• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling hydrodynamic processes in tidal stream energy extraction*

    2016-12-26 06:51:55JieLIN林杰BinliangLIN林斌良JianSUN孫健YalingCHEN陳婭玲
    水動力學研究與進展 B輯 2016年6期
    關(guān)鍵詞:孫健

    Jie LIN (林杰), Bin-liang LIN (林斌良), Jian SUN (孫健), Ya-ling CHEN (陳婭玲)

    Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China,

    E-mail:linjie13@mails.tsinghua.edu.cn

    Modelling hydrodynamic processes in tidal stream energy extraction*

    Jie LIN (林杰), Bin-liang LIN (林斌良), Jian SUN (孫健), Ya-ling CHEN (陳婭玲)

    Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China,

    E-mail:linjie13@mails.tsinghua.edu.cn

    Tidal stream energy is a type of marine renewable energy which is close to commercial-scale production. Tidal stream turbine arrays are considered as the one of the most promising exploitation methods. However, compared to the relatively mature technology of single turbine design and installation, the current knowledge on the hydrodynamic processes of tidal stream turbine arrays is still limited. Coastal models with simplified turbine representations based on the shallow water equation are among the most favorable methods for studying the tidal stream energy extraction processes in realistic sites. This paper presents a review of the progress and challenges in assessing the tidal stream energy.

    tidal stream energy, coastal flow field, shallow water equations, turbine parameterization

    Introduction

    Marine renewable-energies promise attractive, low environmental impact alternative supplements to the current energy system which highly depends on fossil and nuclear power plants[1]. Among the several forms of marine energy that are technically feasible to exploit, wave and tidal stream energy seems to be the two most promising choices, with the latter being more close to commercial-scale production because of its high predictability and relatively mature technology inherited from wind turbines. At present, a number of small or full scaled prototype tidal stream energy devices are undergoing sea tests, some of which have reached megawatt capacity and been connected to the grid[2]. Further updates of the equipment are underway, along with a number of projects on schedule[3], hopefully they will promote the tidal stream energy technology into the stage of small array exploitation in the next few years.

    Considering the diffuse nature of tidal stream energy, the tidal turbine array is so far the most promising method for large scale tidal stream energy extraction, but whose effect on the flow field cannot be ignored as the number of turbines becomes significant. However, compared to deploying a single turbine, the knowledge on deploying a turbine array is still very limited. Problems such as turbines interaction within an array and its induced alternations in the flow field are not clear, but they may have large influences on the effectiveness of the turbine arrays and their environmental impacts. Thus, researches on the hydrodynamic processes of turbine arrays should be strengthened. Numerical modelling is so far among the best techniques for turbine array investigations. Complex turbine wakes along with their turbulent structures can be reproduced using a full 3-D model[4]. However, because of their high computational cost, such models cannot be used for simulating flows in a real tidal field, which usually has a large spatial coverage and complex bathymetry[5]. Considering the fact that the best tidal stream exploitation sites often locate in shallow coastal areas and the turbine array performance is highly site depended, the shallow water equation (SWE) based coastal models with simplified turbine representations are often employed for large scale tidal stream energy extraction modelling[6]. The predictions could provide an insight into the future scenarios of tidal stream energy exploitations.

    1. Tidal stream energy conversion

    1.1 Tidal stream energy conversion devices

    To date, there are a number of tidal stream devices under development or being tested. The main designs of such devices are axial-flow turbines, cross-flow turbines, and oscillating devices[7-9]. Examples of the energy converters are presented below (see Fig.1, 2).

    Fig.1 Examples of axial-flow turbines and cross-flow turbines[3,11-14]

    An axial-flow turbine is a classical category of rotating machine which is similar to a modern wind turbine. The majority of current tidal stream converters are lift-based turbines with axial-flow design, whose blades are composed of two dimensional hydrofoil cross-sections[8]. Such turbines extract the kinetic energy from the moving water by the rotating blades, which are mounted on a horizontal hub paralleling to the incoming flow. The pressure differences across the blades result in a force component along the tangential direction of the rotor and thus provide a torque to the shaft. Examples of axial-flow turbines are SeaGen and Alstom turbines[2,10].

    A cross-flow turbine is another classical category of rotating machine with its axis being normal to the incoming flow (either horizontal or vertical). In this case, the turbine works rather like the reverse of a combine harvester[7]. In a cross-flow turbine the rotor movement also relies on the pressure difference across the blades normal to the freestream[8]and the resultant rotation of the cylinder. The Kepler Energy transverse horizontal axis water turbine[11]and Gorlov helical turbine (GHT)[13]are examples of cross-flow turbines.

    Two other important designs are oscillatinghydrofoil devices and vortex induced vibration devices. Among these two types of oscillating systems, oscillating-hydrofoil devices drive an arm to move with the lift force acting on a hydrofoil and converts the energy into electricity through a hydraulic system[7], see Fig.2. While vortex induced vibration devices make use of the alternating shedding vortices downstream of a bluff body exposed to the flow, which is a well-known flow induced phenomenon called Karman Street[8]. These vortices altering the pressure distribution on the body and causes periodic forces to act on a cylinder[15].

