• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DBF of Multiple Simultaneous Beams for Improved Target Search and Angle Estimation Performance of Radar System

    2017-01-06 08:53:22YUKaibor
    現(xiàn)代雷達 2016年12期
    關(guān)鍵詞:單脈沖測角相控陣

    YU Kai-bor

    (Shanghai Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China)

    ·DBF在現(xiàn)代雷達中的應用·

    DBF of Multiple Simultaneous Beams for Improved Target Search and Angle Estimation Performance of Radar System

    YU Kai-bor

    (Shanghai Key Laboratory of Intelligent Sensing and Recognition,Shanghai Jiao Tong University, Shanghai 200240, China)

    This paper describes techniques for improving radar target search and angle estimation performance over the coventional monopulse processing in the elimination of beam-shape loss. Specifically, we have developed a scheme that uses multiple sets of monopulse beams. We also show how monopulse processing scheme and the maximum-likelihood scheme can be combined to balance the performance and processing requirement. These techniques make use of digital beamforming of multiple simultaneous received beams and processing using multiple algorithms. Simulation results are included to show the improvement in target search and angle estimation and the elimination of beam-shape loss.

    digital beamforming; multiple simultaneous beams; monopulse; maximum-likelihood; target detection; angle estimation

    0 Introduction

    Conventional monopulse processing (Scheme 1) involves one beam in transmit and multiple simultaneous beams on receive. Typically a sum beam without any tapering is employed in the transmit array for full power operation. A uniform weighting will have transmit antenna pattern narrowest beamwidth but higher sidelobes. Beam-spoiling can also be applied to broaden the transmit antenna beamwidth[1]. On receive two or more beams are formed for target detection and angle estimation, i.e. the sum beam, the delta-azimuth and the delta-elevation beam. The sum beam is used for surveillance search and target detection. Once a target is detected, the ratio of delta-azimuth beam over the sum beam is used for azimuth angle estimation, and the ratio of delta-elevation beam over the sum beam is used for elevation angle estimation. This approach for angle estimation is computationally efficient as it requires only the computation of the monopulse ratios and a table look-up for the angles. Received beams are typically tapered for sidelobe control leading to wider received beamwidth. Taylor weighting is used for the sum beam and Bayliss weighting is used for the difference beams. A target at the peak of the beam has the highest signal-to-noise ratio (SNR) compared to the rest of the beam. Thus a target away from the center of beam suffers from beam-shape loss resulting to lower SNR and degradation in target detection and angle estimation performance. The beam-shape loss and degradation in target detection and angle estimation performance can be recovered if multiple simultaneously received beams are employed. A full digital array (i.e. an array digitized at element-level) supports different processing architectures with different processing performance and computational complexities. Furthermore, these processing schemes can be combined to balance the performance and the computational burden.

    In Section 1, we discuss the processing architectures and algorithms using multiple simultaneously received beams. First, we review the processing architecture of the maximum-likelihood (ML) method[2-4]. This approach has been advocated for improved radar target search and track for its merits in the elimination of the beam-shape loss. Second, we discuss a new processing algorithm that uses multiple sets of monopulse beams. Third, we show how the monopulse processing scheme and the ML processing scheme can be combined to balance the performance and processing requirement. In section 2, some simulations are included to illustrate the performance of the processing schemes. Section 3 is the summary.

    1 Algorithms Using Multiple Simultaneously Received Beams

    The conventional monopulse scheme for radar detection and angle estimation (Scheme 1) is illustrated in Fig.1. In this section, we look into using multiple simultaneously received beams to reduce the beam-shape loss. Modern radar technology employs digital beamforming (DBF) at the sub-array level or at the element level. The digital degrees-of-freedom (DOFs) available provide flexibilities and capabilities compared to analog beamforming. These capabilities include improved dynamic range, improved interference suppression and clutter performance and forming of multiple simultaneously received beams. In this paper, we consider the benefits in the elimination of beam-shape loss and the extension of the coverage performance using multiple simultaneously received beams.

    Fig.1 Conventional monopulse scheme for radar detection andangle estimation (Scheme 1)

    Radar flexibilities and capabilities increase with the level of digitization. Element level digitization supports forming of arbitrary number of beams and types of beams where some approximations are required if we have only sub-array digitization. For example, it is not possible to form Taylor and Bayliss beams simultaneously from digital sub-array outputs unless multiple radio frequency (RF) sub-arrays are employed. The elements within the sub-arrays are typically tapered for the Taylor beam and a direct sum of the sub-array outputs will generate the desired Taylor sum beam. An approximation on the Bayliss difference beam can be generated by using an average Bayliss-on-Taylor taper for each sub-array. A similar kind of approximation is also required for forming a cluster of squinted sum beams from digital sub-arrays.

    Another consideration in the algorithm development is the processing complexity. The computational burden can be attributed to the forming of multiple simultaneous beams and the pulse compression and Doppler processing associated with each beam. Also, there is substantial computational cost associated with the angle search of the maximum-likelihood beam-space processing (MLBP) scheme. The ML approach to angle estimation requires a two-dimensional iterative or grid search over the entire beam.

