• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of an adaptive Kalman filter-based storm tide forecasting model*

    2016-12-26 06:51:51MOK莫啟明LAI黎宇軒HOI許嘉賢

    K. M. MOK (莫啟明), U. H. LAI (黎宇軒), K. I. HOI (許嘉賢)

    Department of Civil and Environmental Engineering, University of Macau, Macau SAR, China,

    E-mail: kmmok@umac.mo

    Development of an adaptive Kalman filter-based storm tide forecasting model*

    K. M. MOK (莫啟明), U. H. LAI (黎宇軒), K. I. HOI (許嘉賢)

    Department of Civil and Environmental Engineering, University of Macau, Macau SAR, China,

    E-mail: kmmok@umac.mo

    Extreme storm tide usually causes flooding of low-lying land in a coastal city. Hence, developing an efficient and accurate forecasting model for issuing a timely warning is important. In this study, an adaptive Kalman filter-based storm tide forecasting model was proposed and applied to the inner Harbor of Macau. The model is a dynamic linear regression model with the harmonic tidal prediction, wind speed, wind direction and atmospheric pressure as its input parameters. With persistence forecast of weather assumed during the prediction period, the model was tested with 40 cases of storm tide induced by tropical cyclones in Macau between 2005 and 2012. Success was found for forecasts with lead times up to 3 hours. The proposed adaptive model is considered a practical tool for storm tide forecast in small coastal cities.

    adaptive model, flooding, Kalman filter, Macau, storm tide

    Introduction

    Storm surge is a phenomenon of abrupt rise in local sea level due to the presence of a tropical cyclone, which causes persistent strong onshore wind pushing the water body towards inland as well as the sucking effect due to decreased atmospheric pressure. These surges combined with the astronomical tide form the storm tide. Since storm tide could cause severe flooding in the low-lying regions of a coastal city, developing a model that could forecast accurately its temporal variation is important for releasing a timely flood warning. For example in Macau, a small Special Administrative Region (SAR) of only 30.4 km2in the southern coast of China, the low-lying area in its inner harbor has been suffering from flooding due to storm tide. Because of this, the Chief Executive Officer of the Macau SAR government in April of 2009 signed an administration order that stipulates the issue of a storm tide warning by the Meteorological and Geophysical Bureau (SMG) when the sea level is expected to exceed street level of the inner harbor. With a tide gauge already installed at the location, astatistical forecasting model is suitable for Macau. In fact, statistical models are commonly used for forecasting storm tide of a small urban area due to its lesser data (usually sea level and meteorological measurements) and computational demand. Many empirical storm surge prediction models in previous studies were developed based on Artificial Neural Network (ANN)[1,2], and Support Vector Regression (SVR)[3]. However, those models are non-adaptive and retraining is necessary when new data are available. To overcome this shortcoming, an adaptive storm tide forecasting model that could adjust its model coefficients automatically is proposed by using Kalman filtering in this study. The methodology is tested with 40 cases of storm tide induced by tropical cyclones in Macau.

    1. Methodology

    Based on a simulation study on the storm tide in Macau[4], the following empirical model with timevarying coefficients is proposed for predicting the storm tideat the kthh.

    where (ATk)is the astronomical tide prediction at the kthh by a harmonic model with 7 tidal constituentsandThe difference between the standard atmospheric pressure (P0) and the local atmospheric pressure at the kthhaffects the amount of sea-level rise due to decreased atmospheric pressure. The north-south component (uk-i)and the east-west component (vk-i)of the wind acceleration account for the influence of wind setup at the(k -i)thh, and they are calculated as:

    where (wk-i)and (φk-i)represent the wind speed and direction at the(k -i )thh, respectively. Finally,SSk-1represents the predicted storm surge level (STk-1-ATk-1)at the (k -1)thh. Note that when Eq.(1) is used to predict storm tide of multiple hours ahead, it requires the input of unknown meteorological information in the future. For this, a persistent meteorological condition is assumed. For example, when the storm tide levels of 9 hours aheadare predicted at the kthh, the unknown hourly wind speed, direction, and the atmospheric pressures fromh are assumed to have the same values as those measured at the kthh. It is believed that this persistence forecast assumption for weather is acceptable for a lead time of no more than 10 h. The adaptiveness of the model is realized by updating the time varying model coefficients (θ1,k,…,θ9,k)with the Kalman filter[5,6]whenever new measurements of the sea level are available.