    Fig.2 Examples of oscillating tidal stream energy converters[15,16]

    Information about tidal stream energy extraction prototype devices that have completed or are undergoing sea tests are listed in Table 1. It can be seen from the table that axial-flow and cross-flow tidal stream turbines are dominant among the manufactured prototypes and still grow rapidly. Considering the effectiveness and capacity of the current designs, among the existing turbines the horizontal axial-flow turbines are closer to commercial-scale applications.

    1.2 Wake characteristics of tidal stream turbines

    A tidal stream turbine interacts with the surrounding environment and nearby turbines, with its wake characteristics being crucial to the effects[8]. A comprehensive understanding of the turbine wake is crucial for predicting the energy extraction capability of the turbines, as well as their impacts on the environment. With the introduction of turbine arrays, the wake issues should be important for the future development of tidal stream energy technology. Most published studies on turbine wakes are concerned with horizontal axial-flow turbines. These studies were conducted using either physical experiments or numerical simulations. Wake width, wake length, mean velocity, and turbulence intensity are the most concerned and frequently reported properties[8].

    Figure 3 shows an experiment carried out in an open channel flume at Tsinghua University, Beijing, which is 0.8 m wide and has a test section of 14.4 m long. Both the flow fields with and without a scaled turbine model were measured using an acoustic Doppler velocimeter (ADV). The rotor has a diameter of 0.3 m with the blades developed from the foil profile of NACA series[17].

    Fig.3 A sketch of the scaled turbine and gauge system at an open channel flume

    Fig.4 Flow fields downstream of horizontal axial-flow tidal stream turbines[17,18]

    The measured mean flow field downstream of the turbine is shown in Fig.4(b), including velocity vectors and velocity deficit distributions. It can be seen from the picture that the largest velocity deficit occurs within the rotor swept areas, just downstream of the turbine. As the distance increases, the wake expands gradually and the distribution of velocity deficit tends to be uniform. As the blades rotate, the flow field immediately behind the turbine blades has a very strong swirl component, which slows rapidly as progressing downstream form the rotor plane. This phenomena is consistent with the numerical modelling results published[18](as shown in Fig.4(a)) and the description in existing studies[7]. The uniform distribution of velocity deficit and fast decay of tangible velocity components implies the possibility of modelling the far wakes of turbines with momentum loss and proper turbulence enclosure models. This also agrees with the porous disk representation of turbines in physical experiments[19]. Although three dimensional acoustic Doppler velocimetry (ADV) measurements from Tedds et al.[20]show that disk models are not accurate at replicating the near wake, researchers accept the use mesh disks for investigating far wake effects[8].

    2. Coastal flow field implication

    Prospective tidal energy extraction sites are often located in coastal zones where the tidal flow is constrained by the coastal topography and the tidal stream energy density is heightened to an exploitable level[21-24]. However, the local tidal flow distribution in such a place can be rather different from a simple reciprocating flow or an elliptical tidal flow. Existence of tortuous coastlines, islands and uneven seabed can induces complex eddies, as shown in Fig.5[6,25]. According to previous flow field studies around islands and headlands, eddies with length scales of 1 km-10 km are commonly observed[26]. The eddy patterns are determined by the relative strength of the inertial, Coriolis and frictional forces, and local acceleration effects. Flow separation or even instable wakes may occur if the strength ratios among these forces are within certain ranges, which can notably disturb the flow field[27].

    Fig.5 Snapshots of complex eddy structures near a headland and an island[6]

    Disturbance due to transient flow structures such as eddies can result in the irregular movements of the local water, leading to fluctuations in hydrodynamic properties and energy density. It should be noted that the performance of tidal stream turbines highly depends on the characteristics of natural flows. The abovephenomenon may result in significant fluctuations of energy density and increasing yaw angles to the turbines, which add to the difficulties in extracting the tidal stream energy efficiently[28].

    According to the study of Lin et al.[6], several problems regarding the potentially complex flow fields in coastal areas should be taken into account when undertaking turbine design, site selection, equipment installation and plant operation. Although the magnitude of velocity fluctuation is usually small comparing to that of the flow speed, the induced fluctuation in energy density can be quite significant. Also, the eddy induced yaw angle is an important issue, as frequent changes in attack angles on the rotating blades may cause fluctuating loads on the rotor and potential fatigue damage[29]. It is relatively straightforward to determine the possible flow structures in sites of interest with the help of hydrodynamic modelling, while this issue has often been ignored at present studies. However, it is valuable to undertake such an analysis before a turbine prototype is manufactured.

    3. Tidal stream turbine parameterization

    Numerical simulation acts as an important tool during the investigation of tidal stream energy distribution, which is complementary to field survey and scaled physical experiments[22]. However, Difficulties exist due to the multiple-scale nature of the problem. The interactions among different scale effects present challenges in modelling the coupled hydrodynamic process, see Fig.6. A number of numerical models exist for tidal stream energy simulations, which can be generally classified into two categories, i.e., turbinescale models and field-scale models.