    Here we review the MLBP scheme (Scheme 2) as applied to the digital array radar system where digital inputs can be element-based or sub-array-based (Fig. 2).

    Fig.2 MLE of multiple sum beams(Scheme 2)

    These inputs are firstly digital beamformed to generate a number of beams. The cluster of sum beams includes a center beam surrounded by 4 squinted sum beams located on the 3 dB contour or the 6 dB contour on a 2×2-shape or diamond-shape configuration (Fig.3).

    Fig.3 Cluster of 5 sum beams with center beam surrounded by 4 beams on a diamond-shame configuration (top)or squinted on a 2×2 grid (bottom)

    The digital beamforming can be expressed as following

    (1)

    (2)

    whereg(u,v),R,rare the beam patterns, covariance matrix of the noise data and the output beam data respectively. The maximum can be determined using iterative search or grid search. This method is computational intensive. It also requires memory storage for the set of antenna beam patterns. Onceuandvare searched to sufficient accuracy, the corresponding target magnitude can be used for target detection. The target amplitude estimate is given by the following

    (3)

    The ML approach in fact eliminates the beam-shape loss by pointing the beam at the desired angular direction. However, it requires a search for all angles at every range cell, thus its computation is very intensive. Some modifications are required for its use in practical radar search application. A detection before angle estimate approach can be developed similar to monopulse scheme where ML processing is invoked only after target detection using the center sum beam. The modified scheme using the center beam for detection followed by MLE angle estimation (Scheme 2A) achieves the benefits of the elimination of beam-shape loss in angle estimation but still suffers the beam-shape loss for the detection, as shown in Fig.4. Another modification can be derived to use all the sum beams for detection, and the ML processing can be invoked once a target is detected by one or more beams, as shown in Fig.5 (Scheme 2B). This approach eliminates the beam-shape loss and the requirement to search for the target angle for every range cell; it still requires an extensive angle search once a target is detected.

    Fig.4 MLE with multiple sum beams, modified with detectionfirst with center sum beam (Scheme 2A)

    Fig.5 MLE using multiple sum beams modified with detectionfirst using all sum beams (Scheme 2B)

    Multiple simultaneous beams can be generated by using multiple sets of weighting coefficients. Suppose B0 is the transmit beam center. On receive 4 sets of monopulse beams are generated to provide target search and angle estimation processing. The squinted beams B1, B2, B3 and B4 are located at a distance of a 3 dB or 6 dB beamwidth away from B0 and can be in the configuration of 2×2-shaped or diamond-shape.

    The deterministic beamforming for simultaneous beams followed by target detection and angle estimation (Scheme 3) is given by Fig. 6 and is described in the following steps:

    Fig.6 Monopulse prcessing using 4 sets of monopulse beams(Scheme 3)

    Step 1: The sub-array or element data are combined digitally to generate 4 sets of monopulse beams (Fig.7) given by

    (4)

    Fig.7 4 sets of monopulse beams

    The weighting coefficients of the squinted beams can be constructed from those of the center beam by steering

    (5)

    (6)

    Using these weights, the antenna patterns are given by

    (7)

    Step 2: Detection processing is accomplished by selecting the maximum of the magnitudes of all the sum beams and compared to a threshold, i.e.

    (8)

    wherei*beam gives the maximum detection performance. The sum beam and the delta beam measurements are then used for the monopulsei*angle estimation.

    Step 3: The ratio of the corresponding delta-azimuth beam over theith sum beam is used to determine the azimuth angle and the ratio of the corresponding delta-elevation beam over theith sum beam is used to determine the elevation angle using look-up tables

    (9)

    Step 4: The directional-cosines are derived with respect to thei-th beam. These coefficients can be transformed back to the center beam reference

    (10)

    Employment of multiple simultaneous beams eliminates the beam-shape loss of conventional monopulse in target detection and angle estimation, thus enables search performance over larger area. This scheme eliminates the beam-shape loss and extends the coverage performance like the MLE approach at the expense of the computational cost as it is required to carry the computational load of forming 12 beams and the associated pulse compression and Doppler processing.

    One of the benefits of DBF is that it supports multiple processing schemes simultaneously. Furthermore these schemes can be combined to balance the computational complexity and performance. We here describe a scheme on combining the monopulse and the MLE schemes. The rational is that monopulse processing is computational most efficient and performs very well when the target is within the beam. The MLE scheme has optimal performance in the elimination of beam-shape loss and in the extension of the coverage at the cost of computational burden in the angle search. Multiple sets of monopulse beams eliminate beam-shape loss and extend coverage at the expense of computational requirement of beamforming of 12 channels and carry out the associated pulse compression and Doppler processing. Thus we combine the monopulse processing and MLE processing by constructing a scheme with 1 set of monopulse beams in the center and 4 additional sum beams at the 3 dB or 6 dB away from the center beam center as in the MLBP scheme. The 5 sum beams are used for detection as in Scheme 2B. Once a target is detected, we determine which sum beam generates the detection. If the detection is attributed to the center sum beam, we know the target is within the center beam, and monopulse processing is used for the target detection, otherwise, the target is on the edge or outside of the center beam, thus MLE processing using the 5 sum beams is invoked. In this approach (Scheme 4), the beam-shape loss is eliminated and the coverage is extended and monopulse processing is utilized when the target is within the beam. This scheme is illustrated in Fig. 8.

