• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of PMIA/MWNTs nanofiber via solution blow spinning process

    2016-12-23 03:23:19HuangQianLiJingYuJunrongWangYanZhuJingHuZuming
    合成纖維工業(yè) 2016年6期
    關(guān)鍵詞:力學(xué)性能

    Huang Qian, Li Jing, Yu Junrong, Wang Yan, Zhu Jing, Hu Zuming

    (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620)

    ?

    Preparation of PMIA/MWNTs nanofiber via solution blow spinning process

    Huang Qian, Li Jing, Yu Junrong*, Wang Yan, Zhu Jing, Hu Zuming

    (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620)

    Poly-m-phenylene isophthalamide/multi-wall carbon nanotubes (PMIA/MANTs) nanofibers were prepared via solution blow spinning technique.The change of the surface morphology and diameter distribution of the nanofibers with the spinning parameters was discussed. The effect of MWNTs on the crystallization property and mechanical properties of PMIA nanofibers membrane was discussed.The results showed that the PMIA/MWNTs nanofibers could be produced with good morphology as the drawing air pressure was 0.12 MPa and the inner diameter of the spinneret nozzle was 0.4-0.5 mm;as the load of MWNTs was increased, the average diameter and crystallinity of the nanofibers increased, the tensile strength of the nanofibers membrane increased and the elongation at break decreased; the PMIA/MWNTs nanofibers had uniform morphology and fine diameter with the average value of 372 nm, the tensile strength of the nanofibers membrane reached 41.85 MPa with a growth more than 86% as compared with that of pure PMIA nanofibers membrane as the MWNTs load was optimized as 0.3%.

    poly-m-phenylene isophthalamide; multi-wall carbon nanotubes; solution blow spinning; surface morphology; mechanical properties

    Solution blow spinning is a new method to produce micro and nanofibers from polymer solution[1]. This technique applies a high speed gas through the airjet nozzle on the polymer solution extruded from a spinneret nozzle, then the polymer solution is stretched by the high speed gas flow, and the solvent rapidly evaporates, finally forming a web of micro and nanofibers. The solution blow spinning technique is superior to traditional electrospinning in the commercial production due to its simple process, high efficiency, low energy consumption and high safety[2-3].

    Poly-m-phenylene isophthalamide (PMIA) nanofibers are considered as a satisfying material for high-temperature high-efficiency filtration and lithium battery separator due to its excellent heat resistance, flame resistance, chemical resistance and electrical insulation property[4-5]. But the tensile strength of PMIA nanofibers membrane is low because of its flexible macromolecular structure, restricting its application in the high-performance field. Indeed, it has been reported that a rational amount of multi-wall carbon nanotubes (MWNTs) could well reinforce PMIA nanofibers. He Suwen[6]et al. have produced a PMIA nanofibers membrane with the mechanical properties considerably improved as incorporated with MWNTs during the electrospinning process. And the fiber average diameter is obviously decreased while raising the load of MWNTs. However, the incorporation of MWNTs provides the effect on the solution blow spinning process different from the electrospinning process owing to their different spinning mechanism. Currently, researchers have primarily studied the effects of spinning parameters on the morphology of the produced nanofibers[7]while the stability of the solution jet flow is rarely reported.

    Here we discuss the stability of PMIA/MWNTs solution jet flow under different stretch gas pressure and investigate the effect of the incorporation of MWNTs on the solution blow spinning performance of PMIA solution and the mechanical properties of the nanofibers membrane thereof.

    1 Experiment

    1.1 Raw material

    PMIA solution: 15.66% PMIA by mass fraction, weight average relative molecular mass (MW) 1.04×105, purchased from X-FIPER New Material Co.,Ltd; N,N- dimethylacetamide (DMAc): analytical grade, purchased from Yonghua Chemical Sci & Tech Company;MWNTs:10-15 nm

    in diameter,10-20 μm in length,purchased from Chengdu Organic Chemical Company.

    1.2 Preparation of PMIA/MWNTs spinning solution

    An appropriate amount of acid-treated MWNTs[8]was dispersed in DMAc under ultrasonication, then the MWNTs dispersion was mixed with PMIA solution at a specific ratio and formed PMIA/MWNTs solution in which the mass fraction of PMIA was 12% and the load of MWNTs ranged from 0.1% to 0.5% in PMIA.

