• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bending modes and transition criteria for a flexible fiber in viscous flows*

    2016-12-26 06:51:53XiufengYANG楊秀峰MoubinLIU劉謀斌

    Xiufeng YANG (楊秀峰), Mou-bin LIU (劉謀斌)

    1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    2. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA, E-mail: xyang@iastate.edu

    3. BIC-EAST, College of Engineering, Peking University, Beijing 100871, China

    4. State Key Laboratory for Turbulence and Complex systems, Peking University, Beijing 100871, China

    Bending modes and transition criteria for a flexible fiber in viscous flows*

    Xiufeng YANG (楊秀峰)1,2, Mou-bin LIU (劉謀斌)3,4

    1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    2. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA, E-mail: xyang@iastate.edu

    3. BIC-EAST, College of Engineering, Peking University, Beijing 100871, China

    4. State Key Laboratory for Turbulence and Complex systems, Peking University, Beijing 100871, China

    The present paper follows our previous work in which a coupling approach of smoothed particle hydrodynamics (SPH) and element bending group (EBG) was developed for modeling the interaction of viscous incompressible flows with flexible fibers. It was also shown that a flexible object may experience drag reduction because of its reconfiguration due to fluid force on it. However, the reconfiguration of deformable bodies does not always result in drag reduction as different deformation patterns can result in different drag scales. In the present work, we studied the bending modes of a flexible fiber in viscous flows using the presented SPH and EBG coupling approach. The flexible fiber is immersed in a fluid and is tethered at its center point, while the two ends of the fiber are free to move. We showed that the fiber undergoes four different bending modes: stable U-shape, slight swing, violent flapping, and stable closure modes. We found there is a transition criterion for the flexible fiber from slight swing, suddenly to violent flapping. We defined a bending number to characterize the bending dynamics of the interaction of flexible fiber with viscous fluid and revealed that this bending number is relevant to the non-dimensional fiber length. We also identified the critical bending number from slight swing mode to violent flapping mode.

    smoothed particle hydrodynamics (SPH), fluid-structure interaction, flexible fiber, drag reduction

    Introduction

    Fluid-structure interaction is one of the key topics in fluid mechanics. The dynamics of a flexible object in a fluid is fundamentally important in engineering and sciences[1-3]. An object moving through a viscous fluid experiences a drag force due to its interaction with the fluid. Newton originally studied the drag force acting on an object with the fluid flows around it[4]. For a rigid object, the drag force is proportional to the square of the relative velocity of the object tothe fluid at large Reynolds numbers. However, for a flexible object that can bend in the flow direction, the drag may increase slower than the square of the velocity because of the reconfiguration of the object caused by fluid forces[5-7]. Drag reduction with flexible objects can be frequently observed in plant growth[5,8], animal movement[2,9], and even in vehicle design[10]. The reduction in drag on a flexible body is due to the reconfiguration of the body, as the reconfiguration makes the frontal area facing the flow become smaller and makes the shape of the body more streamlined with smaller drag coefficient. Therefore, how a flexible fiber changes its shape while moving in viscous fluids is critical for drag reduction.

    According to Yang et al.[11], the bending modes of the center point-tethered flexible fiber in a viscous flow can be identified as: the U-shaped mode, the flapping mode, and the closed mode. Many literature have been focused on the U-shaped mode and the corresponding drag scaling law, including experiments[6,7]and numerical modeling[12]. However, the dragscaling law for different bending modes may be different[11], but few of literature was focused on the bending modes of flexible fibers in viscous fluids and the transition between the bending modes.

    In our previous work[11], the classification of the bending modes of a flexible fiber in a fluid is a little bit oversimplified as the free end of the flexible fiber can lead to more detailed patterns. Therefore, in the present work, we focus on the deformation patterns of the flexible fiber as the drag reduction is closely related to the deformation patterns of the fiber. The present paper will extend the bending modes and find the corresponding transition criteria.

    A coupled method[11,13,14]of smoothed particle hydrodynamics (SPH)[15,16]and element bending group (EBG)[17]is used to model the interaction of viscous fluids with flexible fiber. SPH particles are used to model the viscous fluid flow governed by Navier-Stokes equations, and EBG particles are used to model the dynamic movement and deformation of flexible fibers. The interaction of the neighboring fluid (SPH) and fiber (EBG) particles renders the interaction of fluid and flexible fiber[11,14]. In numerical simulation, the flexible fiber is immersed in a fluid and is tethered at its center point, while the two ends of the fiber are free to move.

    1. Numerical method

    The interaction of flexible fiber and viscous flow is very complex. In order to model the process of flexible fiber interacting with fluid flow, the SPH method is applied to simulate fluid flow, while the EBG method is applied to simulate the flexible fiber.