    Fig.8 Combined monopulse and MLE processing (Scheme 4)

    2 Simulation Results

    In this section, we assess the beam-shape loss and the angle estimation performance of the discussed schemes using simulation. We consider a circular array with digital beamforming at the element level with half-wavelength spacing. For each processing scheme, the antenna gain performance and the angle estimation are generated by moving the target source over the 3 dB and 6 dB received beamwidth on a grid spacing of 2 msine along both theuaxis and thevaxis. The transmit beam is assumed to be spoiled uniformly over the entire 6 dB beamwidth and thus the effect is included in theSNRfor the performance evaluation. The antenna gain and the angle estimation performance are evaluated at each grid point and are averaged over the 3 dB and 6 dB beamwidth. For the angle estimation performance, theSNRis set to be 18 dB when the target is at the peak of the beam. A Monte-Carlo simulation of 100 times is used to determine the angle performance for each grid point. The beam-shape loss and the angle estimation performance are summarized in Table 1 and Table 2 respectively. The values averaged over 3 dB beamwidth serve as the basic performance parameters and the values averaged over the 6 dB beamwidth are used to evaluate the coverage performance extension. The performance of the monopulse processing is used as the benchmark for comparison. The beam-shape loss for monopulse processing is 1.1 dB and 2.6 dB over the 3 dB beamwidth and 6 dB beamwidth respectively (Fig.9) . TheRMSEfor angle estimation is 2.87 msine and 4.03 msine for the 3 dB beamwidth and 6 dB beamwidth respectively (Fig.10). The results show that the beam-shape loss can be recovered by ML processing or by employment of multiple simultaneously received beams. The beam-shape loss using 4 sets of monopulse beams (Scheme 3) is 0.7 dB over both the 3 dB and the 6 dB beamwidth (Fig.11), and the beam-shape loss using 5 sum beams (Scheme 2B) is 0.4 dB over both the 3 dB and 6 dB beamwidth (Fig.12). Angle estimation performance for scheme 2 is given by Fig.13. For angle estimation, Scheme 3 with multiple sets of monopulse beams has the best performance results (Fig.14) where Scheme 4 approaches the performance of the monopulse scheme within the 3 dB beamwidth and the performance of MLE scheme within the 6 dB beamwidth (Fig.15). The processing and computational costs of the schemes are summarized in Table 3.

    Table 1 Summary of beam-shape loss performance dB

    SchemeBeam-shapelossaverageover3dBbeamwidthBeam-shapelossaverageover6dBbeamwidthMonopulseprocessing(Scheme1)1.12.6MLBP(Scheme2)00MLBPwithcenterbeamfordetection(Scheme2A)1.12.6MLBPwithallbeamsfordetection(Scheme2B)0.40.4Multiplesetsofmonopulsebeams(Scheme3)0.70.7Combinedmonopulse&MLE(Scheme4)0.40.4

    Table 2 Summary of RMSE angle estimation performance msine

    SchemeTotalRMSEaverageover3dBbeamwidthTotalRMSEaverageover6dBbeamwidthMonopulseprocessing(Scheme1)2.874.03MLBP(Scheme2)3.153.45Multiplesetsofmonopulsebeams(Scheme3)2.602.62Combinedmonopulse&MLE(Scheme4)2.963.37

    Fig.9 Sum beam gain average over the 3 dBcontour and 6 dB contour

    Fig.10 Monopulse angle estimation error performance (Scheme 1)

    Fig.11 Sum beam gain by combining all 4 sum beams(Scheme 3)

    Fig.12 Sum beam combining all 5 beams (Scheme 2B)

    Fig.13 Angle estimation error by using MLE on 5 beams(Scheme 2)

    Fig.14 Monopulse angle error using all 4 sets of beams(Scheme 3)

    Fig.15 Angle error by combining monopulse and MLE(Scheme 4)

    Table 3 Summary of processing and computational cost

    Scheme#ofBeamsAngleestimatecomputationalcostMonopulseprocessing(Scheme1)3beamsLeastMLBP(Scheme2)5beamsMostMultiplesetsofmonopulsebeams(Scheme3)12beamsLeastCombinedmonopulse&MLE(Scheme4)7beamsModerate

    3 Summary

    Conventional monopulse processing suffers beam-shape loss in target detection and angle estimation. MLBP eliminates beam-shape loss at the expense of computational cost. The computational burden is on the implementation of the 2-dimensional angle search. DBF of multiple sets of monopulse beams eliminates beam-shape loss and extends detection and angle estimation coverage at the expense of computational cost. The computational burden is due to the digital beamforming of 12 beams and the associated pulse compression and Doppler processing. DBF provides flexibility in the processing schemes and these schemes can be combined to improve the performance and computational complexity. A scheme is developed where monopulse processing is employed if target is in the center beam and a 5 beam MLE is employed if the target is on the edge of the center beam or in the outer beams. In this manner, computational complexity is controlled, beam-shape loss is eliminated and the coverage performance is extended.