    Fig.6 Different scales in modelling the hydrodynamic processes in tidal stream energy extraction (Figure adapted from Ref.[30])

    The first category models are usually based on the large eddy simulation (LES) or full 3-D Reynoldsaveraged Navier-Stokes (RANS) momentum equations. Such models adopt very fine computational grids and capable of predicting the detailed velocity field around the turbine rotor, along with the eddies developed downstream in the wake[4,31]. However, because of the significant computational cost needed for high grid resolution model, full three dimensional computational fluid dynamic (CFD) models are only capable of modelling cases under regular bed topography and small computational domains, but cannot be used for simulating real flows with large spatial coverage and complex bathymetry[5].

    The second category models (shallow water equation (SWE) coastal models with simplified turbine representations) are so far the more favorable choice for large scale tidal stream energy modelling. Such models can be used either to provide detailed temporal and spatial distributions of tidal energy density in sites of interest or to investigate the interactions among generic turbine wakes. It is also possible to predict the energy capture of each turbine in a tidal stream power farm. Both 2-D and 3-D SWE models have been developed for simulating the filed-scale costal water movements. With which it is convenient to predict the tidal energy distribution in real coastal waters. The parameterization of turbines in SWE models can be done in several ways, such as enhancing the bed friction[23]and inducing momentum losses, sometimes accompanied with different types of turbulence enclosure models[5].

    Recent studies have been done by some researchers to strengthen the connection between the physiccal hydrodynamic processes and turbine parameterization. An examples of such attempts is to build the models with the momentum sink rate being calculated according to the amount of tidal energy extracted by turbines[32], more realistic relationships have also been proposed by specified the thrust coefficient based on experimental results[4]. Recently, a SWE model was established by Lin et al.[22]with the turbines parameterized base on blade element momentum (BEM) concept, which is capable of predicting the temporal varying tidal currents around turbine arrays by considering both the blade design and the operational strategy. The basic ideas of BEM method is shown in Fig.7, in which the rotor is divided into a series of annual elements. By solving an equation system comprised of force balance, momentum conservations and geometrical relationships, the variables necessary for the turbine representation in SWEs can be obtained. Furthermore, the hydrodynamic status of any section of the rotor can be determined, which make this method applicable to models of different resolutions.

    4. Large-scale tidal stream energy extraction

    Fig.7 The basic ideas of blade element momentum method[22]

    Considering the instinctive diffuse nature of tidal stream energy, the tidal turbine array is so far the most promising method for large scale tidal stream energy extraction, but its effect on the flow field cannot be ignored when the number of turbines is large. Research suggests that the extraction of tidal stream energy cause changes to the surrounding hydrodynamic environments, the potential disturbances may range from the immediate vicinity of the turbines to several kilometers downstream. The changes of hydrodynamic processes may further influence the transport of sediment, quality of water, suitability of foraging habitats, and even wave climates[8]. It has been found by some modelling studies that tidal stream energy extraction has a weak effect on the surrounding water level distribution, however, obvious variations in the flow speed and direction can be observed. The turbineinduced resistance effect may even alter the coastal flow structures by affecting the formation and evolution of eddies[6]. It is also considered that the extraction of tidal stream energy can enhance the turbulence intensity of the flow, however, the extent to which the effect is remains unclear. Another interesting issue about the effects of large scale tidal stream energy extraction is the tidal resonance characteristics (within an estuary, between the continental shelf and the coastline, or a combination of both)[30], which is the reason that some areas experience extremely large tides. Studies on the effects of large scale tidal stream turbines are still limited, thus more comprehensive works should be done in this field to further support the development of tidal stream energy technology.

    5. Conclusions

    In the current paper, the progresses and problems in modelling the hydrodynamic processes of tidal stream energy extraction are reviewed. The main conclusions are as bellow:

    (1) Although the tidal turbine array has been recognized as one of the most promising technologies for marine energy extraction, our knowledge is still limited on the process of tidal stream energy array extraction. The understanding of turbine interactions within an array and turbine arrays’ effects on the coastal hydrodynamic processes should be an important issue in future researches.

    (2) The structure of coastal flows have a significant effect on the performance of tidal stream turbines. It is valuable to perform hydrodynamic modelling studies to determine the possible flow structures before a prototype turbine is manufactured.

    (3) Due to the high grid resolution and significant computational cost of full three dimensional CFD models, such models are not suitable for simulating real flows of large spatial domain and complex bathymetry. The SWE based coastal models with simplified turbine representations are so far the more favorable choice for large scale tidal stream energy extraction modelling.

    (4) The effect of large scale tidal stream energy extraction cannot be ignored when the number of turbines is large. Changes in the hydrodynamic environment may further influence the eco-properties such as water quality. More comprehensive studies should be undertaken in this field in order to further support the development of tidal stream energy technology.

    Acknowledgement

    This work was supported by the State Key Laboratory of Hydroscience and Engineering, Tsinghua University (Grant No. 2015-KY-2).

    [1] Lago L. I., Ponta F. L., Chen L. Advances and trends in hydrokinetic turbine systems [J]. Energy for Sustainable Development, 2010, 14(4): 287-296.