    Fig.1 Sketch of the computational settings. The midpoint of the fiber is fixed in the midline of the channel, while the two ends of the fiber are free to move

    1.1 Problem set-up

    The computational setting for the modeling of fiber-fluid interaction is shown in Fig.1. A one-dimensional flexible fiber is immersed in a two-dimensional viscous fluid channel. The midpoint of the fiber is fixed in the midline of the channel, while the two ends of the fiber are free to move. The system is initially at rest, and then the fluid is driven by a body forceg . The upper and lower boundaries are solid walls. The left and right boundaries are flow inlet and outlet. They are treated as periodic boundary condition. A layer of porous media is deployed in the inlet area to remove wave energy and vortices from the exit area and makes the inlet velocity uniform.

    1.2 Methodology

    A brief introduction of the numerical method used in this paper is given in this section. For more details about the SPH-EBG method, please refer to [11,13,14].

    In SPH method, fluid is replaced by a set of particles, which possess individual material properties. The SPH particles move according to fluid governing conservation equations and they also act as the computational frame for field variable approximations. The SPH equations for viscous fluid can be written in the following form

    where sabis the strength of the force acting between particlesaandb .

    In order to calculate pressure, the following equation ofstate[18,19]is used

    where ρ0is a reference density,cis a numerical speed of sound.

    The flexible fiber is modeled by using the EBG method. An EBG is made of two adjacent line segments connecting three neighboring particles. The bending moments on the segments are transformed to pairs of forces acting on particles[11,13,14,17].

    According to Newton’s second law of motion, the equation for a flexible fiber particle can be written as follows

    whereT denotes the tension acting on a fiber particle from adjacent fiber particles,FBdenotes the bending force due to EBG bending moment,FDdenotes the fluid force.

    The tension is defined as

    whereEandA are the Young’s modulus and the cross-sectional area of the fiber, respectively.is the reference distance between fiber particlesaandb.

    The bending force is defined as

    where Madenotes the moment acting on particlea.

    In implementing the fluid-fiber interaction, the SPH particles and EBG particles are treated as neighboring particles which contribute in the SPH approximation. The contribution of EBG (fiber) particles to the approximation of SPH (fluid) particles leads to the force on fluid particles from fiber and the contribution of fluid particles to the approximation of fiber particles produces force on fiber particles from fluid. Therefore EBG particles can be regarded as a special type of SPH particles. On one hand, EBG particles interact with neighboring EBG particles with tension and bending forces. On the other hand, they have SPH approximation with contribution from neighboring fluid (ordinary) particles and also contribute in SPH approximation of neighboring fluid particles.

    2. Bending modes

    The shape of the flexible fiber changes during its interaction with surrounding fluid and the reconfiguration of the fiber is closely related to the flow velocity. Figure 2 shows four typical bending modes of a flexible fiber with gradual increase in the flow velocity: (a) the U-shaped mode, (b) the swing mode, (c) the flapping mode, and (d) the closed mode. In the case shown in Fig.2, the length(L)and bending rigidity (EI)of the fiber are 0.05 m and 0.001 Jm, respectively. The density(ρ)and kinetic viscosity(μ) of the fluid are 1 000 kg/m3and 0.004 Ns/m2, respectively.

    Fig.2 Four typical bending modes of a flexible fiber and the flow structures behind the fiber at different flow velocities. The color shows the angular velocity of SPH particles

    It is shown in Fig.2 that when the flow initiates, the fiber begins to bend and forms a streamlined U shape-like the letter “U” (Fig.2(a)). The U-shaped mode maintains when the flow velocity is less than about 1 m/s. When the flow velocity increases to around 1 m/s-2.5 m/s, the fiber bends more, also basically in a U-shape, but its two free ends begin to oscillate slightly due to vortex shedding (Fig.2(b)). With further increase in the flow velocity to 2.5 m/s-4 m/s, the fiber suddenly flaps violently with large amplitude (Fig.2(c)). The flapping of the fiber is also caused by vortex shedding with much stronger influence. This is similar to a flag flapping in wind. At last, both free ends of the fiber overlap and form a closed shape, like a tadpole (Fig.2(d)).

    Figure 3 shows the y-coordinates of the two free ends of the fiber (y1and y2), the profile lengthsin the flow direction (Lx)and the direction perpendicular to the flow(Ly), as functions of flow velocity. The length and bending rigidity of the fiber are 0.05 m and0.001 Jm,respectively.The density and kinematic v iscosity of the fluid are 1 000 kg/m3and 0.004 Ns/m2respectively. It is shown in Fig.3 that transitions occur from slight swing to violent flapping at flow velocity around 2.5 m/s and from violent flapping to closure at flow velocity around 4 m/s.

