成电影观看| 校园人妻丝袜中文字幕| 熟妇人妻不卡中文字幕| 高清视频免费观看一区二区| 亚洲美女视频黄频| 国产精品嫩草影院av在线观看| 久久精品熟女亚洲av麻豆精品| 日韩人妻精品一区2区三区| 男女高潮啪啪啪动态图| 婷婷成人精品国产| 国产熟女欧美一区二区| 91久久精品国产一区二区三区| 青春草国产在线视频| 人人妻人人爽人人添夜夜欢视频| av福利片在线| 国产老妇伦熟女老妇高清| 80岁老熟妇乱子伦牲交| 只有这里有精品99| 亚洲欧美一区二区三区久久| 考比视频在线观看| 亚洲欧洲国产日韩| 欧美日韩精品网址| 女人久久www免费人成看片| 亚洲国产av新网站| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 久久99精品国语久久久| 亚洲婷婷狠狠爱综合网| 热99久久久久精品小说推荐| 精品久久久久久电影网| 曰老女人黄片| 黄色一级大片看看| 精品午夜福利在线看| 最近的中文字幕免费完整| 亚洲国产精品999| 久久精品国产自在天天线| 咕卡用的链子| 蜜桃在线观看..| 亚洲熟女精品中文字幕| 亚洲四区av| 久久毛片免费看一区二区三区| 波多野结衣一区麻豆| 午夜日韩欧美国产| 国产av一区二区精品久久| 久久99蜜桃精品久久| 国产成人免费无遮挡视频| 精品亚洲成a人片在线观看| 亚洲一码二码三码区别大吗| 久久久久久久精品精品| 极品少妇高潮喷水抽搐| 欧美日韩成人在线一区二区| 最近手机中文字幕大全| 高清视频免费观看一区二区| 大码成人一级视频| 香蕉精品网在线| 最近中文字幕2019免费版| 免费久久久久久久精品成人欧美视频| 飞空精品影院首页| 天天操日日干夜夜撸| 在线观看美女被高潮喷水网站| 久久精品国产a三级三级三级| 满18在线观看网站| 国产成人免费无遮挡视频| 国产日韩欧美视频二区| 男女无遮挡免费网站观看| 亚洲av电影在线进入| 只有这里有精品99| 精品一区在线观看国产| 欧美人与性动交α欧美软件| 男人舔女人的私密视频| 18禁国产床啪视频网站| 久久99一区二区三区| 亚洲内射少妇av| 国产在视频线精品| 午夜免费观看性视频| 精品福利永久在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品 国内视频| 菩萨蛮人人尽说江南好唐韦庄| 少妇猛男粗大的猛烈进出视频| 久久久亚洲精品成人影院| 国精品久久久久久国模美| 一级a爱视频在线免费观看| 精品国产一区二区三区四区第35| 国产av精品麻豆| 人人妻人人澡人人看| 日本av手机在线免费观看| 青春草国产在线视频| 欧美97在线视频| 香蕉丝袜av| 国产一区亚洲一区在线观看| 2021少妇久久久久久久久久久| 97在线人人人人妻| 成人亚洲精品一区在线观看| 欧美少妇被猛烈插入视频| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 天天躁日日躁夜夜躁夜夜| 成人午夜精彩视频在线观看| 国产精品亚洲av一区麻豆 | 两个人免费观看高清视频| 成人毛片60女人毛片免费| 亚洲国产欧美在线一区| 99热全是精品| 成人午夜精彩视频在线观看| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 大话2 男鬼变身卡| 王馨瑶露胸无遮挡在线观看| 欧美老熟妇乱子伦牲交| 免费在线观看黄色视频的| 亚洲国产色片| 精品国产露脸久久av麻豆| 国产精品一区二区在线不卡| 国产又爽黄色视频| 免费播放大片免费观看视频在线观看| 麻豆乱淫一区二区| 精品福利永久在线观看| 一二三四中文在线观看免费高清| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 中文字幕人妻丝袜制服| 日日爽夜夜爽网站| 在线观看免费视频网站a站| 久久久久精品久久久久真实原创| 天堂俺去俺来也www色官网| 熟女电影av网| av国产精品久久久久影院| 精品国产一区二区三区四区第35| 美女国产视频在线观看| 999久久久国产精品视频| 午夜福利网站1000一区二区三区| 