    For implementation, Eq.(1) is expressed in the form of a generalized dynamic linear model

    where STkdenotes the predicted storm tide of theh,is a row vector containing the input functions used in Eq.(1)

    and θkis the state vector which contains the unknown model coefficients of thekthh

    Each model coefficient of the kthh is assumed to differ slightly from its value of the previous hour by

    Table 1 Tropical cyclone warning system in Macau

    The difference fi,k-1is assumed to follow a normal distribution with zero mean and a standard deviation σi. Note that there is no subscriptkin the standard deviation, meaning that it is independent of time. Then, Eq.(7) can be written in the following vector form

    Table 2 Root mean squared errors of the predictions with lead times of 1 h, 3 h, 6 h and 9 h

    Table 3 Coefficients of determination of the predictions with lead times of 1 h, 3 h, 6 h and 9 h

    where Fk-1follows a Gaussian i.i.d. vector process with zero mean and covariance matrixdiag. To update the model coefficients of theh, the measured sea levelat the kthh is required, and it relates to the parameter vectorθkthrough the following equation

    During the filtering step, the measurement of the kthh is available. Then, the model coefficients are updated by maximizing the posterior probability density function

    2. Results and discussion

    The proposed model is applied to forecast 40 cases of storm tide recorded in the Macau inner harbour caused by approaching tropical cyclones during 2005 to 2012. The warning of a threat by an approaching tropical cyclone is officially issued in Macau by the SMG. Table 1 shows their five-level warning system. The proposed model starts to predict the sea level when a warning No. 1 is issued. It stops when all warnings are cancelled. The atmospheric pressure and the wind velocity data used were obtained from a weather station installed at the SMG headquarter.

    Overall performances of the model for predicting the hourly sea levels with lead times of 1 h, 3 h, 6 h and 9 h are evaluated against measurements. Results of root-mean-squared-error (RMSE) and coefficient of determination (R2)for the 40 studied cases are shown in Table 2 and Table 3, respectively. The 40 cases listed in the tables are grouped together based on the highest tropical cyclone warning issued in each case. In general, the model performs the best for predictions of 1 h lead time with the smallest average RMSE (0.12 m) and the largest averageR2(0.95). Accuracy of the model decreases as the forecast lead time increases. For the predictions with a lead time of 3 h, the average RMSE and the average R2are 1.3 times and 96% of those with a 1 h lead time, respectively. When the forecast lead time increases to 6 h and 9 h, the average RMSE increases to 1.7 and 2.0 times of that with a 1 h lead time. The correspondingR2decreases to 87% and 85% of that with a 1 h lead time. Note that even the accuracy of the model prediction decreases, the average values ofRMSE=0.16 m and R2=0.91for the 3 h ahead prediction are still considered good. For a small coastal city like Macau, warnings with a lead time of 3 h may be sufficient.

    Temporal variations of the sea level predicted by the model for the cases with the highest storm tide level among each group shown in Tables 2 and 3 are examined with measurements. Figure 1 shows the tidal level forecasted and measured for Case 0609 (BOPHA), which had the highest storm-tide level for the cyclone warning No. 1 group. The model could predict the tidal variation including the peak value and its corresponding arrival time well even with a lead time of 9 h.

    Fig.1 Comparison of the storm tide predictions with measurements for Case 0609 (BOPHA)

    Fig.2 Comparison of the storm tide predictions with measurements for Case 1119 (NALAGE)

    Fig.3 Comparison of the storm tide predictions with measurements for Case 0814 (HAGUPIT)

    Figure 2 shows the temporal variations of the tidal level forecasted and measured for Case 1119 (NALAGE), which had the highest storm-tide level for the cyclone warning No. 3 group. The model in this case could predict the tidal variation well with a lead time of up to 3 h. The model predictions deviate much from the measurements near the third local maximum (between 26 h and 32 h) when the forecast lead time increases to 6 h and 9 h. This is caused most likely by drastic changes of the wind parameters that were assumed constant in that prediction period. However, the actual peak that occurred at around 15 h was still captured quite well by all forecasts of different lead times.