    Fig.3 The y -coordinates (y1and y2) of the free ends and the profile lengths of the fiber inx direction (Lx)and y direction (Ly)varying with flow velocity. The inset shows the transition from slight swing to large flapping

    Both the swing mode and the flapping mode are caused by vortex shedding. However, the amplitude of the flapping mode is much larger than that of the swing mode, as shown in Fig.3. Another difference between these two modes is that at the swing mode as shown in Fig.2(b), the whole fiber swings around the fixed point of the fiber as a simple pendulum, while at the flapping mode as shown in Fig.2(c), the two free ends of the fiber flap around different points, somewhere between the fixed point and the free end of the fiber.

    In the flapping mode, the fiber moves violently. A very likely reason is that resonance occurs, that is, the frequency of the vortex shedding is very close to the flapping frequency of the fiber. The fluid drag force on the fiber also increases quickly as the flapping amplitude of the fiber increases. Therefore, the amplitude does not continue to increase when it reaches a certain level.

    3. Transition criteria

    It is clearly shown in Fig.3 that there are two transition points between the bending modes. The first point is the transition from the swing mode to the flapping mode (around the velocity of 2.5 m/s) and the second is the transition from the flapping mode to the closed mode (around the velocity of 4 m/s).

    It is reasonable that the bending mode of the flexible fiber is up to its ability to bend and the fluid force acting on it. Hence a non-dimensional number is defined as

    whereρandU are the density and average velocity of the viscous flow, respectively,δ,LandEI are the thickness, length and bending rigidity of the fiber, respectively.ηwas referred to as the nondimensional flow speed[6]. However, as the fluid drag acting on a fiber is proportional to ρδLU2and the bending force of the fiber is proportional toEI/ L2, η2is actually the ratio of the drag force to the bending force. Thereforeηis herein defined as Bending number, which can be used to characterize the bending dynamics of a flexible fiber interacting with viscous fluids. Like the Reynolds number in characterizing viscous flows, this bending number can be used to judge the similarity of systems with interacting viscous fluid and fibers. In another words, for two systems of interacting viscous fluid and fibers, if the bending number is the same, the corresponding flow patterns should be the same.

    It is also straightforward to define another parameter, non-dimensional length, as

    which is the ratio of the profile length in flow direction (Lx)to the whole length of the fiber(L). It also reflects the bending degree of the flexible fiber. If assuming the fiber to be incompressible and inextensible,

    λis expected to be equal to 0 when the fiber do not bend at all and approaches 0.5 when the fiber is totally folded about its center point.

    By using these two non-dimensional numbers, it is feasible to further investigate the bending dynamics and the mode transition for a system with interacting viscous fluid and fibers at different scenarios. Figure 4 shows the critical parametersλ?andη?at which the flexible fiber flaps with large amplitudes as a function of fiber length, bending rigidity, and fluid density. The fluid densities of Cases (a)-(d) are all 1 000 kg/m3. The fiber bending rigidities of Cases (a), (b), (e) and (f) are all 0.001 Jm. The fiber lengths of Cases (c)-(f) are all 0.04 m. It is shown in Fig.4 that when the violent flapping state of flexible fibers appears,λandηare about 0.44 and 28, respectively.Therefore the transition criterion for the flexible fiber from the swing mode to the flapping mode isλ?≈0.44 or η?≈28.

    Fig.4 The critical bending numbers(η?)and non-dimensional profile fiber lengths(λ?)for the transition from slight oscillation to large flapping versus fiber lengths(L), fiber bending rigidities(EI)and fluid densities(ρ)

    As bothλandηcan characterize the bending degree or bending dynamics of a fiber in a fluid-fiber flow system, it is possible that there exists some kind of link between them. A simple analysis shows that λincreases asηincreases: the increase ofηmeans that the fluid drag force on the fiber increases when the bending force of the fiber keeps unchanged, thus the fiber bends more whenηincreases, whileλincreases as the fiber bends more. Further studies reveal thatλandηare inherently related. By fitting the data from numerical simulation, we can obtain the following empirical formula for a flexible fiber in the U-shape state

    wherea andβare parameters, and C≤ max(λ)= 0.5. If the fiber is folded in half,λis equal to 0.5. However, because the bending rigidity of the fiber is larger than zero, the flow cannot fold it totally in half. There is always a circle near the fixed center of the fiber, as shown in Fig.2(d). Therefore,λis less than 0.5 and Cis also less than 0.5. For most of the cases in our simulations, the value ofC is about 0.46.