久久精品国产综合久久久| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 人体艺术视频欧美日本| 免费观看无遮挡的男女| 欧美+日韩+精品| 自拍欧美九色日韩亚洲蝌蚪91| 建设人人有责人人尽责人人享有的| 国产熟女欧美一区二区| 国产精品久久久久久av不卡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产日韩欧美视频二区| 亚洲国产精品一区二区三区在线| 少妇猛男粗大的猛烈进出视频| 另类亚洲欧美激情| 国产男女内射视频| 免费少妇av软件| 五月伊人婷婷丁香| 九色亚洲精品在线播放| 午夜福利在线观看免费完整高清在| 日本av手机在线免费观看| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 久久久久久人妻| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| 久久久久久久久久人人人人人人| 久久精品久久精品一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 飞空精品影院首页| 黄片无遮挡物在线观看| 国产日韩欧美视频二区| 男女边摸边吃奶| 高清欧美精品videossex| 欧美激情极品国产一区二区三区| 色视频在线一区二区三区| 日韩一区二区视频免费看| 日韩一卡2卡3卡4卡2021年| 婷婷色av中文字幕| 国产精品偷伦视频观看了| 亚洲一区中文字幕在线| 制服丝袜香蕉在线| 高清欧美精品videossex| 伦理电影大哥的女人| 在线观看国产h片| 国产精品麻豆人妻色哟哟久久| 五月伊人婷婷丁香| 国产成人欧美| 制服诱惑二区| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 高清欧美精品videossex| 女人久久www免费人成看片| 9色porny在线观看| 黄片小视频在线播放| 大片电影免费在线观看免费| 国产精品麻豆人妻色哟哟久久| 日韩不卡一区二区三区视频在线| 黄色 视频免费看| 男女边摸边吃奶| 不卡av一区二区三区| 色94色欧美一区二区| 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 综合色丁香网| 亚洲成av片中文字幕在线观看 | 亚洲欧美色中文字幕在线| 一区二区av电影网| 午夜精品国产一区二区电影| 欧美日韩视频精品一区| 最近的中文字幕免费完整| 最近最新中文字幕大全免费视频 | 中文字幕av电影在线播放| 熟女av电影| 亚洲欧洲日产国产| 一区二区日韩欧美中文字幕| 国产亚洲欧美精品永久| videos熟女内射| 久久精品久久久久久噜噜老黄| 性色av一级| 日韩一本色道免费dvd| 欧美国产精品va在线观看不卡| 国产av精品麻豆| 在线观看免费高清a一片| 国产探花极品一区二区| 在线观看美女被高潮喷水网站| 免费看不卡的av| 国产激情久久老熟女| 国产成人精品一,二区| 国产成人免费观看mmmm| 男女午夜视频在线观看| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202| 日本av免费视频播放| 一级黄片播放器| 电影成人av| 热99国产精品久久久久久7| 国产熟女欧美一区二区| 国产精品久久久久成人av| 亚洲经典国产精华液单| 99九九在线精品视频| 国产成人精品福利久久| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 天美传媒精品一区二区| 亚洲国产日韩一区二区| 国产av国产精品国产| 亚洲成av片中文字幕在线观看 | 日韩一区二区视频免费看| 亚洲综合色网址| 在线观看一区二区三区激情| 日韩中文字幕视频在线看片| 国产成人精品一,二区| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 久久久久视频综合| 久久狼人影院| 国产精品 欧美亚洲| h视频一区二区三区| 免费久久久久久久精品成人欧美视频| 精品人妻在线不人妻| 777米奇影视久久| 丝袜喷水一区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院在线不卡| 大片电影免费在线观看免费| 国产av一区二区精品久久| 有码 亚洲区| 秋霞伦理黄片| av天堂久久9| 日韩在线高清观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 蜜桃在线观看..