    Figure 3 shows the temporal variations of the tidal level forecasted and measured for Case 0814 (HAGUPIT), which had the highest storm-tide level for the cyclone warning No. 8 group as well as the highest storm-tide level among the 40 studied cases. For predictions with a lead time of 1 h, the model can capture the flood and ebb of the storm tide well. The tidal peak was slightly overestimated by 2%, and its arrival time was predicted 1 h early. Meanwhile, forecasts with a lead time of 3 h can still capture the tidal variation well with the peak being overestimated by 10%, and its arrival time also being forecasted 1 h early. As the forecast lead time becomes longer to 6 h and 9 h, the predicted tidal levels show a 2 h to 3 h lag time while keeping the peak value relatively close to the observations.

    Fig.4 Comparison of the storm tide predictions with measurements for Case 1208 (VICENTE)

    Table 4 Performance of the peak tidal level during 2005 to 2012

    Figure 4 shows the temporal variations of the tidal level forecasted and measured for Case 1208 (VICENTE), which had the highest and only cyclone warning No. 9 issued among the 40 studied cases. Similar to the Case 0814 (HAGUPIT) discussed earlier, predictions with lead times up to 3 h can capture the storm tide well. The tidal peak and its arrival time were predicted within 1% and one hour, respectively. However, as the forecast lead time becomes longer, the predicted sea level suffers again from the phase lag problem by up to 7 h.

    As storm tide could cause flooding of the lowlying area, two parameters are of great importance for a warning issuing operation. They are the maximum or peak level of the storm tide and its arrival time. Two indexes are used to evaluate the performance of the forecasting model. They relative error of the forecasted storm-tide peak level,?Hp, and the error of its arrival time,ETp. The relative error ?Hpis written as

    where Hpeand Hpodenote the peak level of the forecasted and observed storm tide, respectively. A?Hpof zero indicates that the model predicts perfectly the peak level. The error of forecasted peak-arrival timeETpis

    where Tpeand Tpoare the arrival time of the forecasted and observed peaks, respectively. Since the overall performance of the forecasting model with lead times up to 3 h is very satisfactory, evaluation of the model performance on predicting the tidal peak level and its arrival time focuses on forecasts with lead times up to 3 h. Table 4 summarizes results of the 40 studied cases in groups of the highest cyclone warning issued in each case. In general, the model tends to over-predict the peak level. Forecasts with a lead time of 1 h show that the model can predict values of the tidal peak level within 9% of the measurements with their corresponding arrival time predicted within 2 h of the observed value. As for the forecasts with a lead time of 3 h, the model can predict values of the tidal peak level within 18% of the measurements with their corresponding arrival time predicted within 3 h of the observed value.

    3. Conclusions

    An adaptive Kalman filter-based storm tide forecasting model was developed and applied to the inner Habour of Macau for verification in this study. The model was tested with 40 cases of storm tide induced by tropical cyclones with success. Forecasts with leadtimes up to 3 h have their average RMSE less than 0.16 m, average R2greater than 0.90, peak level value and its arrival time within 18% and 3 h of the measurements, respectively. Meanwhile when the forecast lead time became longer to 6 h and 9 h, the accuracy of the model decreased by 100% on average. This could be due to the persistence forecast assumption made for weather during the prediction. Therefore, the present model is practical for a small city like Macau when flood warning announcement with a lead time of 3 h is sufficient. However, if accurate forecasts of longer lead time are desired, improvement of the model performance could be achieved by providing future meteorological parameters needed for the model input through, for example the Weather Research and Forecasting (WRF) model. Further studies are recommended.

    Acknowledgements

    This work was supported by the Research Committee (Grant No. MYRG2014-00038-FST) of the University of Macau and the Science and Technology Development Fund (Grant No. 079/2013/A3) of the Macau SAR Government. The Marine and Water Bureau, and the Meteorological and Geophysical Bureau of Macau SAR are thanked for supplying the tide gauge data and meteorological data.