    Fig.5 Comparison of fitted function and numerical data: nondimensional profile fiber length(λ)versus non-dimensional flow velocity(η). The solid lines are numerical data, and the dash lines are fitted curves

    The comparison of fitted function and numerical data of four different cases are shown in Fig.5. For the case in Fig.5(a), the fiber length is 0.03 m, the fiber bending rigidity is 0.001 Jm, and the fluid density is 1 000 kg/m3. For the case in Fig.5(b), the fiber length is 0.04 m, the fiber bending rigidity is 0.0001 Jm, and the fluid density is 1 000 kg/m3. For the case in Fig.5(c), the fiber length is 0.05 m, the fiber bending rigidity is 0.001 Jm, and the fluid density is1 000 kg/m3. For the case in Fig.5(d), the fiber length is 0.06 m, the fiber bending rig3idity is 0.001 Jm, and the fluid density is 3 000 kg/m. Figure 5 shows that Eq.(10) agrees with numerical data very well. If the value ofλapproachesC, the fiber will flap violently and later form a closed shape.

    4. Conclusion

    In this work, the bending dynamics of flexible fibers are investigated numerically by using a particlebased model, in which SPH and EBG is coupled for modeling the interaction of viscous fluids with flexible fibers. During the fiber-fluid interaction process, the fiber exhibits four different bending modes, namely, the stable U-shape mode, the slight swing mode, the violent flapping mode, and the final closed mode. The bending dynamics of a flexible fiber can be characterized using a bending number, which reflects the ratio of the drag force to the bending force. The transition criterion for the flexible fiber from the swing mode to the flapping mode is λ≈0.44or η≈28. It revealed that the bending number is inherently related to the non-dimensional fiber length, through an empirical formula.

    [1] Shelley M. J., Zhang J. Flapping and bending bodies interacting with fluid flows [J]. Annual Review of Fluid Mechanics, 2011, 43(1): 449-465.

    [2] Liao J. C., Beal D. N., Lauder G. V. et al. Fish exploiting vortices decrease muscle activity [J]. Science, 2003, 302(5650): 1566-1569.

    [3] Jung S., Mareck K., Shelley M. et al. Dynamics of a deformable body in a fast flowing soap film [J]. Physical Review Letters, 2006, 97(13): 134502.

    [4] Von Karman T. Aerodynamics: Selected topics in the light of their historical development [M]. New York, USA: Courier Dover Publications, 2004.

    [5] Vogel S. Drag and reconfiguration of broad leaves in high winds [J]. Journal of Experimental Botany, 1989, 40(8): 941-948.

    [6] Alben S., Shelley M., Zhang J. Drag reduction through self-similar bending of a flexible body [J]. Nature, 2002, 420(6915): 479-481.

    [7] Gossellin F., De Langre E., Machado-Almeida B. A. Drag reduction of flexible plates by reconfiguration [J]. Journal of Fluid Mechanics, 2010, 650(1): 319-341.

    [8] Albayrak I., NIKORA V., Miler O. et al. Flow-plant interactions at leaf, stem and shoot scales: drag, turbulence, and biomechanics [J]. Aquatic Sciences, 2014, 76(2): 269-294.

    [9] Ristroph L., Zhang J. Anomalous hydrodynamic drafting of interacting flapping flags [J]. Physical Review Letters, 2008, 101(19): 194502.

    [10] Stanford B., Ifju P., Albertani R. et al. Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring [J]. Progress in Aerospace Sciences, 2008, 44(4): 258-294.

    [11] Yang X., Liu M., Peng S. Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids [J]. Physical Review E, 2014, 90(6): 063011.

    [12] Alben S., Shelley M., Zhang J. How flexibility induces streamlining in a two-dimensional flow [J]. Physics of Fluids, 2004, 16(5): 1694-1713.

    [13] Hosseini S. M., Feng J. J. A particle-based model for the transport of erythrocytes in capillaries [J]. Chemical Engineering Science, 2009, 64(22): 4488-4497.

    [14] Yang X., Liu M., Peng S. et al. Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH-EBG method [J]. Coastal Engineering, 2016, 108(1): 56-64.

    [15] Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389.

    [16] Liu M. B., Liu G. R. Smoothed particle hydrodynamics (SPH): An overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76.

    [17] Zhou D., Wagoner R. Development and application of sheet-forming simulation [J]. Journal of Materials Processing Technology, 1995, 50(1-4): 1-16.

    [18] Morris J. P., Fox P. J., Zhu Y. Modeling low Reynolds number incompressible flows using SPH [J]. Journal of Computational Physics, 1997, 136(1): 214-226.

    [19] Liu M. B., LI S. M. On the modeling of viscous incompressible flows with smoothed particle hydrodynamics [J]. Journal of Hydrodynamics, 2016, 28(5): 731-745.

    (Received June 20, 2016, Revised September 28, 2016)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11302237, 11172306 and U1530110).