    1.3 Preparation of PMIA/MWNTs nanofiber by solution blow spinning

    Fig.1 showed a self-made solution blow spinning experimental apparatus. This apparatus uses a syringe pump to quantitatively deliver a polymer solution. The gas flow unit comprises a nitrogen gas steel container and a decompression buffer tank. The spinneret unit consists of concentric nozzles whereby the polymer solution is pumped out through the inner nozzle while a constant, high speed gas flow is blown out through the outer nozzle of 1.2 mm in inner diameter. The protrusion distance of the inner nozzle was 8 mm. The PMIA/MWNTs nanofibers could be prepared with the thickness of 100 μm by adjusting the gas pressure and spinneret nozzle diameter under the solution injection rate 1.0 mL/h, room temperature, relative humidity about 50%, collection distance 40 cm and rotating drum velocity 200 r/min.

    Fig.1 Diagram of an apparatus preparing nanofiber membrane via solution blow spinning process1—Polymer solution;2—Tee pipe coupling;3—High pressure gas;4—Spinneret nozzle;5—Airjet nozzle;6—Collector

    1.4 Test and characterization

    The morphology of the produced composite nanofibers

    was observed with Quanta-250 scanning electron microscope (SEM) manufactured by FEI Co., Czech. The fiber diameter distribution was measured by taking 100 nanofibers with an Image Tool software. The crystalline structure of the nanofibers was determined with a D/max-2550 PC X-ray diffraction analysis (XRD) manufactured by Rigaku Co., Japan. The determination conditions were as followed: powder diffraction sample making, CuKα target, voltage 40 kV, electric current 300 mA, 2θ range 5°-60° in steps of 2(°)/min. The mechanical properties of the nanofibers membrane were measured with an XQ-1C single fiber tensile tester manufactured by Shanghai New Fiber Instrument Co., Ltd. The clamp distance was 10 mm, drawing speed 10 mm/min, strength 0-200 cN, elongation 100%.

    2 Results and discussion

    2.1 Gas flow pressure

    As shown in Fig.2, the nanofibers was poor in the morphology with droplets and serious doublings and relatively high in diameter at the gas pressure of 0.08 MPa; when the gas pressure was 0.10 MPa, the surface morphology of nanofibers became better, there were still some obvious doublings and the fiber diameter was uneven, which was attributed to the fact that the gas pressure was too low to completely disperse the extruded solution jet and led to low volatilizing speed of solvents, resulting in the adhesion of multiple strands; when the gas pressure was 0.12 MPa, the solution jet was blown into a completely dispersed state and the doublings was greatly depressed, which indicated that the high-speed gas flow could efficiently stretch the solution jet and make the solvents volatilize, and the obtained nanofibers exhibited smooth surface and uniform diameter distribution ranging 300-400 nm; however, the doublings formed again at the gas pressure of 0.14 MPa and the droplets appeared at the gas pressure of 0.16 MPa, which was because the gas speed was so high that the solvents couldn′t volatilize in time and might fall on the collector resulting in the fiber adhesion and poor morphology of nanofibers membrane. Therefore, the optimal gas pressure was considered as 0.12 MPa.

    Fig.2 SEM images of PMIA/MWNTs nanofibers membrane at different gas pressureMWNTs load 0.3%, spinneret nozzle inner diameter 0.51 mm.

    2.2 Spinneret nozzle inner diameter

    As shown in Fig.3,the nanofibers membrane had a high fiber average diameter and a great many doublings at the inner diameter of spinneret nozzle of 0.62 mm because the extruded solution jet was too thick to be dispersed efficiently; the nanofibers exhibited the uniform morphology with no obvious doublings and the diameter ranging 300-400 nm as the inner diameter of the spinneret nozzle was decreased to 0.51 mm or 0.41 mm, because the solution jet was completely dispersed and well stretched so as to acquire fine and uniform fiber diameter; the morphology of the nanofibers became poor and the fiber adhesion and doubling appeared again as the inner diameter of spinneret nozzle was decreased to 0.33 mm, and the doubling phenomenon became serious as the inner diameter of spinneret nozzle was 0.25 mm, which was because smaller spinneret nozzle diameter caused higher extrusion rate of spinning solution and then the relative speed between the gas flow and extruded solution was not so high enough to well stretch the nanofibers. Therefore, the optimal spinneret nozzle diameter was considered as 0.4-0.5 mm.

    Fig.3 SEM images of PMIA/MWNTs nanofibers membrane at different spinneret nozzle inner diameter Gas pressure 0.12 MPa; MWNTs load 0.3%.