    [1] Lee T. L. Neural network prediction of a storm surge [J]. Ocean Engineering, 2006, 33(3-4): 483-494.

    [2] Tseng C. M., Jan C. D., Wang J. S. et al. Application of artificial neural networks in typhoon surge forecasting [J]. Ocean Engineering, 2007, 34(11-12): 1757-1768.

    [3] Rajasekaran S., Gayathri S. and Lee T. L. Support vector regression methodology for storm surge predictions [J]. Ocean Engineering, 2008, 35(16): 1578-1587.

    [4] Lai U. H., Hoi K. I., Mok K. M. Development of an adaptive empirical model for storm tide simulation [J]. Coastal Engineering Proceedings, 2014, 1(34): doi: 10.9753/icce.v34.management.3.

    [5] Choi I. C., Mok K. M., Tam S. C. Solving harmonic sealevel model with Kalman filter: A Macau case study [C]. Carbonate Beaches 2000. Virginia, USA, 2002, 38-52.

    [6] Yuen K. V. Bayesian methods for structural dynamics and civil engineering [M]. New York, USA: John Wiley and Sons, 2010, 68-98.

    (Received June 25, 2016, Revised October 31, 2016)

    * Biography:K. M. MOK, Male, Ph. D., Professor

    久久久久久人妻| 久久久a久久爽久久v久久| 最近的中文字幕免费完整| 乱人伦中国视频| 日韩在线高清观看一区二区三区| 国产精品久久久久久久电影| 久久99一区二区三区| 免费在线观看成人毛片| 成人国产av品久久久| 久久久精品免费免费高清| 免费观看无遮挡的男女| 99热网站在线观看| 黄色配什么色好看| 日韩在线高清观看一区二区三区| www.av在线官网国产| 亚洲丝袜综合中文字幕| 国产视频内射| 少妇人妻精品综合一区二区| 国产中年淑女户外野战色| 热re99久久精品国产66热6| 国产深夜福利视频在线观看| 国产精品久久久久成人av| 嘟嘟电影网在线观看| 亚洲精华国产精华液的使用体验| 亚洲av中文av极速乱| 国产国拍精品亚洲av在线观看| 美女cb高潮喷水在线观看| 国产在线一区二区三区精| 99re6热这里在线精品视频| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 久热久热在线精品观看| 女性生殖器流出的白浆| 女人精品久久久久毛片| 国产在视频线精品| 日本欧美视频一区| 一级,二级,三级黄色视频| 国产精品免费大片| 欧美xxxx性猛交bbbb| 一级毛片aaaaaa免费看小| 国产免费福利视频在线观看| 免费久久久久久久精品成人欧美视频 | 中文字幕久久专区| 国产免费福利视频在线观看| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| 亚洲第一av免费看| 亚洲激情五月婷婷啪啪| 搡老乐熟女国产| 国产美女午夜福利| 亚洲久久久国产精品| 国产黄频视频在线观看| 一区二区三区四区激情视频| 国产深夜福利视频在线观看| 精品熟女少妇av免费看| 国产国拍精品亚洲av在线观看| 