    [2] Marine current turbines [EB/OL]. http://www.marineturbines.com/SeaGen-Products/ SeaGen-S, 2016-08-13.

    [3]The European Marine Energy Center LTD [EB/OL]. http://www.emec.org.uk, 2016-08-13.

    [4] Mason-Jones A., O’Doherty D. M., Morris C. E. et al. Non-dimensional scaling of tidal stream turbines [J]. Energy, 2012, 44(1): 820-829.

    [5] Roc T., Conley D. C., Greaves D. Methodology for tidal turbine representation in ocean circulation model [J]. Renewable Energy, 2013, 51: 448-464.

    [6] Lin J., Lin B., Sun J. et al. Numerical model simulation of island-headland induced eddies in a site for tidal current energy extraction [J]. Renewable Energy, 2017, 101: 204-213.

    [7] Borthwick A. G. L. Marine renewable energy seascape [J]. Engineering, 2016, 2(1): 69-78.

    [8] Laws N. D., Epps B. P. Hydrokinetic energy conversion: Technology, research, and outlook [J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1245-1259.

    [9] Zhang L., Shang J., Zhang Z. et al. Tidal current energy update 2015-Hydrodynamics [J]. Journal of Hydroele- ctric Engineering, 2016, 35(2): 1-15.

    [10]Alstom [EB/OL]. http://www.alstom.com/press-centre/2013/3/alstom-produced-electricity-with-its-1-mw-tidal-turbine-for-the-firsttime-in-real-conditions/, 2016-08-13.

    [11] Mcadam R. A., Houlsby G. T., Oldfield M. L. G. Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 1 [J]. Renewable Energy, 2013, 59(6): 105-114.

    [12] Wang J., Piechna J., Müller N. A novel design of composite material axial water turbine using CFD [J]. Journal of Hydrodynamics, 2012, 24(1): 11-16.

    [13] The Gorlov Helical Turbine [EB/OL]. http://www.gck-technology.com/Gck/pg2.html, 2016-08-13.

    [14] Zhao G., Yang R. S., Liu Y. et al. Hydrodynamic performance of a vertical-axis tidal-current turbine with different preset angles of attack [J]. Journal of Hydrodynamics, 2013, 25(2): 280-287.

    [15] Kim E. S., Bernitsas M. M. Performance prediction of horizontal hydrokinetic energy converter using multiplecylinder synergy in flow induced motion [J]. Applied Energy, 2016, 170: 92-100.

    [16] The Engineering Business Ltd. Singray tidal stream energy device-Phase 2 [R]. 2003.

    [17] Chen Y. Study on the effects of tidal turbine and array on the flow field [D]. Doctoral Thesis, Beijing, China: Tsinghua University, 2015(in Chinese).

    [18] Liu C., Hu C. Numerical prediction of the hydrodynamic performance of a horizontal tidal turbines [C]. Proceedings of the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John’s, Newfoundland, Canada, 2015.

    [19] Myers L. E., Bahaj A. S. An experimental investigation simulating flow effects in first generation marine current energy converter arrays [J]. Renewable Energy, 2012, 37(1): 28-36.

    [20] Tedds S. C., Owen I., Poole R. J. Near-wake characteristics of a model horizontal axis tidal stream turbine [J]. Renewable Energy, 2014, 63(1-2): 222-235.

    [21] Martin-Short R., Hill J., Kramer S. C. et al. Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma [J]. Renewable Energy, 2015, 76: 596-607.

    [22] Lin J., Sun J., Liu L. et al. Refined representation of turbines using a 3D SWE model for predicting distributions of velocity deficit and tidal energy density [J]. International Journal of Energy Research, 2015, 39(13).

    [23] Plew D. R., Stevens C. L. Numerical modelling of the effect of turbines on currents in a tidal channel-Tory Channel, New Zealand [J]. Renewable Energy, 2013, 57(1): 269-282.

    [24] Stevens C. L., Smith M. J., Grant B. et al. Tidal energy resource complexity in a large strait: The karori rip, cook strait [J]. Continental Shelf Research, 2012, 33(1): 100-109.

    [25] White L., Wolanski E. Flow separation and vertical motions in a tidal flow interacting with a shallow-water island [J]. Estuarine Coastal and Shelf Science, 2008, 77(3): 457-466.

    [26] Signell R. P., Rockwell G. W. Transient eddy formation around headlands [J]. Journal of Geophysical Research Atmospheres, 1991, 96(C2): 2561-2575.

    [27] Pattiaratchi C., James A., Collins M. Island wakes and headland eddies: A comparison between remotely sensed data and laboratory experiments [J]. Journal of Geophysical Research Oceans, 1987, 92(C1): 783-794.

    [28] Bahaj A. S., Molland A. F., Chaplin J. R. et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank [J]. Renewable Energy, 2007, 32(3): 407-426.

    [29] Burton T., Jenkins N., Sharpe D. et al. Wind energy handbook[M]. Second Edition, Chichester, UK: John Wiley and Sons, Ltd, 2011.

    [30] Adcock T. A., Draper S., Nishino T. Tidal power generation-A review of hydrodynamic modelling [J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, 2015, 8(7): 551-552.