    [1] KERCE J C, BROWN G C, MITCHELL M A. Phase-only transmit beam broadening for improved radar search performance[C]// Proceedings of 2007 IEEE Radar Conference. Boston, MA: IEEE Press, 2007: 451-456.

    [2] DAVIES R M, FANTE R L. A maximum-likelihood beamspace processor for improved search and track[J]. IEEE Transactions of Antennas and Propagation, 2001, 49(7): 1043-1053.

    [3] LIU Y, WONG C G, KENNEDY W. Computationally efficient angle estimation using maximum likelihood in a digital beam-forming radar[C]// Proceedings of 2007 IEEE Radar Conference. Boston, MA: IEEE Press, 2007: 337-342.

    [4] BARANOSKI E, WARD J. Source localization using adaptive subspace beamformer outputs[C]// 1997 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-97).[S.l.]: IEEE Press, 1997: 3773-3776.

    專家介紹

    余啟波 余啟波博士1977年畢業(yè)于耶魯大學,獲電子工程與應用數(shù)學學士學位;1979年畢業(yè)于布朗大學,獲電子工程碩士學位; 1982年畢業(yè)于普渡大學,獲電子工程專業(yè)博士學位。博士畢業(yè)后,在弗吉尼亞理工學院執(zhí)教6年;在隨后的二十五年中,先后在通用電氣公司、雷聲、洛克希德馬丁和波音公司等著名企業(yè)里擔任高級系統(tǒng)工程師職位。2015年,余博士以特聘教授身份受聘于上海交通大學。

    余博士的主要研究領(lǐng)域包括:相控陣雷達系統(tǒng)設(shè)計、雷達系統(tǒng)建模與仿真技術(shù)、雷達信號處理、雷達電子戰(zhàn)技術(shù)等。余博士在美國雷達工業(yè)界和國際學術(shù)界均享有盛名,他是早期雷達數(shù)字波束形成技術(shù)的主要倡導者之一,曾經(jīng)參與了多部相控陣雷達系統(tǒng)的設(shè)計,目前是IEEE高級會員,擁有30多項美國發(fā)明專利,發(fā)表過60多篇學術(shù)論文,并且合作撰寫過兩部專著。曾于2012年~2015年擔任IEEE宇航電子系統(tǒng)協(xié)會加利福尼亞分部的主席,多次擔任IEEE雷達會議、SPIE高級信號處理等會議的技術(shù)程序委員會成員。

    國家自然科學基金資助項目(61571294);航空科學基金資助項目(2015ZD07006)

    余啟波 Email:kbyu77@yahoo.com

    2016-09-18

    2016-11-20

    TN957.51

    A

    1004-7859(2016)12-0009-07

    同時數(shù)字多波束對改善相控陣雷達搜索和測角精度的分析

    余啟波

    (上海交通大學 上海市智能探測與識別重點實驗室, 上海 200240)

    文中基于數(shù)字波束合成體制的相控陣雷達,研究改善傳統(tǒng)單脈沖體制雷達性能的方法。提出了一種基于一組同時數(shù)字多波束處理的新方法。文中證明該方法可以將單脈沖測角方法和極大似然估計測角算法進行性能的平衡。該方法利用了基于同時數(shù)字多波束形成技術(shù)以及多種處理算法。計算機仿真試驗證明該方法可以在提升雷達目標檢測和測角性能的同時有效的改善波束形狀損失。