国产老妇伦熟女老妇高清| 国产免费又黄又爽又色| 亚洲av日韩在线播放| 精品午夜福利在线看| 免费观看的影片在线观看| 观看免费一级毛片| 亚洲av欧美aⅴ国产| 久久人人爽人人爽人人片va| 一本一本综合久久| 97超碰精品成人国产| 最新的欧美精品一区二区| 男女国产视频网站| 国产一级毛片在线| 老司机影院毛片| 一级毛片 在线播放| 精品久久久精品久久久| 中文字幕久久专区| 欧美精品一区二区免费开放| 国模一区二区三区四区视频| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 日韩三级伦理在线观看| 国产成人aa在线观看| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| 免费观看无遮挡的男女| 精品久久久噜噜| 国产免费一级a男人的天堂| 高清av免费在线| 水蜜桃什么品种好| 亚洲精品一二三| 自拍偷自拍亚洲精品老妇| 丰满迷人的少妇在线观看| 韩国高清视频一区二区三区| 免费av不卡在线播放| 少妇人妻久久综合中文| 国产精品一区www在线观看| 日韩欧美一区视频在线观看 | 在线观看www视频免费| 国产精品99久久久久久久久| 日韩中字成人| 一本久久精品| 国产在线男女| 国产一区二区在线观看日韩| 大片免费播放器 马上看| 中文在线观看免费www的网站| 国产有黄有色有爽视频| 国产精品三级大全| 亚洲成人一二三区av| 国产日韩欧美视频二区| 在线精品无人区一区二区三| 久久久久久伊人网av| 男人和女人高潮做爰伦理| 美女中出高潮动态图| 久久99一区二区三区| 色哟哟·www| 免费黄色在线免费观看| 亚洲欧美成人精品一区二区| 最新中文字幕久久久久| 亚洲av免费高清在线观看| 精品久久久噜噜| 伊人亚洲综合成人网| 欧美少妇被猛烈插入视频| 韩国av在线不卡| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 午夜91福利影院| 国产亚洲av片在线观看秒播厂| 亚洲欧美精品自产自拍| 国国产精品蜜臀av免费| 国产精品一二三区在线看| 高清在线视频一区二区三区| 黑丝袜美女国产一区| 2022亚洲国产成人精品| 激情五月婷婷亚洲| 狠狠精品人妻久久久久久综合| 亚洲经典国产精华液单| 国产精品三级大全| 另类精品久久| 插逼视频在线观看| 日韩强制内射视频| 国产爽快片一区二区三区| 黑丝袜美女国产一区| 97超视频在线观看视频| 少妇 在线观看| 亚洲精品一二三| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久| 午夜免费观看性视频| 这个男人来自地球电影免费观看 | 在线免费观看不下载黄p国产| 亚洲性久久影院| 深夜a级毛片| 久久韩国三级中文字幕| 国产一区有黄有色的免费视频| 亚洲精品aⅴ在线观看| 亚洲欧洲日产国产| 国产精品久久久久久久久免| 久久久国产精品麻豆| 一级毛片 在线播放| 下体分泌物呈黄色| 亚洲国产精品999| 欧美日韩精品成人综合77777| 成人无遮挡网站| 国产成人精品一,二区| 我的老师免费观看完整版| 欧美国产精品一级二级三级 | 精品国产一区二区久久| 水蜜桃什么品种好| 黄色一级大片看看| 久久人人爽人人爽人人片va| 在线亚洲精品国产二区图片欧美 | 99久久中文字幕三级久久日本| 简卡轻食公司| 久久久久久久久久成人| 亚洲一级一片aⅴ在线观看| 水蜜桃什么品种好| av天堂中文字幕网| 久久影院123| 狠狠精品人妻久久久久久综合| 夜夜看夜夜爽夜夜摸| 免费av中文字幕在线| 亚洲av综合色区一区| 国产高清不卡午夜福利| 久久影院123| 丝瓜视频免费看黄片| 免费观看在线日韩| 91在线精品国自产拍蜜月| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 国产老妇伦熟女老妇高清| 色5月婷婷丁香| 视频区图区小说| 国产精品熟女久久久久浪| 18+在线观看网站| 国产极品粉嫩免费观看在线 | 国产视频内射| 国产成人精品久久久久久| 伦理电影免费视频| 国产乱人偷精品视频| av网站免费在线观看视频| 