    [31] Jo C. H., Jin Y. Y, Kang H. L. et al. Performance of horizontal axis tidal current turbine by blade configuration [J]. Renewable Energy, 2012, 42(1): 195-206.

    [32] Defne Z., Haas K. A., Fritz H. M. Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA [J]. Renewable Energy, 2011, 36(12): 3461-3471.

    (Received June 18, 2016, Revised October 10, 2016)

    * Project supported by the National High-Technology Research and Development Program of China (863 Program, Grant No. 2012AA052602).

    Biography:Jie LIN (1991-), Male, Ph. D. Candidate

    Bin-liang LIN,

    E-mail: linbl@mail.tsinghua.edu.cn

    猜你喜歡
    孫健
    孫 健 作品欣賞
    藝術(shù)品(2019年7期)2019-08-23 12:13:52
    漫畫天地
    清風(2019年1期)2019-04-20 11:42:44
    《化妝標準》《貼心小棉襖》
    三月三(2017年8期)2017-09-02 21:38:19
    量臀定碼
    三月三(2017年6期)2017-07-01 08:13:42
    量臀定碼
    三月三(2017年6期)2017-07-01 07:31:42
    心痛不如行動
    心理與健康(2017年3期)2017-05-30 10:48:04
    微信時代
    三月三(2016年12期)2016-12-27 18:09:28
    也有會吹的
    三月三(2016年12期)2016-12-27 18:09:10
    漫畫四幅
    Modification of Cumulus Convection and Planetary Boundary Layer Schemes in the GRAPES Global Model
    人体艺术视频欧美日本| 2018国产大陆天天弄谢| freevideosex欧美| 国产av在哪里看| 丰满人妻一区二区三区视频av| 亚洲欧美日韩卡通动漫| 久久人人爽人人片av| 大又大粗又爽又黄少妇毛片口| 国产黄片美女视频| 菩萨蛮人人尽说江南好唐韦庄| 日本av手机在线免费观看| 狂野欧美白嫩少妇大欣赏| 国产成人精品一,二区| 一个人看的www免费观看视频| 日韩欧美精品v在线| 亚洲精品国产成人久久av| 午夜精品在线福利| 联通29元200g的流量卡| 成年女人看的毛片在线观看| 丰满人妻一区二区三区视频av| 亚洲高清免费不卡视频| 国产精品伦人一区二区| 黄色配什么色好看| 3wmmmm亚洲av在线观看| 一夜夜www| 国产精品一二三区在线看| a级一级毛片免费在线观看| 亚洲成人av在线免费| 少妇丰满av| 国产黄片视频在线免费观看| 熟妇人妻不卡中文字幕| 三级经典国产精品| 亚洲成人中文字幕在线播放| 毛片一级片免费看久久久久| 精品久久久久久久久久久久久| 国产精品一区二区三区四区免费观看| 少妇被粗大猛烈的视频| 亚洲精品影视一区二区三区av| 中文字幕制服av| 特级一级黄色大片| 免费观看a级毛片全部| 欧美性感艳星| 欧美丝袜亚洲另类| 亚洲在久久综合| 国产黄频视频在线观看| 日本免费a在线| 天堂俺去俺来也www色官网 | 午夜日本视频在线| 欧美性感艳星| 九九爱精品视频在线观看| 少妇熟女aⅴ在线视频| 亚洲自拍偷在线| 免费大片18禁| 精品久久久久久成人av| 插逼视频在线观看| 国产精品人妻久久久影院| 一级毛片我不卡| 国产在视频线在精品| 黄色日韩在线| 国产欧美另类精品又又久久亚洲欧美| 毛片女人毛片| 秋霞伦理黄片| 男人舔奶头视频| 欧美另类一区| 女人被狂操c到高潮| 99re6热这里在线精品视频| 2021天堂中文幕一二区在线观| 日韩强制内射视频| 嘟嘟电影网在线观看| 亚洲,欧美,日韩| 国产精品福利在线免费观看| 国产高清国产精品国产三级 | 亚洲av免费高清在线观看| 观看免费一级毛片| 日韩av在线免费看完整版不卡| 一级a做视频免费观看| 国产人妻一区二区三区在| 啦啦啦韩国在线观看视频| 国产三级在线视频| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 91精品一卡2卡3卡4卡| 国产爱豆传媒在线观看| 免费大片18禁| 高清毛片免费看| 久久久久久久久久久免费av| 国产精品人妻久久久影院| 国产淫片久久久久久久久| 亚洲三级黄色毛片| 国产真实伦视频高清在线观看| 日韩成人av中文字幕在线观看| 婷婷色av中文字幕| 精品不卡国产一区二区三区| 亚洲内射少妇av| 国产精品一区www在线观看| 