    2.3 MWNTs load

    As shown in Fig.4, the PMIA/MWNTs nanofibers possessed the fairly good surface morphology and uniform diameter distribution with the average diameter below 400 nm as the MWNTs load was lower than 0.3%; the nanofibers became thicker and the doublings appeared as the MWNTs load was increased to 0.4%; the doubling phenomenon became serious, the fiber morphology was poor and the droplets formed as the load was increased to 0.5%, which was because the solution viscosity was increased to a specific degree due to the polar interaction between PMIA molecules and carboxyl group on the surface of acid-treated MWNTs[9], making the solution blow spinning difficult and the fiber thicker; moreover, the aggregation of MWNTs was not obviously observed on the surface of PMIA/MWNTs nanofibers, which indicated that acid-treated MWNTs could be well dispersed in PMIA solution.

    Fig.4 SEM images of PMIA/MWNTs nanofibers membrane under different MWNTs load Gas pressure 0.12 MPa; spinneret nozzle inner diameter 0.51 mm.

    It can be seen from Fig.5 that the PMIA/MWNTs nanofibers with different MWNTs load had similar XRD patterns and each showed an obvious diffraction peak at 2θ of about 24°, which indicated that the incorporation of MWNTs did not change the crystalline structure of PMIA; the diffraction peaks profoundly became intensive and the crystallinity of the nanofibers rose as the MWNTs load was increased to more than 0.2%, which indicated that MWNTs promoted the crystallization of PMIA molecules as a nucleating agent.

    It can be seen from Tab.1 that the strength of the nanofibers membrane was gradually increased and the elongation at break was gradually decreased as the MWNTs load was increased; the tensile strength of the nanofibers membrane was increased to 41.85 MPa with a growth of more than 86% as compared with that of pure PMIA nanofibers membrane at the MWNTs load of 0.3%,which proved that incorporated MWNTs contributed a good reinforcement effect to the PMIA nanofibers; when continuously increased the MWNTs load, the mechanical properties of the nanofibers membrane did not change, but the fiber got thicker and the morphology became poor with doublings and droplets. Therefore, the optimal MWNTs load was considered as 0.3% for preparing PMIA/MWNTs nanofibers.

    Fig.5 XRD patterns of PMIA/MWNTs nanofibers under different MWNTs load1—0;2—0.1%;3—0.2%;4—0.3%;5—0.4%;6—0.5%

    Tab.1 Mechanical properties and average diameter of PMIA/MWNTs nanofiber with different MWNTs load

    MWNTsload,%Fiberaveragediameter/nmTensilestrength/MPaElongationatbreak,%034322.4864.400.134631.2863.640.236329.0161.880.337241.8538.160.442742.7339.530.543240.1539.58

    3 Conclusions

    a. The stability of the spinning jet was gradually improved when the gas flow pressure was increased during the solution blow spinning process. The PMIA/MWNTs nanofibers membrane could be produced with fairly good morphology and average diameter of 372 nm when the gas flow pressure was 0.12 MPa and the inner diameter of the spinneret nozzle was 0.51 mm.

    b. The diameter, crystallinity and mechanical properties of the nanofibers were increased when the MWNTs load was increased. The tensile strength of the nanofibers membrane was increased by 86% and above when the MWNTs load was up to 0.3%, as compared with that of pure PMIA nanofibers membrane. The nanofibers got thick and the nanofibers membrane became poor in morphology while continuously increasing MWNTs load.

    [1] Medeiros E S, Glenn G M, Klamczynski A P, et al. Solution blow spinning: A new method to produce micro-and nanofibers from polymer solutions[J]. J Appl Polym Sci,2009,113(4):2 322-2 330.

    [2] Zhang Lifeng,Kopperstad P,West M,et al.Generation of polymer ultrafine fibers through solution (air-) blowing[J].J Appl Polym Sci,2009,114(6):3 479-3 486.

    [3] Zhuang Xupin, Yang Xiaocan, Shi Lei, et al. Solution blowing of submicron-scale cellulose fibers[J]. Carbohyd Polym, 2012,90(2):982-987.

    [4] Ding Bin,Wang Xiaoru,Wang Xianfeng,et al.A preparation method of PMIA nanofibers web: CN, 102704028[P]. 2012-10-03.

    [5] Xiao Ke. Fabrication and application of PMIA-based nanofiber memberane as separators for lithiumion batteries [D]. Shanghai:Donghua University, 2016.

    [6] He Suwen,Liu Liqi,Gao Baoshan,et al.Study on morphology and characterization of poly(mphenylene isophtalamide)/multi-walled carbon nanotubes composite nanofibers by electrospinning[J].J Nanosci Nanotech,2011,11(5):4 004-4 010.

    [7] Wu Shiting,Huang Kai,Shi Enzheng,et al.Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control[J].ACS Nano,2014,8(4):3 522-3 530.