视频中文字幕在线观看| 国产色婷婷99| 国产欧美日韩综合在线一区二区 | 国产精品一区二区在线观看99| 啦啦啦在线观看免费高清www| 韩国高清视频一区二区三区| 男女免费视频国产| 日日摸夜夜添夜夜爱| 亚洲av成人精品一区久久| 久久99蜜桃精品久久| 丰满少妇做爰视频| 国产伦理片在线播放av一区| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 色94色欧美一区二区| 精品久久久久久久久av| 97在线人人人人妻| 国产 一区精品| 免费观看的影片在线观看| 色5月婷婷丁香| 中国三级夫妇交换| 亚洲av不卡在线观看| 亚洲av日韩在线播放| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 一区在线观看完整版| 一本一本综合久久| 看免费成人av毛片| 国产视频首页在线观看| 99久久人妻综合| 亚洲av中文av极速乱| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av涩爱| 97超视频在线观看视频| 成年av动漫网址| 插逼视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 男女边吃奶边做爰视频| 欧美日韩av久久| 午夜视频国产福利| 久久免费观看电影| 精品午夜福利在线看| 国产 精品1| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| 精品少妇久久久久久888优播| 久久精品久久久久久久性| 国产午夜精品久久久久久一区二区三区| 一本—道久久a久久精品蜜桃钙片| 2018国产大陆天天弄谢| 免费观看的影片在线观看| 一个人免费看片子| 夜夜看夜夜爽夜夜摸| 亚洲精品乱久久久久久| 大香蕉97超碰在线| 成人美女网站在线观看视频| 永久网站在线| 亚洲精品色激情综合| 热99国产精品久久久久久7| 又黄又爽又刺激的免费视频.| 成人亚洲欧美一区二区av| 我的女老师完整版在线观看| 一区二区三区乱码不卡18| 中文字幕免费在线视频6| 尾随美女入室| 久久免费观看电影| 极品人妻少妇av视频| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线播| 人妻一区二区av| 国产 一区精品| 成人影院久久| 欧美日韩亚洲高清精品| 免费观看在线日韩| 久久影院123| 午夜精品国产一区二区电影| 欧美xxⅹ黑人| 中国国产av一级| 久久精品国产鲁丝片午夜精品| 边亲边吃奶的免费视频| 男女国产视频网站| 天堂俺去俺来也www色官网| 欧美变态另类bdsm刘玥| 亚洲第一区二区三区不卡| 欧美bdsm另类| 国产成人免费无遮挡视频| 在线观看www视频免费| 黄色配什么色好看| 亚州av有码| 久久精品久久久久久久性| 久久久国产精品麻豆| 日韩三级伦理在线观看| 成年人午夜在线观看视频| 蜜桃在线观看..| 午夜av观看不卡| 综合色丁香网| 午夜精品国产一区二区电影| 国产精品.久久久| 国产成人免费观看mmmm| 青春草国产在线视频| 日韩,欧美,国产一区二区三区| 少妇被粗大猛烈的视频| 日本猛色少妇xxxxx猛交久久| 王馨瑶露胸无遮挡在线观看| 晚上一个人看的免费电影| 欧美最新免费一区二区三区| 成人国产av品久久久| h视频一区二区三区| 久久99蜜桃精品久久| 久久国产亚洲av麻豆专区| 久久久国产欧美日韩av| av网站免费在线观看视频| 亚洲情色 制服丝袜| 亚洲综合精品二区| 亚洲图色成人| 伦理电影大哥的女人| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 男人添女人高潮全过程视频| 久久女婷五月综合色啪小说| 一级毛片 在线播放| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 波野结衣二区三区在线| 97超视频在线观看视频| 免费黄色在线免费观看| 国产成人freesex在线| 日本vs欧美在线观看视频 | 精品熟女少妇av免费看| 激情五月婷婷亚洲| 欧美 日韩 精品 国产| 人体艺术视频欧美日本| 