| av天堂久久9| 亚洲精品一二三| 久久午夜综合久久蜜桃| 精品少妇黑人巨大在线播放| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| 啦啦啦中文免费视频观看日本| 欧美日本中文国产一区发布| 高清不卡的av网站| 大陆偷拍与自拍| 亚洲综合精品二区| 最近最新中文字幕大全免费视频 | 咕卡用的链子| 亚洲欧美一区二区三区黑人 | 国产成人午夜福利电影在线观看| 美女xxoo啪啪120秒动态图| 国产精品不卡视频一区二区| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 大片免费播放器 马上看| 国产男女超爽视频在线观看| 最近手机中文字幕大全| 欧美精品一区二区大全| 国产精品免费视频内射| 中文欧美无线码| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 涩涩av久久男人的天堂| 中文精品一卡2卡3卡4更新| 一区福利在线观看| 91久久精品国产一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲色图综合在线观看| 久久国产精品大桥未久av| 午夜福利影视在线免费观看| 国产熟女欧美一区二区| 亚洲国产精品成人久久小说| 亚洲人成电影观看| 欧美日韩亚洲高清精品| 搡女人真爽免费视频火全软件| 乱人伦中国视频| 99久久中文字幕三级久久日本| 欧美精品高潮呻吟av久久| 国产男人的电影天堂91| 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 看免费成人av毛片| 人妻人人澡人人爽人人| 国产女主播在线喷水免费视频网站| 欧美日韩精品网址| 黄片无遮挡物在线观看| 丝瓜视频免费看黄片| 国产成人免费观看mmmm| 国产xxxxx性猛交| 欧美另类一区| 国产在线视频一区二区| 一区二区三区乱码不卡18| 大话2 男鬼变身卡| 国产日韩欧美视频二区| 日韩伦理黄色片| 亚洲伊人色综图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日啪夜夜爽| 中文精品一卡2卡3卡4更新| 日韩欧美一区视频在线观看| 欧美日韩视频高清一区二区三区二| 亚洲精品美女久久久久99蜜臀 | 久久人人爽av亚洲精品天堂| 伦理电影大哥的女人| 国语对白做爰xxxⅹ性视频网站| 亚洲av日韩在线播放| 97精品久久久久久久久久精品| 亚洲美女黄色视频免费看| 亚洲精品国产av蜜桃| 国产麻豆69| 欧美精品高潮呻吟av久久| 男女边吃奶边做爰视频| 国产精品二区激情视频| 99九九在线精品视频| 满18在线观看网站| 久久久精品区二区三区| 精品一区二区三区四区五区乱码 | a 毛片基地| 在线观看免费日韩欧美大片| 成年av动漫网址| 少妇的丰满在线观看| 久热这里只有精品99| 欧美精品av麻豆av| av有码第一页| www日本在线高清视频| 日韩一本色道免费dvd| 国产精品久久久久久精品古装| 亚洲欧美成人综合另类久久久| 午夜福利视频在线观看免费| 夫妻午夜视频| 欧美激情极品国产一区二区三区| 欧美人与性动交α欧美软件| 2022亚洲国产成人精品| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 免费看不卡的av| av国产精品久久久久影院| 国产精品av久久久久免费| 免费在线观看视频国产中文字幕亚洲 | 毛片一级片免费看久久久久| 免费观看av网站的网址| 麻豆精品久久久久久蜜桃| 免费播放大片免费观看视频在线观看| 国产xxxxx性猛交| 亚洲国产精品一区三区| 国产精品.