    [8] Shaffer M S P,Fan Xiujun,Windle A H.Dispersion and packing of carbon nanotubes[J].Carbon,1998,36(11):1 603-1 612.

    [9] He Suwen.Analysis and verification on influencing factors of nanofiber morphology by electrospinning[D].Shanghai:Donghua University,2011.

    溶液噴射紡絲制備PMIA/MWNTs納米纖維的研究

    黃 千,李 靜,于俊榮,王 彥,諸 靜,胡祖明

    (東華大學(xué)材料科學(xué)與工程學(xué)院纖維材料改性國家重點實驗室,上海 201620)

    采用溶液噴射紡絲技術(shù)制備間位芳綸/多壁碳納米管(PMIA/MWNTs)納米纖維,探討了不同工藝參數(shù)下納米纖維表觀形貌和直徑分布的變化,研究了MWNTs對PMIA納米纖維膜結(jié)晶性能和力學(xué)性能的影響。結(jié)果表明:在拉伸風(fēng)壓為0.12 MPa、噴絲孔內(nèi)徑為0.4~0.5 mm時,可以制得形貌較好的PMIA/MWNTs納米纖維;隨MWNTs負(fù)載量的增加,制得納米纖維的平均直徑變粗,結(jié)晶度變大,纖維膜拉伸強度增大,斷裂伸長率則下降;MWNTs的最佳負(fù)載量為0.3%,此時可制得形貌結(jié)構(gòu)均勻,直徑較細(xì)的PMIA/MWNTs納米纖維,纖維平均直徑為372 nm,纖維膜拉伸強度達(dá)到41.85 MPa,較純PMIA納米纖維膜提高了86%以上。關(guān)鍵詞:間位芳綸多壁碳納米管 溶液噴射紡絲 表觀形貌 力學(xué)性能

    Foundation item: Natural Science Foundation of Shanghai (15ZR1401100). * Corresponding author: yjr@dhu.edu.cn.

    TQ342+.72 Document code:A Article ID: 1001- 0041(2016)05- 0046- 04

    Received date:09- 10- 2016; revised date: 25- 10- 2016.

    Biography: Huang Qian(1992-),male, postgraduate, is engaged in nanofibers membrane. E-mail:hq65743889@163.com.