    數(shù)字波束形成;同時多波束;單脈沖;極大似然估計;目標檢測;角度估計

    10.16592/ j.cnki.1004-7859.2016.12.002

    猜你喜歡
    單脈沖測角相控陣
    相控陣超聲技術(shù)在PE管電熔焊接檢測的應用
    煤氣與熱力(2021年3期)2021-06-09 06:16:16
    相控陣超聲波檢測技術(shù)認證
    化工管理(2021年7期)2021-05-13 00:45:20
    FDA對比幅法單脈沖測向的角度欺騙
    一種相控陣雷達的通訊處理器設(shè)計
    電子制作(2019年24期)2019-02-23 13:22:16
    相控陣雷達研究現(xiàn)狀與發(fā)展趨勢
    電子測試(2018年15期)2018-09-26 06:01:46
    一類帶有慢變參數(shù)的sine-Gordon方程的單脈沖異宿軌道
    基于單天線波束掃描的解析測角方法
    圓陣多波束測角探究
    電子測試(2018年6期)2018-05-09 07:31:54
    基于高精度測角的多面陣航測相機幾何拼接
    一種帶寬展寬的毫米波波導縫隙陣列單脈沖天線
    制導與引信(2016年3期)2016-03-20 16:02:00
    久久精品综合一区二区三区| 少妇的丰满在线观看| 最近在线观看免费完整版| 18禁裸乳无遮挡免费网站照片| 亚洲黑人精品在线| 色精品久久人妻99蜜桃| 久久九九热精品免费| 嫁个100分男人电影在线观看| 欧美色视频一区免费| 男人和女人高潮做爰伦理| 一本一本综合久久| 亚洲av电影不卡..在线观看| 国产综合懂色| 国产精品99久久99久久久不卡| 亚洲精品日韩av片在线观看 | 亚洲国产中文字幕在线视频| 国产精品99久久99久久久不卡| 国产一区在线观看成人免费| 欧美性感艳星| 国产精品 国内视频| 亚洲欧美日韩卡通动漫| 免费搜索国产男女视频| 岛国在线免费视频观看| 一个人观看的视频www高清免费观看| 久久性视频一级片| 精品一区二区三区视频在线 | 中文字幕人成人乱码亚洲影| 69av精品久久久久久| 狂野欧美激情性xxxx| 在线观看舔阴道视频| 精品电影一区二区在线| 国产精品三级大全| 可以在线观看的亚洲视频| 怎么达到女性高潮| 国产高清视频在线播放一区| 亚洲无线在线观看| 女人被狂操c到高潮| 91在线观看av| 日本五十路高清| 欧美性猛交黑人性爽| 国产精品美女特级片免费视频播放器| 一区二区三区国产精品乱码| 日韩成人在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| 少妇人妻精品综合一区二区 | 两性午夜刺激爽爽歪歪视频在线观看| eeuss影院久久| 免费大片18禁| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 久久这里只有精品中国| 亚洲aⅴ乱码一区二区在线播放| 夜夜夜夜夜久久久久| 久久久精品大字幕| 9191精品国产免费久久| 国产亚洲精品av在线| 国产精品1区2区在线观看.| 国产爱豆传媒在线观看| 国产精品香港三级国产av潘金莲| 国产欧美日韩精品亚洲av| 琪琪午夜伦伦电影理论片6080| 热99在线观看视频| 他把我摸到了高潮在线观看| 88av欧美| 乱人视频在线观看| 久久久久国内视频| 在线看三级毛片| 午夜久久久久精精品| 在线播放国产精品三级| 极品教师在线免费播放| 免费看十八禁软件| 久99久视频精品免费| 国产精品久久久久久久久免 | 香蕉丝袜av| 亚洲熟妇中文字幕五十中出| 少妇的逼好多水| 男女之事视频高清在线观看| 久久性视频一级片| 成年女人毛片免费观看观看9| 麻豆一二三区av精品| 午夜日韩欧美国产| 亚洲精品成人久久久久久| 69av精品久久久久久| 亚洲精品乱码久久久v下载方式 | 久9热在线精品视频| 欧美一级a爱片免费观看看| 精品一区二区三区人妻视频| 乱人视频在线观看| 99久久综合精品五月天人人| 全区人妻精品视频| 十八禁网站免费在线| 国产淫片久久久久久久久 | 99国产精品一区二区三区| 国产男靠女视频免费网站| 丰满的人妻完整版| 国产精品免费一区二区三区在线| 99精品欧美一区二区三区四区| 俄罗斯特黄特色一大片| 欧美成狂野欧美在线观看| 婷婷丁香在线五月| 亚洲国产欧美网| 亚洲精品在线观看二区| 香蕉丝袜av| 国产单亲对白刺激| 看黄色毛片网站| 亚洲成人免费电影在线观看| 欧美午夜高清在线| 51午夜福利影视在线观看| 欧美性感艳星| 桃红色精品国产亚洲av| 亚洲成人久久爱视频| 国模一区二区三区四区视频| 很黄的视频免费| 老司机福利观看| 波多野结衣巨乳人妻| 女同久久另类99精品国产91| 2021天堂中文幕一二区在线观| 国产精品,欧美在线| 91在线精品国自产拍蜜月 | 成人国产一区最新在线观看| 欧美成人性av电影在线观看| 午夜久久久久精精品| 国内精品美女久久久久久| 国产一区二区亚洲精品在线观看| 亚洲av不卡在线观看| 婷婷精品国产亚洲av| 97超视频在线观看视频| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 国产不卡一卡二| 在线观看午夜福利视频| netflix在线观看网站| 搡老岳熟女国产| 亚洲精品影视一区二区三区av| 欧美大码av| 国产高潮美女av| 九色成人免费人妻av| 日韩亚洲欧美综合| www.