大片电影免费在线观看免费| 亚洲精品成人av观看孕妇| 岛国毛片在线播放| 777米奇影视久久| 少妇 在线观看| 在线看a的网站| 18禁在线无遮挡免费观看视频| 内射极品少妇av片p| av天堂久久9| 久热这里只有精品99| 亚洲精品色激情综合| 十八禁高潮呻吟视频 | 国产一区有黄有色的免费视频| 亚洲美女视频黄频| 99久久人妻综合| 少妇人妻 视频| 国产爽快片一区二区三区| 免费观看a级毛片全部| 免费看av在线观看网站| 美女主播在线视频| 三上悠亚av全集在线观看 | 日本91视频免费播放| 精品一区二区免费观看| 精品亚洲成a人片在线观看| 国产 一区精品| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 亚洲国产色片| 精品人妻偷拍中文字幕| 国产精品一区www在线观看| 边亲边吃奶的免费视频| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 国产精品一区www在线观看| 亚洲av日韩在线播放| 一本一本综合久久| 在线观看av片永久免费下载| 久久人人爽人人片av| 亚洲精品久久久久久婷婷小说| 一级黄片播放器| 亚洲精品自拍成人| 国产69精品久久久久777片| 国产精品国产三级专区第一集| 亚洲欧美日韩另类电影网站| 亚洲精品,欧美精品| 韩国av在线不卡| 只有这里有精品99| 亚洲精品中文字幕在线视频 | 简卡轻食公司| 最新的欧美精品一区二区| 人妻系列 视频| 国产亚洲5aaaaa淫片| 天堂俺去俺来也www色官网| 免费高清在线观看视频在线观看| 一级av片app| 婷婷色综合大香蕉| 乱人伦中国视频| 亚洲av男天堂| 黄色欧美视频在线观看| 久久久久视频综合| 久久这里有精品视频免费| 欧美少妇被猛烈插入视频| a级毛色黄片| 中文天堂在线官网| 国模一区二区三区四区视频| 欧美日韩一区二区视频在线观看视频在线| 男人和女人高潮做爰伦理| 欧美三级亚洲精品| a 毛片基地| 久久99一区二区三区| 人妻少妇偷人精品九色| 这个男人来自地球电影免费观看 | 午夜免费男女啪啪视频观看| 久久影院123| 久久久久久久久久成人| 国产精品久久久久久av不卡| 九九在线视频观看精品| 国产老妇伦熟女老妇高清| 久久99一区二区三区| 国产精品一区www在线观看| 亚洲精品自拍成人| 美女视频免费永久观看网站| 视频区图区小说| 精品人妻一区二区三区麻豆| 亚洲自偷自拍三级| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频 | 亚洲伊人久久精品综合| 亚洲av成人精品一区久久| 亚洲av福利一区| 久久久精品免费免费高清| 久久影院123| 国产在线视频一区二区| 午夜91福利影院| 国产免费福利视频在线观看| 99热6这里只有精品| av播播在线观看一区| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 欧美精品高潮呻吟av久久| 国产亚洲欧美精品永久| 欧美高清成人免费视频www| 9色porny在线观看| 亚洲av二区三区四区| 婷婷色综合www| 国产精品一区二区性色av| 狂野欧美激情性bbbbbb| 欧美日韩在线观看h| 亚洲av不卡在线观看| 亚洲综合色惰| 日韩精品免费视频一区二区三区 | 一区二区三区精品91| 极品教师在线视频| 一级毛片 在线播放| 久久精品熟女亚洲av麻豆精品| 噜噜噜噜噜久久久久久91| 亚洲,欧美,日韩| 视频中文字幕在线观看| 色网站视频免费| av女优亚洲男人天堂| 国产亚洲5aaaaa淫片| 中文字幕制服av| 女人精品久久久久毛片| 99久久精品一区二区三区| 人人澡人人妻人| 亚洲成色77777| 一本一本综合久久| 国产亚洲5aaaaa淫片| 狠狠精品人妻久久久久久综合| 日韩大片免费观看网站| 国产在线男女| 最近中文字幕高清免费大全6| 亚洲av二区三区四区| 国内精品宾馆在线| 国产黄色免费在线视频| 久久久久久人妻| av免费在线看不卡| 两个人免费观看高清视频 | 成人亚洲欧美一区二区av| 男人爽女人下面视频在线观看| 2022亚洲国产成人精品| 自线自在国产av| 亚洲av福利一区| 