午夜视频国产福利| av国产免费在线观看| 久久6这里有精品| 九九爱精品视频在线观看| 最近中文字幕2019免费版| 日韩欧美三级三区| 午夜激情福利司机影院| 久久鲁丝午夜福利片| 男人舔女人下体高潮全视频| 国产亚洲av嫩草精品影院| 啦啦啦韩国在线观看视频| 午夜日本视频在线| 视频中文字幕在线观看| 精品人妻一区二区三区麻豆| 国内精品美女久久久久久| 2018国产大陆天天弄谢| 久久草成人影院| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 欧美日本视频| 精品国产三级普通话版| 日本一二三区视频观看| kizo精华| 日韩制服骚丝袜av| 亚洲人与动物交配视频| 少妇高潮的动态图| 高清日韩中文字幕在线| 亚洲精品第二区| 久久久久免费精品人妻一区二区| 亚洲精品日韩av片在线观看| 久久韩国三级中文字幕| a级一级毛片免费在线观看| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 国产高清三级在线| 欧美日韩在线观看h| 毛片一级片免费看久久久久| 成人一区二区视频在线观看| av国产免费在线观看| videossex国产| 99热这里只有是精品50| 中文欧美无线码| 欧美激情在线99| 高清在线视频一区二区三区| freevideosex欧美| 插阴视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 日日撸夜夜添| 干丝袜人妻中文字幕| h日本视频在线播放| 最近最新中文字幕免费大全7| 老司机影院成人| 少妇的逼水好多| 五月伊人婷婷丁香| 好男人在线观看高清免费视频| 中文字幕av在线有码专区| 国产精品无大码| 久久午夜福利片| 国产淫语在线视频| 免费播放大片免费观看视频在线观看| 成人av在线播放网站| 日韩成人伦理影院| 久久精品国产自在天天线| 免费观看的影片在线观看| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 亚洲人与动物交配视频| 看十八女毛片水多多多| 国产一区二区亚洲精品在线观看| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| 人体艺术视频欧美日本| 亚洲av电影在线观看一区二区三区 | 国产精品美女特级片免费视频播放器| 精品一区二区三卡| 亚洲av二区三区四区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内精品宾馆在线| 国产成人freesex在线| 美女黄网站色视频| 国产精品一二三区在线看| 国产黄片美女视频| 亚洲av电影在线观看一区二区三区 | 亚洲人成网站高清观看| 欧美日韩在线观看h| 午夜免费激情av| 亚洲人成网站在线观看播放| www.色视频.com| 在线免费十八禁| 亚洲在久久综合| 亚洲精品乱久久久久久| 中文字幕亚洲精品专区| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 中国美白少妇内射xxxbb| 国产伦精品一区二区三区视频9| 中文乱码字字幕精品一区二区三区 | 中文精品一卡2卡3卡4更新| 久久久久性生活片| 国产免费福利视频在线观看| 国精品久久久久久国模美| 精品一区二区三卡| 婷婷色综合大香蕉| 国产美女午夜福利| 熟女电影av网| 69人妻影院| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 成年女人在线观看亚洲视频 | 成人午夜高清在线视频| 人人妻人人看人人澡| 久久精品久久久久久噜噜老黄| 久久久久网色| 国产精品1区2区在线观看.| 一边亲一边摸免费视频| 国产精品蜜桃在线观看| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 亚洲在久久综合| 爱豆传媒免费全集在线观看| 欧美 日韩 精品 国产| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看| 真实男女啪啪啪动态图| 久久国产乱子免费精品| 嫩草影院入口| 国产又色又爽无遮挡免| 日韩欧美三级三区| 久久久久久久国产电影| 两个人的视频大全免费| 毛片一级片免费看久久久久| av在线亚洲专区| 一级毛片 在线播放| 国产黄色视频一区二区在线观看| 在线天堂最新版资源| av在线天堂中文字幕| 尤物成人国产欧美一区二区三区| 成人毛片60女人毛片免费| av又黄又爽大尺度在线免费看| 美女脱内裤让男人舔精品视频| 午夜福利高清视频| 国产亚洲5aaaaa淫片| 亚洲精品,欧美精品| 日韩三级伦理在线观看| 两个人视频免费观看高清| 精品一区二区三区视频在线| 久久草成人影院| 中文字幕久久专区| 久久鲁丝午夜福利片| 免费大片黄手机在线观看| 亚洲av二区三区四区| 日韩一本色道免费dvd| 看非洲黑人一级黄片| 黄片wwwwww| 免费观看a级毛片全部| 在线免费观看的www视频| 久久久国产一区二区| 久久久久九九精品影院| 美女高潮的动态| 欧美日本视频| 2022亚洲国产成人精品| 免费观看的影片在线观看| kizo精华| 亚洲内射少妇av| 午夜精品国产一区二区电影 | 成人亚洲欧美一区二区av| 亚洲av男天堂| 