    Biography:Xiufeng YANG (1985-), Male, Ph. D.,

    Assistant Professor

    Mou-bin LIU,

    E-mail: mbliu@pku.edu.cn

    欧美av亚洲av综合av国产av| 18禁黄网站禁片午夜丰满| 午夜激情久久久久久久| 亚洲精品国产av成人精品| 免费在线观看影片大全网站 | 亚洲欧美成人综合另类久久久| 国产片内射在线| 精品少妇内射三级| 丝袜在线中文字幕| 亚洲久久久国产精品| 男女边摸边吃奶| 国产97色在线日韩免费| 国产免费一区二区三区四区乱码| 久久久久久久国产电影| 熟女av电影| 国产成人精品无人区| 国产一区二区在线观看av| 50天的宝宝边吃奶边哭怎么回事| 亚洲三区欧美一区| 尾随美女入室| 欧美精品人与动牲交sv欧美| 91麻豆av在线| 亚洲国产精品成人久久小说| 国产在线观看jvid| 男女免费视频国产| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 国产亚洲一区二区精品| 国产欧美日韩一区二区三 | 国产成人影院久久av| 久久久久国产一级毛片高清牌| 99九九在线精品视频| 三上悠亚av全集在线观看| 人人妻人人爽人人添夜夜欢视频| 国产精品成人在线| 国产成人av激情在线播放| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲| 夫妻性生交免费视频一级片| 女警被强在线播放| 亚洲国产欧美网| 久久久久久久大尺度免费视频| 亚洲第一青青草原| 午夜av观看不卡| 成人影院久久| 久久精品久久久久久久性| 午夜福利一区二区在线看| 久久精品国产亚洲av高清一级| 成人国产av品久久久| 亚洲av成人精品一二三区| 久久99热这里只频精品6学生| 国产视频一区二区在线看| 国产真人三级小视频在线观看| 丝袜美腿诱惑在线| 国产成人一区二区三区免费视频网站 | 五月天丁香电影| 国产亚洲av片在线观看秒播厂| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 黄色怎么调成土黄色| 建设人人有责人人尽责人人享有的| 欧美黑人精品巨大| 国产黄色视频一区二区在线观看| 日韩视频在线欧美| 日韩av不卡免费在线播放| 美女扒开内裤让男人捅视频| 侵犯人妻中文字幕一二三四区| 男人添女人高潮全过程视频| 大话2 男鬼变身卡| 国产精品三级大全| 国产视频一区二区在线看| 久久毛片免费看一区二区三区| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 无限看片的www在线观看| 精品亚洲乱码少妇综合久久| 亚洲国产精品一区二区三区在线| 成人三级做爰电影| 少妇 在线观看| 午夜免费观看性视频| 国产精品久久久久久人妻精品电影 | 天天添夜夜摸| 中文欧美无线码| 久久影院123| 亚洲五月色婷婷综合| 久久久精品免费免费高清| 欧美在线一区亚洲| av天堂久久9| 国产精品国产三级国产专区5o| 1024香蕉在线观看| 亚洲色图 男人天堂 中文字幕| 激情五月婷婷亚洲| 韩国高清视频一区二区三区| 国产精品九九99| 久久这里只有精品19| 亚洲欧美一区二区三区久久| 久久精品熟女亚洲av麻豆精品| 高清黄色对白视频在线免费看| av又黄又爽大尺度在线免费看| www日本在线高清视频| 天天影视国产精品| 久久99精品国语久久久| 啦啦啦视频在线资源免费观看| 999久久久国产精品视频| 亚洲中文av在线| 国产成人av教育| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 人成视频在线观看免费观看| 久久热在线av| 嫩草影视91久久| videosex国产| 日韩中文字幕视频在线看片| 国产黄色视频一区二区在线观看| 欧美日本中文国产一区发布| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av片天天在线观看| 精品视频人人做人人爽| 嫁个100分男人电影在线观看 | 美女脱内裤让男人舔精品视频| 女人精品久久久久毛片| 国产精品久久久久久精品电影小说| 亚洲精品久久成人aⅴ小说| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| 一级黄片播放器| 80岁老熟妇乱子伦牲交| 又大又爽又粗| 久久精品久久精品一区二区三区| av电影中文网址| 十八禁高潮呻吟视频| 香蕉丝袜av| 国产男人的电影天堂91| 狂野欧美激情性bbbbbb| 国产成人一区二区在线| 老司机午夜十八禁免费视频| 2021少妇久久久久久久久久久| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 男男h啪啪无遮挡| 精品亚洲成a人片在线观看| 满18在线观看网站| 制服人妻中文乱码| av在线app专区| 