中国美白少妇内射xxxbb| 黄色毛片三级朝国网站 | 三上悠亚av全集在线观看 | 男人添女人高潮全过程视频| 国产精品女同一区二区软件| 麻豆成人av视频| 毛片一级片免费看久久久久| 日本黄大片高清| 秋霞在线观看毛片| 99热国产这里只有精品6| av在线老鸭窝| 青春草亚洲视频在线观看| 三级经典国产精品| 久久国内精品自在自线图片| 免费观看av网站的网址| 亚洲欧美一区二区三区国产| 欧美日韩视频精品一区| 亚洲国产精品国产精品| 精品久久久久久久久av| 亚洲久久久国产精品| 99九九在线精品视频 | 国产成人aa在线观看| 国产 一区精品| 国产乱人偷精品视频| 日韩av免费高清视频| 亚洲国产精品999| 久久韩国三级中文字幕| 日本黄大片高清| 少妇人妻精品综合一区二区| 日本午夜av视频| 国产日韩欧美亚洲二区| 黑人猛操日本美女一级片| 十八禁网站网址无遮挡 | 一级毛片黄色毛片免费观看视频| 亚洲人与动物交配视频| 看非洲黑人一级黄片| 伊人久久国产一区二区| 亚洲欧洲日产国产| 欧美激情国产日韩精品一区| 99九九在线精品视频 | 国产成人aa在线观看| 日本与韩国留学比较| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 国产毛片在线视频| 91精品国产国语对白视频| 九九在线视频观看精品| 下体分泌物呈黄色| 如日韩欧美国产精品一区二区三区 | 国产男女内射视频| 亚洲在久久综合| 国语对白做爰xxxⅹ性视频网站| a级毛片在线看网站| 国产欧美日韩一区二区三区在线 | 啦啦啦中文免费视频观看日本| 国产精品一区二区在线观看99| 亚洲精品日本国产第一区| 日韩一本色道免费dvd| 色视频www国产| 人人妻人人澡人人看| 久久狼人影院| 久久99热这里只频精品6学生| 你懂的网址亚洲精品在线观看| 五月天丁香电影| 成人毛片a级毛片在线播放| 久久精品久久久久久久性| 成人国产麻豆网| tube8黄色片| 久久ye,这里只有精品| 成人亚洲精品一区在线观看| 乱系列少妇在线播放| 精品久久久久久久久亚洲| 午夜影院在线不卡| 国产精品女同一区二区软件| 欧美最新免费一区二区三区| 我要看黄色一级片免费的| 久久久久久久久久久久大奶| 亚洲国产成人一精品久久久| 亚洲内射少妇av| 人妻制服诱惑在线中文字幕| 99久久精品国产国产毛片| 这个男人来自地球电影免费观看 | 热99国产精品久久久久久7| 自拍偷自拍亚洲精品老妇| 中文字幕人妻熟人妻熟丝袜美| 91久久精品国产一区二区三区| 人人妻人人澡人人爽人人夜夜| 久久久久精品性色| 视频区图区小说| 亚洲丝袜综合中文字幕| 一二三四中文在线观看免费高清| 亚洲av欧美aⅴ国产| 国产精品蜜桃在线观看| 在线观看三级黄色| 国产在线视频一区二区| 女性被躁到高潮视频| 亚洲熟女精品中文字幕| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件| 亚洲电影在线观看av| 亚洲精品成人av观看孕妇| 亚洲国产精品专区欧美| 欧美高清成人免费视频www| 日韩欧美精品免费久久| 午夜av观看不卡| 国产淫语在线视频| 18禁在线无遮挡免费观看视频| 只有这里有精品99| 精品久久久噜噜| 在线观看免费高清a一片| freevideosex欧美| 在现免费观看毛片| 久久久久精品久久久久真实原创| 亚洲人成网站在线观看播放| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 人人妻人人看人人澡| 最近手机中文字幕大全| av在线观看视频网站免费| av在线老鸭窝| 日日摸夜夜添夜夜爱| 婷婷色麻豆天堂久久| 久久久久久久亚洲中文字幕| 18禁在线播放成人免费| 国产男女超爽视频在线观看| 女性被躁到高潮视频| 中文欧美无线码| 亚洲国产欧美日韩在线播放 | 亚洲美女视频黄频| 国产91av在线免费观看| xxx大片免费视频| 日本黄色日本黄色录像| 老司机亚洲免费影院| 2022亚洲国产成人精品| 青春草国产在线视频| freevideosex欧美| 中文字幕免费在线视频6| 又粗又硬又长又爽又黄的视频| 久久久久久久久久成人| 我要看黄色一级片免费的|