    猜你喜歡
    力學(xué)性能
    反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
    Pr對20MnSi力學(xué)性能的影響
    云南化工(2021年11期)2022-01-12 06:06:14
    Mn-Si對ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
    山東冶金(2019年3期)2019-07-10 00:54:00
    采用稀土-B復(fù)合變質(zhì)劑提高ZG30MnSi力學(xué)性能
    碳纖維增強PBT/ABS—g—MAH復(fù)合材料的力學(xué)性能和流變行為
    中國塑料(2016年6期)2016-06-27 06:34:16
    紡織纖維彎曲力學(xué)性能及其應(yīng)用
    MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
    中國塑料(2015年12期)2015-10-16 00:57:14
    EHA/PE復(fù)合薄膜的力學(xué)性能和阻透性能
    中國塑料(2015年9期)2015-10-14 01:12:26
    PA6/GF/SP三元復(fù)合材料的制備及其力學(xué)性能研究
    中國塑料(2015年4期)2015-10-14 01:09:18
    INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
    焊接(2015年9期)2015-07-18 11:03:53
    性少妇av在线| 女性被躁到高潮视频| 久久人人97超碰香蕉20202| 国产精品国产av在线观看| 免费女性裸体啪啪无遮挡网站| 午夜精品久久久久久毛片777| 天堂影院成人在线观看| 国产精品99久久99久久久不卡| 国产亚洲精品第一综合不卡| 日韩三级视频一区二区三区| 成人黄色视频免费在线看| 最新美女视频免费是黄的| av电影中文网址| 韩国精品一区二区三区| 午夜福利在线免费观看网站| 日本vs欧美在线观看视频| 可以在线观看毛片的网站| 国产99白浆流出| 少妇被粗大的猛进出69影院| 久久久久久久久久久久大奶| 欧美日韩亚洲国产一区二区在线观看| 精品福利观看| 两个人免费观看高清视频| 日本a在线网址| 欧美黄色淫秽网站| 女性被躁到高潮视频| 丁香欧美五月| 老鸭窝网址在线观看| 99久久综合精品五月天人人| 欧美日韩精品网址| 巨乳人妻的诱惑在线观看| 国内毛片毛片毛片毛片毛片| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| www.自偷自拍.com| 欧美日韩中文字幕国产精品一区二区三区 | 水蜜桃什么品种好| 国产蜜桃级精品一区二区三区| 国产有黄有色有爽视频| 校园春色视频在线观看| 侵犯人妻中文字幕一二三四区| 男人舔女人下体高潮全视频| 高清黄色对白视频在线免费看| 欧美中文日本在线观看视频| 手机成人av网站| 国产xxxxx性猛交| 免费女性裸体啪啪无遮挡网站| 欧美黄色淫秽网站| 777久久人妻少妇嫩草av网站| 国产精品香港三级国产av潘金莲| www.www免费av| 成人影院久久| 成人特级黄色片久久久久久久| 丰满的人妻完整版| 99在线视频只有这里精品首页| 人人妻人人添人人爽欧美一区卜| 18禁观看日本| 久久久精品欧美日韩精品| 国产麻豆69| 久久久久久久久中文| 神马国产精品三级电影在线观看 | 欧美精品啪啪一区二区三区| 天天影视国产精品| a级毛片在线看网站| 多毛熟女@视频| 国产乱人伦免费视频| 国产主播在线观看一区二区| 麻豆av在线久日| 在线播放国产精品三级| 久久婷婷成人综合色麻豆| 亚洲熟妇中文字幕五十中出 | 精品人妻1区二区| 嫩草影院精品99| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 亚洲欧美日韩无卡精品| 69av精品久久久久久| 国产激情久久老熟女| 水蜜桃什么品种好| 国产一区二区三区综合在线观看| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 在线观看一区二区三区| 日韩大码丰满熟妇| 国产精品野战在线观看 | 熟女少妇亚洲综合色aaa.| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 在线观看免费午夜福利视频| 成人永久免费在线观看视频| 国产真人三级小视频在线观看| 亚洲一码二码三码区别大吗| 91大片在线观看| 亚洲中文字幕日韩| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 亚洲中文字幕日韩| 亚洲av电影在线进入| 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| 欧美av亚洲av综合av国产av| 一级,二级,三级黄色视频| 亚洲色图 男人天堂 中文字幕| 国产99久久九九免费精品| 999久久久国产精品视频| 天天添夜夜摸| 亚洲男人的天堂狠狠| 精品少妇一区二区三区视频日本电影| 日韩三级视频一区二区三区| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 在线观看一区二区三区| 99在线视频只有这里精品首页| 男男h啪啪无遮挡| 村上凉子中文字幕在线| 国产精品久久视频播放| 50天的宝宝边吃奶边哭怎么回事| 国产av在哪里看| 51午夜福利影视在线观看| √禁漫天堂资源中文www| 国产亚洲av高清不卡| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 水蜜桃什么品种好| 五月开心婷婷网| 免费不卡黄色视频| 一级黄色大片毛片| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 激情在线观看视频在线高清| 亚洲av美国av| e午夜精品久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| 国产欧美日韩综合在线一区二区| 手机成人av网站| 宅男免费午夜| 免费不卡黄色视频| 亚洲欧美激情在线| 亚洲性夜色夜夜综合| 亚洲avbb在线观看| 成人av一区二区三区在线看| 亚洲av熟女| 91大片在线观看| 精品电影一区二区在线| 亚洲狠狠婷婷综合久久图片| 国产人伦9x9x在线观看| 新久久久久国产一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 18禁美女被吸乳视频| 国内久久婷婷六月综合欲色啪| 欧美亚洲日本最大视频资源| 亚洲欧美一区二区三区黑人| 看免费av毛片| 亚洲精品久久成人aⅴ小说| 国产色视频综合| 国产亚洲精品综合一区在线观看 | 黄片播放在线免费| 国产在线观看jvid| 99在线视频只有这里精品首页| 欧美乱码精品一区二区三区| 欧美黑人欧美精品刺激| aaaaa片日本免费| 欧美激情久久久久久爽电影 | 欧美精品一区二区免费开放| 国产精品久久久久成人av| 国产免费av片在线观看野外av| 久久久国产成人免费| 欧美日韩国产mv在线观看视频| 搡老岳熟女国产| 久久精品亚洲av国产电影网| 色婷婷久久久亚洲欧美| 日本黄色日本黄色录像| 熟女少妇亚洲综合色aaa.| 欧美亚洲日本最大视频资源| av网站免费在线观看视频| 久久久久久久久免费视频了| 国产xxxxx性猛交| 成年人黄色毛片网站| 精品卡一卡二卡四卡免费| 久久亚洲精品不卡| 桃色一区二区三区在线观看| 激情视频va一区二区三区| 成在线人永久免费视频| 多毛熟女@视频| 999久久久国产精品视频| 男女下面插进去视频免费观看| 人人澡人人妻人| 男女午夜视频在线观看| 国产欧美日韩一区二区精品| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 多毛熟女@视频| 日韩免费av在线播放| 高清黄色对白视频在线免费看| 国产成人av激情在线播放| 久久久久亚洲av毛片大全| 中亚洲国语对白在线视频| 日日摸夜夜添夜夜添小说| 精品国产一区二区三区四区第35| 国产av又大| 一本大道久久a久久精品| 国产精品久久久人人做人人爽| 免费在线观看黄色视频的| 国产精品国产高清国产av| 99国产精品免费福利视频| 女人被狂操c到高潮| 亚洲精品在线美女| 香蕉丝袜av| 精品久久久久久久久久免费视频 | 99久久国产精品久久久| 成人特级黄色片久久久久久久| 亚洲九九香蕉| 免费观看精品视频网站| 欧美午夜高清在线| 91麻豆av在线| 亚洲少妇的诱惑av| 99精品久久久久人妻精品| 又黄又爽又免费观看的视频| 淫秽高清视频在线观看| 国产高清videossex| 神马国产精品三级电影在线观看 | 好男人电影高清在线观看| 69av精品久久久久久| 国产成人免费无遮挡视频| 在线观看一区二区三区| 三级毛片av免费| 精品少妇一区二区三区视频日本电影| 亚洲av熟女| 麻豆一二三区av精品| 在线观看免费视频网站a站| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区| 啪啪无遮挡十八禁网站| av电影中文网址| 亚洲成av片中文字幕在线观看| 色综合欧美亚洲国产小说| 少妇粗大呻吟视频| 亚洲人成电影观看| 久久精品亚洲精品国产色婷小说| 十八禁网站免费在线| 狂野欧美激情性xxxx| 亚洲成人久久性| av超薄肉色丝袜交足视频| 亚洲av成人一区二区三| 美女高潮喷水抽搐中文字幕| 国产片内射在线| 亚洲自拍偷在线| 欧美丝袜亚洲另类 | 免费在线观看完整版高清| 中文字幕色久视频| 欧美日韩亚洲综合一区二区三区_| 欧美一级毛片孕妇| 成人av一区二区三区在线看| 成人手机av| 在线十欧美十亚洲十日本专区| 国产一区二区激情短视频| 国产高清videossex| 日韩成人在线观看一区二区三区| 国产成人av教育| 欧美成人午夜精品| 亚洲黑人精品在线| 成人精品一区二区免费| 久久精品影院6| www.