免费观看无遮挡的男女| 神马国产精品三级电影在线观看| 黄片wwwwww| 免费观看无遮挡的男女| 99久国产av精品国产电影| 18禁动态无遮挡网站| 成人高潮视频无遮挡免费网站| 日韩av在线免费看完整版不卡| 日韩精品有码人妻一区| 一区二区三区免费毛片| 久久久a久久爽久久v久久| 成人毛片60女人毛片免费| 2018国产大陆天天弄谢| 久久精品国产亚洲网站| 不卡视频在线观看欧美| av国产免费在线观看| 一夜夜www| 极品教师在线视频| 国产亚洲精品av在线| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久 | 国产午夜精品一二区理论片| 免费播放大片免费观看视频在线观看| 一级av片app| 黄色配什么色好看| 日日干狠狠操夜夜爽| 亚洲精品一二三| 一边亲一边摸免费视频| 中文字幕久久专区| 亚洲18禁久久av| 伊人久久国产一区二区| 久久这里只有精品中国| 欧美极品一区二区三区四区| 干丝袜人妻中文字幕| 一边亲一边摸免费视频| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 三级男女做爰猛烈吃奶摸视频| 国产精品无大码| 精品久久久精品久久久| 亚洲无线观看免费| av一本久久久久| 又黄又爽又刺激的免费视频.| or卡值多少钱| av专区在线播放| 日韩欧美三级三区| 观看免费一级毛片| 亚洲国产精品专区欧美| 狠狠精品人妻久久久久久综合| 亚洲精品久久久久久婷婷小说| 国产亚洲精品久久久com| 色综合色国产| 国产高清有码在线观看视频| 国产成人一区二区在线| 国产综合精华液| 人人妻人人看人人澡| 国产亚洲91精品色在线| 大又大粗又爽又黄少妇毛片口| 色综合亚洲欧美另类图片| 91精品国产九色| 久久99蜜桃精品久久| 亚洲精品成人av观看孕妇| 国产高潮美女av| 国产在视频线精品| 九九在线视频观看精品| 欧美日韩国产mv在线观看视频 | 日日干狠狠操夜夜爽| 国产伦理片在线播放av一区| 中国国产av一级| 亚洲丝袜综合中文字幕| 高清av免费在线| 亚洲av在线观看美女高潮| 五月伊人婷婷丁香| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 一级黄片播放器| 永久免费av网站大全| 99久国产av精品国产电影| 高清午夜精品一区二区三区| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| 欧美激情在线99| 亚洲欧美成人精品一区二区| av一本久久久久| 小蜜桃在线观看免费完整版高清| 国产成人福利小说| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 丝袜喷水一区| 午夜激情久久久久久久| 成人一区二区视频在线观看| 色哟哟·www| 成年女人在线观看亚洲视频 | 国产人妻一区二区三区在| 免费观看av网站的网址| 禁无遮挡网站| 欧美xxⅹ黑人| 亚洲精品日本国产第一区| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 欧美精品一区二区大全| 亚洲成人久久爱视频| 久久久久久九九精品二区国产| 久久久色成人| 成人毛片a级毛片在线播放| 99久国产av精品国产电影| 国产午夜福利久久久久久| 一本久久精品| 亚洲欧美精品自产自拍| 人妻少妇偷人精品九色| 2022亚洲国产成人精品| 男人狂女人下面高潮的视频| 男人舔女人下体高潮全视频| 直男gayav资源| 搡女人真爽免费视频火全软件| 高清毛片免费看| 久久久久精品久久久久真实原创| 亚洲精品456在线播放app| 乱人视频在线观看| 九九爱精品视频在线观看| 我的老师免费观看完整版| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 久99久视频精品免费| 国产成人一区二区在线| 国产不卡一卡二| 成年人午夜在线观看视频 | 神马国产精品三级电影在线观看| 免费观看性生交大片5| 亚洲在线自拍视频| 亚洲精品乱码久久久久久按摩| 亚洲av一区综合| 十八禁国产超污无遮挡网站| freevideosex欧美| 久99久视频精品免费| 午夜日本视频在线| 成年免费大片在线观看| 91av网一区二区| 精品久久久久久成人av| 色综合亚洲欧美另类图片| 国产亚洲av片在线观看秒播厂 | 直男gayav资源| 国产成人免费观看mmmm| 国产淫语在线视频| av一本久久久久| 中国美白少妇内射xxxbb| 国产精品女同一区二区软件| 白带黄色成豆腐渣| 成人无遮挡网站| 精品国产一区二区三区久久久樱花 | 一级爰片在线观看| 久久精品综合一区二区三区| 国产伦理片在线播放av一区| 国产免费视频播放在线视频 | 水蜜桃什么品种好| 亚洲乱码一区二区免费版| 如何舔出高潮| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美国产在线观看| 亚洲内射少妇av| 人人妻人人看人人澡| 国产综合精华液| 国产精品一区二区三区四区免费观看| 欧美xxxx黑人xx丫x性爽| 国产熟女欧美一区二区| 亚洲国产色片| 国产av在哪里看| 蜜桃亚洲精品一区二区三区| 精品一区二区免费观看| 