熟女人妻精品国产| 国产av麻豆久久久久久久| 国产毛片a区久久久久| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 18美女黄网站色大片免费观看| 久久久久久久亚洲中文字幕 | 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 网址你懂的国产日韩在线| 88av欧美| 国产v大片淫在线免费观看| 黄色成人免费大全| 国产一区二区激情短视频| 美女高潮的动态| 一个人看的www免费观看视频| 国产成年人精品一区二区| 热99re8久久精品国产| 又黄又粗又硬又大视频| 亚洲,欧美精品.| 51国产日韩欧美| 伊人久久精品亚洲午夜| 一二三四社区在线视频社区8| 老司机午夜十八禁免费视频| 九九在线视频观看精品| 中文字幕熟女人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品亚洲一区二区| 精品久久久久久久末码| netflix在线观看网站| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产 | 少妇的逼水好多| av国产免费在线观看| a在线观看视频网站| 亚洲av中文字字幕乱码综合| 久久这里只有精品中国| 国产精品 国内视频| 亚洲男人的天堂狠狠| 香蕉久久夜色| 91字幕亚洲| 国产欧美日韩一区二区三| 久久久久久久精品吃奶| 性欧美人与动物交配| 欧美日本视频| 国产野战对白在线观看| 99久久无色码亚洲精品果冻| 18+在线观看网站| 午夜影院日韩av| 国产精品女同一区二区软件 | 97碰自拍视频| 亚洲内射少妇av| 亚洲av熟女| 成年免费大片在线观看| 国产亚洲精品久久久久久毛片| 有码 亚洲区| 婷婷丁香在线五月| 一区二区三区高清视频在线| 免费搜索国产男女视频| 9191精品国产免费久久| 国产精品久久久久久亚洲av鲁大| 久久久国产精品麻豆| 嫩草影院入口| 欧美另类亚洲清纯唯美| 久久久久国产精品人妻aⅴ院| 在线视频色国产色| 亚洲av一区综合| 欧美中文综合在线视频| 国产男靠女视频免费网站| 午夜老司机福利剧场| 一区二区三区国产精品乱码| 国产主播在线观看一区二区| www.www免费av| 久久国产精品人妻蜜桃| 免费av不卡在线播放| 一a级毛片在线观看| 久久久久久久精品吃奶| 成熟少妇高潮喷水视频| 精品福利观看| 亚洲美女视频黄频| 51国产日韩欧美| 成人永久免费在线观看视频| 99国产极品粉嫩在线观看| 哪里可以看免费的av片| 在线观看日韩欧美| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看电影| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 老司机深夜福利视频在线观看| 男女床上黄色一级片免费看| 欧美极品一区二区三区四区| 久久欧美精品欧美久久欧美| 亚洲av免费高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一个人免费在线观看的高清视频| 天堂网av新在线| 一a级毛片在线观看| 亚洲成人久久爱视频| 黄色成人免费大全| 岛国在线免费视频观看| 香蕉久久夜色| 精品不卡国产一区二区三区| 亚洲欧美一区二区三区黑人| 99热精品在线国产| 99热只有精品国产| 久久伊人香网站| 嫩草影视91久久| 免费看十八禁软件| 老熟妇乱子伦视频在线观看| 超碰av人人做人人爽久久 | 一a级毛片在线观看| bbb黄色大片| 国产老妇女一区| 制服丝袜大香蕉在线| 怎么达到女性高潮| 亚洲av免费在线观看| 亚洲av不卡在线观看| 国产乱人视频| 最近在线观看免费完整版| 欧美日韩精品网址| 久久6这里有精品| 成人精品一区二区免费| 国产欧美日韩精品亚洲av| 日韩欧美在线二视频| 国产三级在线视频| 热99re8久久精品国产| 久久精品91蜜桃| 亚洲欧美日韩卡通动漫| 真人做人爱边吃奶动态| 波多野结衣高清作品| 国产精品 欧美亚洲| 2021天堂中文幕一二区在线观| 好男人在线观看高清免费视频| 成人国产综合亚洲| 亚洲欧美一区二区三区黑人| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| 九色国产91popny在线| 亚洲成人中文字幕在线播放| 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 青草久久国产| 国产老妇女一区| 岛国在线免费视频观看| 