精华液| 亚洲伊人色综图| 久久性视频一级片| 少妇 在线观看| 18禁美女被吸乳视频| 看黄色毛片网站| 黄片小视频在线播放| 精品日产1卡2卡| 亚洲 国产 在线| 91国产中文字幕| 成年版毛片免费区| 亚洲国产精品一区二区三区在线| 日韩免费高清中文字幕av| 长腿黑丝高跟| 欧美久久黑人一区二区| 欧美黑人精品巨大| 精品久久久久久成人av| 巨乳人妻的诱惑在线观看| 国产国语露脸激情在线看| 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| 欧美不卡视频在线免费观看 | 国产精品一区二区精品视频观看| 久久精品国产亚洲av高清一级| 丝袜美足系列| 成人免费观看视频高清| 啦啦啦在线免费观看视频4| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 久热爱精品视频在线9| 国产黄a三级三级三级人| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 狠狠狠狠99中文字幕| 欧美日韩国产mv在线观看视频| 亚洲熟妇熟女久久| 脱女人内裤的视频| 一二三四社区在线视频社区8| 夫妻午夜视频| 日韩精品免费视频一区二区三区| 婷婷丁香在线五月| 亚洲欧美日韩无卡精品| www国产在线视频色| 成人国产一区最新在线观看| 亚洲人成电影免费在线| 午夜精品国产一区二区电影| 免费在线观看黄色视频的| 欧美成人午夜精品| 久久天躁狠狠躁夜夜2o2o| 欧美乱色亚洲激情| 国内毛片毛片毛片毛片毛片| 欧美日韩国产mv在线观看视频| 亚洲精品粉嫩美女一区| 脱女人内裤的视频| 亚洲精品一二三| 精品久久蜜臀av无| av中文乱码字幕在线| 69精品国产乱码久久久| 在线观看www视频免费| 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院| 天天添夜夜摸| 咕卡用的链子| 一个人免费在线观看的高清视频| 亚洲精品久久午夜乱码| 99精品欧美一区二区三区四区| 午夜久久久在线观看| 最好的美女福利视频网| aaaaa片日本免费| 国产欧美日韩一区二区三区在线| 99精品久久久久人妻精品| 精品国产亚洲在线| 久久久久九九精品影院| 亚洲欧美激情在线| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 久久久久久久久久久久大奶| 99国产精品一区二区三区| 国产精品自产拍在线观看55亚洲| 在线观看免费高清a一片| 人人妻人人爽人人添夜夜欢视频| svipshipincom国产片| 日韩 欧美 亚洲 中文字幕| 夜夜夜夜夜久久久久| 亚洲 国产 在线| 欧美人与性动交α欧美精品济南到| 又紧又爽又黄一区二区| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 大陆偷拍与自拍| 国产1区2区3区精品| 亚洲av成人av| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 9色porny在线观看| 亚洲av成人av| 91精品国产国语对白视频| 国产欧美日韩精品亚洲av| 黄片播放在线免费| 国产黄a三级三级三级人| 亚洲色图综合在线观看| 五月开心婷婷网| 91精品国产国语对白视频| 琪琪午夜伦伦电影理论片6080| 中文字幕av电影在线播放| 国产一区二区在线av高清观看| 99精品在免费线老司机午夜| 久久精品人人爽人人爽视色| 咕卡用的链子| 日日干狠狠操夜夜爽| 不卡av一区二区三区| 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| 国产精品av久久久久免费| netflix在线观看网站| 露出奶头的视频| 色播在线永久视频| 国产伦人伦偷精品视频| 9热在线视频观看99| av网站免费在线观看视频| 国产精品1区2区在线观看.| 久久精品91无色码中文字幕| 午夜两性在线视频| 99在线视频只有这里精品首页| 午夜视频精品福利| 亚洲欧美激情综合另类| 91成人精品电影| 成年女人毛片免费观看观看9| 巨乳人妻的诱惑在线观看| 免费久久久久久久精品成人欧美视频| 午夜免费观看网址| 看免费av毛片| 亚洲狠狠婷婷综合久久图片| 欧美性长视频在线观看| 啪啪无遮挡十八禁网站| 成人特级黄色片久久久久久久| 欧美乱妇无乱码| 不卡一级毛片| 精品国产一区二区久久| 成人三级黄色视频| 久久伊人香网站| 久久天堂一区二区三区四区| 亚洲精品久久午夜乱码| 色综合站精品国产| 无限看片的www在线观看| 日日干狠狠操夜夜爽| 国产乱人伦免费视频| 丝袜人妻中文字幕| 12—13女人毛片做爰片一| 国产成人av教育| 男女午夜视频在线观看| 欧美另类亚洲清纯唯美| 欧美激情 高清一区二区三区| 日韩大尺度精品在线看网址 | 三级毛片av免费| 国产野战对白在线观看| 国产激情久久老熟女| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲综合一区二区三区_| 老司机深夜福利视频在线观看| 国产精品自产拍在线观看55亚洲| 亚洲国产欧美网| 欧美一区二区精品小视频在线| 国产极品粉嫩免费观看在线| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 