久久久| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 一区二区三区激情视频| 国产黄频视频在线观看| 啦啦啦啦在线视频资源| 亚洲美女视频黄频| 精品一品国产午夜福利视频| 男女边吃奶边做爰视频| 考比视频在线观看| 天堂8中文在线网| 大陆偷拍与自拍| 九色亚洲精品在线播放| 免费在线观看黄色视频的| 国产日韩欧美在线精品| 在线观看美女被高潮喷水网站| 欧美日韩综合久久久久久| 老司机影院成人| 中文欧美无线码| 男女午夜视频在线观看| 搡老乐熟女国产| 性高湖久久久久久久久免费观看| 曰老女人黄片| 欧美日韩一级在线毛片| 亚洲三级黄色毛片| 看免费av毛片| 最近最新中文字幕大全免费视频 | 国产精品免费视频内射| 免费播放大片免费观看视频在线观看| 青春草视频在线免费观看| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 少妇人妻精品综合一区二区| 亚洲欧美成人综合另类久久久| 一区福利在线观看| 一二三四中文在线观看免费高清| 精品福利永久在线观看| 午夜精品国产一区二区电影| 有码 亚洲区| 欧美激情极品国产一区二区三区| 亚洲一区中文字幕在线| 中文字幕人妻熟女乱码| 国产色婷婷99| 一区二区三区四区激情视频| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 精品午夜福利在线看| 国产精品二区激情视频| 不卡av一区二区三区| 亚洲美女黄色视频免费看| 日本91视频免费播放| 亚洲国产精品一区三区| 香蕉丝袜av| 久久久精品区二区三区| 少妇的丰满在线观看| 深夜精品福利| 亚洲av免费高清在线观看| 欧美精品一区二区免费开放| 国产精品麻豆人妻色哟哟久久| 久久综合国产亚洲精品| 日本-黄色视频高清免费观看| 超碰97精品在线观看| 国产一区亚洲一区在线观看| 不卡视频在线观看欧美| 亚洲国产色片| 亚洲欧美成人综合另类久久久| 考比视频在线观看| 久久精品国产综合久久久| 日产精品乱码卡一卡2卡三| 精品人妻一区二区三区麻豆| 9色porny在线观看| 午夜福利在线观看免费完整高清在| 蜜桃国产av成人99| 又粗又硬又长又爽又黄的视频| 在线天堂中文资源库| 下体分泌物呈黄色| 久久久精品国产亚洲av高清涩受| 免费看不卡的av| 一本久久精品| 午夜av观看不卡| 国产精品麻豆人妻色哟哟久久| 日本av手机在线免费观看| 久久99一区二区三区| 在线亚洲精品国产二区图片欧美| 欧美中文综合在线视频| 欧美最新免费一区二区三区| 日韩一区二区三区影片| 少妇的丰满在线观看| 老汉色av国产亚洲站长工具| 男人爽女人下面视频在线观看| 婷婷色综合大香蕉| 80岁老熟妇乱子伦牲交| 午夜老司机福利剧场| 两性夫妻黄色片| 亚洲欧美色中文字幕在线| 亚洲 欧美一区二区三区| 美女大奶头黄色视频| 亚洲精品一区蜜桃| 9色porny在线观看| 久久99一区二区三区| 免费黄网站久久成人精品| 成人影院久久| 天堂中文最新版在线下载| 欧美日韩亚洲高清精品| 一级毛片电影观看| 国产男女超爽视频在线观看| 在线观看www视频免费| 午夜激情久久久久久久| 久久久国产精品麻豆| 韩国av在线不卡| av又黄又爽大尺度在线免费看| 欧美激情极品国产一区二区三区| 一二三四在线观看免费中文在| 七月丁香在线播放| 国产一区二区三区综合在线观看| 亚洲欧美一区二区三区国产| 桃花免费在线播放| 亚洲男人天堂网一区| 国产片特级美女逼逼视频| 国产精品秋霞免费鲁丝片| kizo精华| 国产欧美亚洲国产| 97精品久久久久久久久久精品| 色吧在线观看| 免费大片黄手机在线观看| 精品少妇一区二区三区视频日本电影 | 欧美日韩精品成人综合77777| tube8黄色片| 黄色毛片三级朝国网站| 超色免费av| 男人添女人高潮全过程视频| 久久午夜福利片| 亚洲天堂av无毛| 赤兔流量卡办理| 性色avwww在线观看| 免费观看a级毛片全部| 欧美在线黄色| 黄片播放在线免费| 国产av码专区亚洲av|