99国产精品一区二区三区| 九九热线精品视视频播放| 国产色爽女视频免费观看| 在线观看一区二区三区| 99久久综合精品五月天人人| 在线视频色国产色| 在线看三级毛片| 一进一出抽搐gif免费好疼| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| 97超级碰碰碰精品色视频在线观看| 国产午夜精品论理片| 亚洲美女黄片视频| 欧美黑人巨大hd| 国产熟女xx| 久久香蕉国产精品| 国产欧美日韩精品一区二区| 国产欧美日韩精品亚洲av| 精品人妻一区二区三区麻豆 | 99热6这里只有精品| 国产极品精品免费视频能看的| 亚洲精品影视一区二区三区av| 搞女人的毛片| 亚洲av一区综合| 在线国产一区二区在线| 丰满乱子伦码专区| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 天堂网av新在线| 91麻豆精品激情在线观看国产| 亚洲avbb在线观看| 3wmmmm亚洲av在线观看| 色av中文字幕| 91av网一区二区| 亚洲成a人片在线一区二区| 国产高清视频在线播放一区| 成人av在线播放网站| 成年女人看的毛片在线观看| 成年人黄色毛片网站| 国产精品亚洲一级av第二区| 高清毛片免费观看视频网站| 黄色日韩在线| 18美女黄网站色大片免费观看| 国产精品一区二区三区四区免费观看 | av视频在线观看入口| 香蕉久久夜色| 观看美女的网站| 亚洲无线观看免费| a级毛片a级免费在线| av专区在线播放| 国产欧美日韩精品亚洲av| xxx96com| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 天堂网av新在线| 88av欧美| 成人一区二区视频在线观看| 国产三级黄色录像| 看黄色毛片网站| 琪琪午夜伦伦电影理论片6080| 免费人成在线观看视频色| 亚洲国产欧洲综合997久久,| 窝窝影院91人妻| 长腿黑丝高跟| 麻豆一二三区av精品| 国产一区二区激情短视频| 免费人成在线观看视频色| 十八禁网站免费在线| 久久久精品大字幕| 亚洲精品粉嫩美女一区| 人人妻人人看人人澡| 国产精品日韩av在线免费观看| 窝窝影院91人妻| 床上黄色一级片| 啦啦啦观看免费观看视频高清| 久久中文看片网| 尤物成人国产欧美一区二区三区| 国产一区在线观看成人免费| bbb黄色大片| 变态另类成人亚洲欧美熟女| 久久精品综合一区二区三区| 亚洲在线观看片| 欧美黑人欧美精品刺激| 国产探花在线观看一区二区| 亚洲国产欧美人成| 在线观看舔阴道视频| 舔av片在线| 中文资源天堂在线| а√天堂www在线а√下载| 看免费av毛片| 欧美av亚洲av综合av国产av| 亚洲五月婷婷丁香| 久久精品亚洲精品国产色婷小说| 久久精品国产清高在天天线| 黄色片一级片一级黄色片| 黄色日韩在线| 国产精品爽爽va在线观看网站| 国产aⅴ精品一区二区三区波| 国产真人三级小视频在线观看| 欧美黄色淫秽网站| 在线观看一区二区三区| 成人鲁丝片一二三区免费| 日韩欧美 国产精品| 亚洲精华国产精华精| 国产精品亚洲美女久久久| 免费大片18禁| 久久久久国产精品人妻aⅴ院| 久久久久久久精品吃奶| 国产老妇女一区| 天天躁日日操中文字幕| 91九色精品人成在线观看| 美女黄网站色视频| 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三| 女人被狂操c到高潮| 熟妇人妻久久中文字幕3abv| 国产精品亚洲美女久久久| 99精品欧美一区二区三区四区| 99久久精品国产亚洲精品| 亚洲无线观看免费| 白带黄色成豆腐渣| 免费观看人在逋| 中文字幕av在线有码专区| 黄片小视频在线播放| 欧美中文综合在线视频| 波多野结衣高清无吗| 桃红色精品国产亚洲av| 熟妇人妻久久中文字幕3abv| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 国产真实乱freesex| 国产爱豆传媒在线观看| 可以在线观看的亚洲视频| 在线观看免费视频日本深夜| 亚洲av熟女| 香蕉久久夜色| 欧美日韩中文字幕国产精品一区二区三区| 中文在线观看免费www的网站| 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 国产乱人伦免费视频| 日韩欧美免费精品| 精品久久久久久久人妻蜜臀av| 在线免费观看的www视频| 国产精品久久电影中文字幕| 亚洲精品一区av在线观看| 亚洲精品456在线播放app | 欧美日韩综合久久久久久 | 国产成年人精品一区二区| 日日夜夜操网爽| 国产一区二区亚洲精品在线观看| 久久久久久久亚洲中文字幕 | 免费电影在线观看免费观看| 中出人妻视频一区二区| 久久欧美精品欧美久久欧美| 日韩亚洲欧美综合| 欧美区成人在线视频| 亚洲欧美日韩卡通动漫| 亚洲无线观看免费| 欧美一区二区国产精品久久精品| 99热这里只有是精品50| 久久精品夜夜夜夜夜久久蜜豆| 国产成人av教育| 亚洲中文字幕一区二区三区有码在线看| 