超碰成人久久| 日韩大码丰满熟妇| 精品电影一区二区在线| 中文字幕色久视频| 91麻豆精品激情在线观看国产 | 国产有黄有色有爽视频| 国产精品98久久久久久宅男小说| 欧美日韩视频精品一区| 神马国产精品三级电影在线观看 | 精品乱码久久久久久99久播| 欧美 亚洲 国产 日韩一| 国产亚洲精品久久久久5区| 岛国在线观看网站| 丝袜人妻中文字幕| 天天躁夜夜躁狠狠躁躁| 国产97色在线日韩免费| av视频免费观看在线观看| 免费久久久久久久精品成人欧美视频| 国产成年人精品一区二区 | 亚洲国产精品一区二区三区在线| 亚洲欧美激情在线| 热99re8久久精品国产| 亚洲国产毛片av蜜桃av| 国产av一区在线观看免费| 久久精品影院6| 欧美乱码精品一区二区三区| 最近最新中文字幕大全免费视频| 丰满饥渴人妻一区二区三| 久久香蕉激情| 国产成人系列免费观看| 免费av中文字幕在线| 国产精品久久久人人做人人爽| 国产精品一区二区免费欧美| 女性生殖器流出的白浆| a级毛片黄视频| 成人手机av| 神马国产精品三级电影在线观看 | 亚洲av成人av| 无限看片的www在线观看| 午夜福利在线观看吧| 身体一侧抽搐| 女人被狂操c到高潮| 免费av毛片视频| 一级毛片精品| 日日干狠狠操夜夜爽| 亚洲欧美激情在线| 久久这里只有精品19| 国产不卡一卡二| 两个人看的免费小视频| 黄色视频,在线免费观看| 欧美日韩精品网址| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品第一综合不卡| 成人影院久久| 亚洲狠狠婷婷综合久久图片| av免费在线观看网站| 99香蕉大伊视频| 亚洲国产毛片av蜜桃av| 丰满迷人的少妇在线观看| 国产亚洲欧美在线一区二区| 热99国产精品久久久久久7| 超色免费av| 伊人久久大香线蕉亚洲五| 一级片'在线观看视频| 国产91精品成人一区二区三区| 日日爽夜夜爽网站| 男女下面插进去视频免费观看| 亚洲精品在线美女| 十分钟在线观看高清视频www| 久久亚洲精品不卡| 国产精品野战在线观看 | 亚洲精品中文字幕在线视频| 久久久国产成人精品二区 | 丝袜美足系列| av超薄肉色丝袜交足视频| 国产精品综合久久久久久久免费 | 男女高潮啪啪啪动态图| 久久久国产精品麻豆| 亚洲午夜精品一区,二区,三区| 后天国语完整版免费观看| 最好的美女福利视频网| 成人18禁高潮啪啪吃奶动态图| 亚洲人成77777在线视频| 欧美日韩精品网址| 日本一区二区免费在线视频| 日本 av在线| 中文字幕av电影在线播放| 99国产精品一区二区蜜桃av| 久久婷婷成人综合色麻豆| 成年女人毛片免费观看观看9| 岛国视频午夜一区免费看| 一本综合久久免费| 青草久久国产| 亚洲成人免费av在线播放| 久久国产精品人妻蜜桃| 国产av精品麻豆| 又紧又爽又黄一区二区| 性少妇av在线| 黄片小视频在线播放| 亚洲一区二区三区不卡视频| 午夜免费激情av| 欧美日本亚洲视频在线播放| 91大片在线观看| 丝袜美腿诱惑在线| 精品一区二区三区视频在线观看免费 | 在线国产一区二区在线| 麻豆av在线久日| 人人妻,人人澡人人爽秒播| 在线播放国产精品三级| 黑丝袜美女国产一区| 亚洲人成网站在线播放欧美日韩| 亚洲免费av在线视频| 国产91精品成人一区二区三区| 国产熟女xx| 久久性视频一级片| 亚洲第一av免费看| 国产精品电影一区二区三区| 交换朋友夫妻互换小说| ponron亚洲| svipshipincom国产片| 91成年电影在线观看| 变态另类成人亚洲欧美熟女 | 又黄又粗又硬又大视频| 香蕉国产在线看| 天天躁狠狠躁夜夜躁狠狠躁| 人人澡人人妻人| 欧美成人性av电影在线观看| 一进一出抽搐gif免费好疼 | 亚洲中文av在线| 黄色成人免费大全| 亚洲成a人片在线一区二区| 欧美黄色片欧美黄色片| 日韩国内少妇激情av| 男人操女人黄网站| 亚洲片人在线观看| 亚洲国产欧美网| 嫁个100分男人电影在线观看| 亚洲美女黄片视频| xxxhd国产人妻xxx| 久久亚洲真实| 免费看a级黄色片| 久久久久久久久免费视频了| 久久99一区二区三区| 日本免费一区二区三区高清不卡 | 久久国产精品影院| 国产亚洲欧美98| 88av欧美| 亚洲av五月六月丁香网| 老司机午夜十八禁免费视频| 岛国视频午夜一区免费看| 女性被躁到高潮视频| 黄色片一级片一级黄色片| 久久天堂一区二区三区四区| 国产免费男女视频| 一级作爱视频免费观看| 少妇被粗大的猛进出69影院| 亚洲专区字幕在线| 久久香蕉激情| 国产精品国产av在线观看| 一本大道久久a久久精品| 欧美日韩一级在线毛片| 久久天堂一区二区三区四区| 日韩国内少妇激情av| 18禁黄网站禁片午夜丰满| a级片在线免费高清观看视频| 无限看片的www在线观看| av福利片在线| 国产一卡二卡三卡精品| 色婷婷久久久亚洲欧美| 久久这里只有精品19| 国产精品二区激情视频| 成年版毛片免费区| e午夜精品久久久久久久| 天堂√8在线中文| 亚洲色图av天堂| 国产亚洲欧美98| 亚洲精品国产精品久久久不卡| 国产精品国产高清国产av| 日本撒尿小便嘘嘘汇集6| 久久精品影院6|