男女之事视频高清在线观看 | 精品亚洲成a人片在线观看| 高清黄色对白视频在线免费看| 男女国产视频网站| 亚洲国产精品国产精品| 大型av网站在线播放| 免费av中文字幕在线| 精品国产超薄肉色丝袜足j| www.999成人在线观看| 国产麻豆69| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 操出白浆在线播放| 高清欧美精品videossex| 日韩欧美一区视频在线观看| 午夜老司机福利片| 一级黄片播放器| 19禁男女啪啪无遮挡网站| 亚洲av男天堂| 在线观看www视频免费| 午夜福利免费观看在线| 18禁裸乳无遮挡动漫免费视频| 手机成人av网站| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 手机成人av网站| 亚洲成av片中文字幕在线观看| 亚洲av成人精品一二三区| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 久9热在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 美女午夜性视频免费| 丝袜人妻中文字幕| av国产久精品久网站免费入址| 美女午夜性视频免费| 久久精品亚洲av国产电影网| 2021少妇久久久久久久久久久| 1024香蕉在线观看| 午夜老司机福利片| 国产精品一二三区在线看| 女人久久www免费人成看片| 国产精品人妻久久久影院| 国产精品一二三区在线看| 亚洲人成77777在线视频| 亚洲国产中文字幕在线视频| 精品亚洲乱码少妇综合久久| 超色免费av| 国产免费一区二区三区四区乱码| 国产伦理片在线播放av一区| 精品欧美一区二区三区在线| 久久久久久久国产电影| 视频在线观看一区二区三区| 91九色精品人成在线观看| 精品人妻在线不人妻| 后天国语完整版免费观看| 丝袜美足系列| 欧美黄色片欧美黄色片| 大码成人一级视频| 韩国精品一区二区三区| 天天操日日干夜夜撸| 18禁黄网站禁片午夜丰满| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 中文精品一卡2卡3卡4更新| 一区二区三区激情视频| 大陆偷拍与自拍| 久久ye,这里只有精品| 亚洲专区中文字幕在线| 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频| 在线观看免费视频网站a站| 男人操女人黄网站| 亚洲一区中文字幕在线| 19禁男女啪啪无遮挡网站| 大片电影免费在线观看免费| 亚洲国产欧美日韩在线播放| 亚洲av国产av综合av卡| 99九九在线精品视频| 亚洲视频免费观看视频| 少妇人妻久久综合中文| 狂野欧美激情性bbbbbb| 精品国产一区二区三区久久久樱花| 一级毛片电影观看| 午夜福利视频在线观看免费| 国产国语露脸激情在线看| 亚洲一区中文字幕在线| 国产精品av久久久久免费| 精品一区在线观看国产| 波多野结衣av一区二区av| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 久久亚洲国产成人精品v| 桃花免费在线播放| 三上悠亚av全集在线观看| 久久久久久久久久久久大奶| 国产精品久久久久成人av| 久久精品国产亚洲av涩爱| 亚洲国产欧美在线一区| 亚洲国产精品国产精品| 中文字幕人妻熟女乱码| 亚洲中文字幕日韩| 久久久亚洲精品成人影院| 99久久99久久久精品蜜桃| 考比视频在线观看| 成人国产av品久久久| 中文字幕高清在线视频| 成人午夜精彩视频在线观看| 18禁裸乳无遮挡动漫免费视频| 999精品在线视频| 国产成人精品久久久久久| 亚洲欧美日韩高清在线视频 | 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 尾随美女入室| 男女高潮啪啪啪动态图| 欧美av亚洲av综合av国产av| 日本vs欧美在线观看视频| 99热全是精品| 亚洲国产欧美一区二区综合| www日本在线高清视频| 美女高潮到喷水免费观看| 国产亚洲午夜精品一区二区久久| 欧美av亚洲av综合av国产av| 最黄视频免费看| 777久久人妻少妇嫩草av网站| 精品久久久久久久毛片微露脸 | av国产久精品久网站免费入址| 免费在线观看完整版高清| 中文精品一卡2卡3卡4更新| 91字幕亚洲| 十八禁人妻一区二区| 欧美 亚洲 国产 日韩一| 岛国毛片在线播放| 久久久精品94久久精品| 欧美在线黄色| 桃花免费在线播放| 久久精品国产a三级三级三级| 日韩av在线免费看完整版不卡| 精品国产国语对白av| 高清视频免费观看一区二区| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看| 大片电影免费在线观看免费| 欧美av亚洲av综合av国产av| 久9热在线精品视频| 王馨瑶露胸无遮挡在线观看| 精品国产超薄肉色丝袜足j| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看 | 欧美 日韩 精品 国产| 91精品三级在线观看| 国产精品偷伦视频观看了| 国产精品欧美亚洲77777| 啦啦啦视频在线资源免费观看| 老汉色∧v一级毛片| 国产精品二区激情视频| 亚洲天堂av无毛| 脱女人内裤的视频| 老司机靠b影院| 韩国精品一区二区三区| 人妻 亚洲 视频| 国产一区二区激情短视频 | 美女高潮到喷水免费观看| 久9热在线精品视频| 国产av国产精品国产| 99国产精品一区二区三区| 丝瓜视频免费看黄片| 男女床上黄色一级片免费看| 大香蕉久久成人网| www.