欧美一级a爱片免费观看看| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久久久| 日韩成人av中文字幕在线观看| 人妻制服诱惑在线中文字幕| 97热精品久久久久久| av在线蜜桃| 日韩 亚洲 欧美在线| 中文欧美无线码| 熟妇人妻不卡中文字幕| 亚洲av福利一区| 欧美高清成人免费视频www| 嫩草影院新地址| 白带黄色成豆腐渣| 老司机影院成人| 日韩av在线免费看完整版不卡| 色视频www国产| 久久精品夜夜夜夜夜久久蜜豆| 国产色爽女视频免费观看| 国产黄a三级三级三级人| 国产精品不卡视频一区二区| 国精品久久久久久国模美| 精品国产露脸久久av麻豆 | 熟女电影av网| 三级毛片av免费| 国产午夜精品久久久久久一区二区三区| 久久久久久久国产电影| 亚洲欧美精品专区久久| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久精品电影| 男女那种视频在线观看| 男女国产视频网站| 国内精品一区二区在线观看| 日本欧美国产在线视频| 国产亚洲5aaaaa淫片| 亚洲久久久久久中文字幕| 国产一区亚洲一区在线观看| av在线亚洲专区| 久久韩国三级中文字幕| 人妻夜夜爽99麻豆av| 韩国高清视频一区二区三区| 日韩制服骚丝袜av| 欧美潮喷喷水| 国产av国产精品国产| 成年女人看的毛片在线观看| 三级国产精品片| 欧美bdsm另类| 免费观看精品视频网站| 国产精品.久久久| 一区二区三区乱码不卡18| 男女啪啪激烈高潮av片| 国产91av在线免费观看| xxx大片免费视频| 人人妻人人看人人澡| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 亚洲精品成人av观看孕妇| 日韩精品有码人妻一区| 成人欧美大片| 女人十人毛片免费观看3o分钟| 精品熟女少妇av免费看| 亚洲国产色片| 国产一区二区三区av在线| 日日啪夜夜爽| 国产高清国产精品国产三级 | 熟妇人妻久久中文字幕3abv| 成人无遮挡网站| 日韩av在线免费看完整版不卡| 青春草国产在线视频| 蜜臀久久99精品久久宅男| 久久精品国产亚洲网站| 三级国产精品片| 国产精品综合久久久久久久免费| 天天躁日日操中文字幕| 国产白丝娇喘喷水9色精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产日韩欧美精品在线观看| 久久精品综合一区二区三区| 秋霞伦理黄片| 欧美另类一区| 赤兔流量卡办理| 亚州av有码| av在线老鸭窝| 亚洲自偷自拍三级| 国产免费又黄又爽又色| 超碰av人人做人人爽久久| 亚洲成人av在线免费| 水蜜桃什么品种好| 亚洲欧美成人综合另类久久久| 国产色爽女视频免费观看| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 26uuu在线亚洲综合色| 亚洲精品第二区| 国产三级在线视频| 精品99又大又爽又粗少妇毛片| 七月丁香在线播放| 免费人成在线观看视频色| 久久综合国产亚洲精品| 国产精品一区二区三区四区免费观看| 一夜夜www| 不卡视频在线观看欧美| 日韩av在线大香蕉| 色综合色国产| 99九九线精品视频在线观看视频| 国产成人午夜福利电影在线观看| 99九九线精品视频在线观看视频| 亚洲国产高清在线一区二区三| 久久精品久久久久久久性| 日日撸夜夜添| 久久久久久久久久成人| 男人和女人高潮做爰伦理| 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 亚洲精品久久午夜乱码| 寂寞人妻少妇视频99o| 久久草成人影院| 欧美精品国产亚洲| 天天一区二区日本电影三级| 国产人妻一区二区三区在| 日本wwww免费看| 波多野结衣巨乳人妻| 成人无遮挡网站| 2021天堂中文幕一二区在线观| 日本一本二区三区精品| 国产高清有码在线观看视频| 久久久久久九九精品二区国产| 国产久久久一区二区三区| 丰满乱子伦码专区| 99视频精品全部免费 在线| 麻豆精品久久久久久蜜桃| 丰满人妻一区二区三区视频av| 亚洲无线观看免费| 老司机影院成人| 免费看a级黄色片| 国产一级毛片在线| 久久久久久九九精品二区国产| 婷婷色综合大香蕉| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 晚上一个人看的免费电影| 26uuu在线亚洲综合色| 久久精品国产鲁丝片午夜精品| 黑人高潮一二区| 久久久欧美国产精品| 亚洲av一区综合| 亚洲在久久综合| 日韩av在线大香蕉| 欧美最新免费一区二区三区| 国产亚洲av嫩草精品影院| 亚洲精品aⅴ在线观看| 建设人人有责人人尽责人人享有的 | 日日啪夜夜撸| 久久99热6这里只有精品| 汤姆久久久久久久影院中文字幕 | 伦理电影大哥的女人| 97热精品久久久久久| av在线蜜桃| 亚洲国产精品成人久久小说| 22中文网久久字幕| 少妇熟女欧美另类| 免费观看a级毛片全部| 精品99又大又爽又粗少妇毛片| or卡值多少钱| 国产一级毛片七仙女欲春2| 欧美高清性xxxxhd video| 淫秽高清视频在线观看| 肉色欧美久久久久久久蜜桃 | 少妇熟女aⅴ在线视频| 三级毛片av免费| 黑人高潮一二区| 一个人看的www免费观看视频| 欧美丝袜亚洲另类| 亚洲av男天堂| 国内精品一区二区在线观看| 一级黄片播放器|