中国美女看黄片| 一个人看视频在线观看www免费 | 可以在线观看毛片的网站| 在线免费观看的www视频| 精品久久久久久成人av| 国产真实伦视频高清在线观看 | 九九久久精品国产亚洲av麻豆| 久久久国产成人精品二区| 一进一出抽搐gif免费好疼| 亚洲中文字幕一区二区三区有码在线看| 欧美乱妇无乱码| 男人舔奶头视频| 91麻豆av在线| 国产精品免费一区二区三区在线| 精品久久久久久久人妻蜜臀av| 午夜亚洲福利在线播放| 欧美区成人在线视频| 精品熟女少妇八av免费久了| 色在线成人网| 精品久久久久久久久久久久久| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www| 亚洲国产精品成人综合色| 亚洲中文字幕日韩| 免费在线观看成人毛片| 在线观看一区二区三区| 国内精品久久久久精免费| 亚洲性夜色夜夜综合| 又黄又爽又免费观看的视频| 久久午夜亚洲精品久久| 午夜福利18| 亚洲不卡免费看| 免费高清视频大片| 一个人看视频在线观看www免费 | 久久欧美精品欧美久久欧美| 亚洲久久久久久中文字幕| 天堂动漫精品| 又黄又粗又硬又大视频| 男插女下体视频免费在线播放| 日韩人妻高清精品专区| 色综合欧美亚洲国产小说| 久久久久久久久久黄片| 国产午夜精品论理片| 中国美女看黄片| 亚洲专区中文字幕在线| 熟女少妇亚洲综合色aaa.| 亚洲av美国av| 亚洲无线观看免费| 精品久久久久久久末码| 伊人久久大香线蕉亚洲五| 精品日产1卡2卡| 亚洲18禁久久av| 欧美乱码精品一区二区三区| 最后的刺客免费高清国语| 成人国产一区最新在线观看| 法律面前人人平等表现在哪些方面| 中文字幕人妻丝袜一区二区| 又黄又粗又硬又大视频| 毛片女人毛片| 欧美av亚洲av综合av国产av| 久久人妻av系列| or卡值多少钱| 又紧又爽又黄一区二区| 国产中年淑女户外野战色| 久久这里只有精品中国| 看片在线看免费视频| 69人妻影院| 日本黄大片高清| 国产成人欧美在线观看| 日本精品一区二区三区蜜桃| 久久精品亚洲精品国产色婷小说| 亚洲五月婷婷丁香| 久久国产乱子伦精品免费另类| 国产aⅴ精品一区二区三区波| 嫩草影院精品99| 欧美最新免费一区二区三区 | 色av中文字幕| 九色成人免费人妻av| 国内精品一区二区在线观看| 午夜免费激情av| av在线蜜桃| 三级毛片av免费| 精品人妻1区二区| 久久久国产成人精品二区| 国产一区二区在线观看日韩 | 亚洲电影在线观看av| 最新在线观看一区二区三区| 亚洲av免费在线观看| 特级一级黄色大片| 成年人黄色毛片网站| 91av网一区二区| 午夜精品一区二区三区免费看| 51午夜福利影视在线观看| 三级国产精品欧美在线观看| 精品午夜福利视频在线观看一区| 中文字幕人成人乱码亚洲影| 欧洲精品卡2卡3卡4卡5卡区| 香蕉av资源在线| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 亚洲成av人片在线播放无| 嫩草影院精品99| 欧美+日韩+精品| 日韩av在线大香蕉| 黄色日韩在线| 午夜免费激情av| 国产高潮美女av| 久久久久性生活片| 亚洲成人中文字幕在线播放| 欧美最黄视频在线播放免费| 夜夜爽天天搞| 午夜免费成人在线视频| 制服人妻中文乱码| 精品免费久久久久久久清纯| 一区二区三区高清视频在线| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区在线臀色熟女| 一区二区三区激情视频| 成年女人毛片免费观看观看9| 99在线人妻在线中文字幕| 日韩精品中文字幕看吧| 亚洲欧美日韩高清专用| 一区福利在线观看| 亚洲国产欧美网| 美女cb高潮喷水在线观看| 91av网一区二区| 丁香六月欧美| 午夜福利在线观看吧| 午夜福利18| 免费观看精品视频网站| 亚洲黑人精品在线| 午夜免费成人在线视频| 亚洲在线观看片| 亚洲黑人精品在线| 婷婷精品国产亚洲av在线| 黑人欧美特级aaaaaa片| 欧美zozozo另类| 日韩精品青青久久久久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 俄罗斯特黄特色一大片| 国内精品美女久久久久久| 精品99又大又爽又粗少妇毛片 | www.999成人在线观看| 白带黄色成豆腐渣| xxxwww97欧美| 老汉色av国产亚洲站长工具| 婷婷精品国产亚洲av| 美女高潮的动态| 国产黄a三级三级三级人| 三级男女做爰猛烈吃奶摸视频| 国产精品亚洲av一区麻豆| 99在线人妻在线中文字幕| av天堂中文字幕网| www国产在线视频色| 国产精品日韩av在线免费观看| 国产亚洲精品久久久久久毛片| 国产v大片淫在线免费观看| 亚洲av日韩精品久久久久久密| 日韩中文字幕欧美一区二区| 欧美一级毛片孕妇| 露出奶头的视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲久久久久久中文字幕| 深爱激情五月婷婷| ponron亚洲|