精华液| 9热在线视频观看99| a级片在线免费高清观看视频| 十八禁人妻一区二区| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| 欧美日韩成人在线一区二区| 中文字幕最新亚洲高清| 妹子高潮喷水视频| 国产精品.久久久| 日韩中文字幕视频在线看片| 国产黄色视频一区二区在线观看| 亚洲成人国产一区在线观看 | 美女视频免费永久观看网站| 免费高清在线观看日韩| 国产97色在线日韩免费| 97人妻天天添夜夜摸| 在线天堂中文资源库| 日韩一卡2卡3卡4卡2021年| 老司机影院成人| 亚洲视频免费观看视频| 黄色片一级片一级黄色片| 免费在线观看视频国产中文字幕亚洲 | 成年人免费黄色播放视频| 亚洲国产精品一区三区| 国产一卡二卡三卡精品| 9色porny在线观看| 国产成人一区二区在线| 午夜免费鲁丝| 九草在线视频观看| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三| 久久青草综合色| 99re6热这里在线精品视频| 两性夫妻黄色片| 国产精品国产三级国产专区5o| 日韩av在线免费看完整版不卡| 午夜激情av网站| 国产伦人伦偷精品视频| 欧美国产精品va在线观看不卡| 国产有黄有色有爽视频| 日本欧美国产在线视频| 欧美xxⅹ黑人| 成年人午夜在线观看视频| 少妇裸体淫交视频免费看高清 | a 毛片基地| 满18在线观看网站| 欧美日韩精品网址| 亚洲一区二区三区欧美精品| 亚洲欧美激情在线| 国产精品偷伦视频观看了| 午夜两性在线视频| 日本av免费视频播放| 激情视频va一区二区三区| 超色免费av| 亚洲熟女毛片儿| 婷婷色麻豆天堂久久| 亚洲五月色婷婷综合| 亚洲av国产av综合av卡| 啦啦啦啦在线视频资源| 中文字幕人妻熟女乱码| 久久精品国产a三级三级三级| 精品国产一区二区久久| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 久久久久久久大尺度免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 亚洲av成人精品一二三区| 国产深夜福利视频在线观看| 国产97色在线日韩免费| 精品一区二区三卡| 欧美国产精品一级二级三级| 国产伦理片在线播放av一区| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 丰满少妇做爰视频| 在线看a的网站| 免费日韩欧美在线观看| 一级,二级,三级黄色视频| 777久久人妻少妇嫩草av网站| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| 99香蕉大伊视频| 成年av动漫网址| 精品一区二区三区四区五区乱码 | 午夜av观看不卡| 午夜视频精品福利| 亚洲欧美成人综合另类久久久| 亚洲av成人不卡在线观看播放网 | 91九色精品人成在线观看| 亚洲九九香蕉| 在线 av 中文字幕| 亚洲精品自拍成人| 国产一级毛片在线| 少妇人妻久久综合中文| 久久国产精品男人的天堂亚洲| 国产精品一区二区免费欧美 | 亚洲欧美一区二区三区黑人| 国产老妇伦熟女老妇高清| 纵有疾风起免费观看全集完整版| 侵犯人妻中文字幕一二三四区| 只有这里有精品99| 免费在线观看影片大全网站 | 久久久精品区二区三区| 最黄视频免费看| 乱人伦中国视频| 日本一区二区免费在线视频| 日本五十路高清| 女人精品久久久久毛片| 一区福利在线观看| 欧美精品av麻豆av| 99re6热这里在线精品视频| 高清不卡的av网站| 大陆偷拍与自拍| 不卡av一区二区三区| 亚洲一码二码三码区别大吗| 久热爱精品视频在线9| 国产黄频视频在线观看| 亚洲男人天堂网一区| 亚洲av电影在线观看一区二区三区| 99国产精品免费福利视频| 亚洲精品av麻豆狂野| 久久国产精品大桥未久av| 亚洲自偷自拍图片 自拍| 人成视频在线观看免费观看| 激情视频va一区二区三区| 亚洲人成电影免费在线| av在线老鸭窝| 国产亚洲午夜精品一区二区久久| 高清视频免费观看一区二区| 亚洲av片天天在线观看| 国产成人精品久久二区二区91| 一级黄色大片毛片| 亚洲人成电影免费在线| 国产一区有黄有色的免费视频| √禁漫天堂资源中文www| 国产伦理片在线播放av一区| 午夜福利视频精品| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 欧美日韩视频精品一区| 久久精品国产a三级三级三级| 国产精品人妻久久久影院| av视频免费观看在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 免费日韩欧美在线观看| 在线观看免费日韩欧美大片| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看 | 99国产精品一区二区蜜桃av | 少妇人妻久久综合中文| 一区福利在线观看| 精品少妇久久久久久888优播| 午夜福利免费观看在线| 国产精品久久久久久精品电影小说| 免费高清在线观看视频在线观看| 韩国精品一区二区三区| 亚洲精品国产一区二区精华液| 久久亚洲国产成人精品v| 国产成人免费无遮挡视频| 性色av乱码一区二区三区2| 久久国产精品影院| 免费在线观看黄色视频的| 少妇精品久久久久久久| 国产日韩一区二区三区精品不卡| 午夜福利免费观看在线| 老司机在亚洲福利影院| 别揉我奶头~嗯~啊~动态视频 | 免费女性裸体啪啪无遮挡网站| 久热爱精品视频在线9| 69精品国产乱码久久久| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产色婷婷电影| 国产精品九九99| 日本欧美国产在线视频| 久久九九热精品免费| av天堂在线播放| 亚洲综合色网址| 亚洲av美国av| 9191精品国产免费久久| 一级,二级,三级黄色视频| 午夜视频精品福利| 色综合欧美亚洲国产小说| 人妻一区二区av| 热re99久久国产66热| 国产成人精品无人区| 国产无遮挡羞羞视频在线观看| 日本wwww免费看| 精品一品国产午夜福利视频| 色视频在线一区二区三区| 国产熟女欧美一区二区| 亚洲三区欧美一区| av片东京热男人的天堂| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区免费| cao死你这个sao货| 飞空精品影院首页| xxx大片免费视频| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 丝袜人妻中文字幕| 人人妻,人人澡人人爽秒播 | 丝袜喷水一区| 久久久久久久久免费视频了| 丝袜美腿诱惑在线| 国产精品一二三区在线看| 国产成人91sexporn| 另类亚洲欧美激情| 国产免费一区二区三区四区乱码| 麻豆av在线久日| 黑人巨大精品欧美一区二区蜜桃| 免费av中文字幕在线| videosex国产| 久久国产精品影院| 国产成人91sexporn| 亚洲视频免费观看视频| 91九色精品人成在线观看| 丝袜人妻中文字幕| 女人高潮潮喷娇喘18禁视频| 在线观看国产h片| 女人久久www免费人成看片| 18禁国产床啪视频网站| xxxhd国产人妻xxx| 亚洲一码二码三码区别大吗| 亚洲国产成人一精品久久久| 国产男女内射视频| 久久久国产精品麻豆| 9热在线视频观看99| 日韩伦理黄色片| 午夜免费观看性视频| 午夜福利视频精品| 视频在线观看一区二区三区| 精品人妻一区二区三区麻豆| 9色porny在线观看| 免费女性裸体啪啪无遮挡网站| 欧美日韩黄片免| 少妇的丰满在线观看| 午夜福利,免费看| 精品久久久精品久久久| 国产精品国产三级专区第一集| 男女午夜视频在线观看| 黄片播放在线免费| 精品免费久久久久久久清纯 | 久久久久久亚洲精品国产蜜桃av| 久久av网站| 一本久久精品| 午夜av观看不卡| 精品国产一区二区三区四区第35| 国精品久久久久久国模美| 老鸭窝网址在线观看| 亚洲 国产 在线| 欧美精品av麻豆av| 少妇裸体淫交视频免费看高清 | 国产亚洲av片在线观看秒播厂| 久久午夜综合久久蜜桃| 国产伦人伦偷精品视频| 少妇粗大呻吟视频| 免费av中文字幕在线| 大陆偷拍与自拍| 天堂俺去俺来也www色官网| 亚洲av成人精品一二三区| 蜜桃在线观看..| 国语对白做爰xxxⅹ性视频网站| 亚洲美女黄色视频免费看| 日韩视频在线欧美| 中文字幕高清在线视频| 超色免费av| 国产免费又黄又爽又色| 在线观看免费高清a一片| 这个男人来自地球电影免费观看| 波多野结衣av一区二区av| 国产99久久九九免费精品| 日韩人妻精品一区2区三区| 午夜免费成人在线视频| 黄色a级毛片大全视频| 欧美精品一区二区大全| 亚洲 国产 在线| 在线观看国产h片| 亚洲欧美精品自产自拍| 午夜视频精品福利| 伦理电影免费视频| 性色av乱码一区二区三区2| 三上悠亚av全集在线观看| 亚洲欧洲精品一区二区精品久久久| 狠狠婷婷综合久久久久久88av| 婷婷成人精品国产| 高清av免费在线| 天天添夜夜摸| 婷婷成人精品国产| 久久久精品94久久精品| 免费观看人在逋| 飞空精品影院首页| 精品一区在线观看国产| 黄频高清免费视频| 男人舔女人的私密视频| 制服人妻中文乱码| 亚洲一码二码三码区别大吗| 久久精品国产a三级三级三级|