• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      HCl-CuCl2-NaClO濕法浸取手機(jī)元器件中的鈀、金

      2016-12-23 08:02:06丁江鈴,張小平,朱亞茹
      中國(guó)環(huán)境科學(xué) 2016年12期
      關(guān)鍵詞:氧化劑固液元器件

      HCl-CuCl2-NaClO濕法浸取手機(jī)元器件中的鈀、金

      丁江鈴1,3,張小平1,2,3*,朱亞茹1,3,張?zhí)煊?,3,劉競(jìng)輝1,3(1.華南理工大學(xué)環(huán)境與能源學(xué)院,廣東 廣州 510006;2.工業(yè)聚集區(qū)污染控制與生態(tài)修復(fù)教育部重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510006;3.廣東省固體廢物處理和回收利用重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510006)

      通過(guò)HCl-CuCl2-NaClO濕法浸出體系對(duì)手機(jī)元器件中金屬鈀(Pd)、金(Au)進(jìn)行浸出實(shí)驗(yàn),研究不同因素對(duì)于Pd、Au浸出率的影響.結(jié)果顯示,在2mol/L HCl、體積分?jǐn)?shù)5% NaClO、0.075mol/L CuCl2、固液比1%,反應(yīng)溫度60℃條件下,2h后Pd、Au浸出率均可達(dá)85%;結(jié)果表明,Cu2+、Cl-、溫度對(duì)于Pd的浸出率起很大作用,NaClO的加入可加快Pd浸出反應(yīng)達(dá)到平衡速率;NaClO、溫度對(duì)于A(yíng)u的浸出率起關(guān)鍵作用,HCl、Cu2+的加入可促進(jìn)Au的浸出.因此,HCl-CuCl2-NaClO濕法浸出體系對(duì)于Pd、Au具有良好的浸出效果.

      電子廢棄物;金;鈀;銅-氯體系;濕法浸出;手機(jī)

      全球每年大約產(chǎn)生3500萬(wàn)t的電子廢棄物,中國(guó)每年產(chǎn)生的電子廢棄物量超過(guò)300萬(wàn)t[1].據(jù)估計(jì),到2020、2030年,中國(guó)將產(chǎn)生1550,2840萬(wàn)t電子廢棄物[2].新版《廢棄電器電子產(chǎn)品處理目錄》也于2016年3月1日起正式實(shí)施,在舊目錄的基礎(chǔ)上,將管理范圍擴(kuò)大至 14類(lèi),手機(jī)被納入其中.2013年中國(guó)廢舊手機(jī)產(chǎn)生量已達(dá)到7.99億部[3].廢舊手機(jī)中的貴金屬含量高于其他電子廢棄物,尤其是Ag和Pd的含量[2].平均每t廢舊手機(jī)中含 130kg Cu,3.5kg Ag,0.34kg Au,0.14kg Pd[4].

      對(duì)于從手機(jī)線(xiàn)路板中回收金屬主要的研究方法有物理法、火法、濕法及生物法等[5-11].其中濕法回收電子廢棄物中金屬的研究最多.線(xiàn)路板金屬的研究集中于Cu、Au、Ag、Pd等[12-20].濕法回收貴金屬的研究方法有硫脲法,硫代硫酸鹽法,鹵化法等[4,16,21-23].

      濕法浸取金屬方面常常使用氧化劑將其氧化,以離子或絡(luò)合物的形式進(jìn)入溶液中.一些研究已經(jīng)將O2、H2O2、Fe3+、Cl2等作為氧化劑運(yùn)用到Cu、Fe、Ni、Au、Ag等的浸出實(shí)驗(yàn)中[20,24-26].在氯化物介質(zhì)中,Cu2+也能夠作為氧化劑,對(duì)于普通金屬及貴金屬都有良好的氧化效果(銅-氯體系),一些研究將 Cu2+作為氧化劑運(yùn)用到電子廢棄物中金屬浸取方面, Yazici等[12],Deveci等[26]在酸性條件下,加入NaCl,將Cu2+作為氧化劑,氧化浸出Cu、Ag等. Zhang等[20-21]運(yùn)用CuSO4和NaCl溶液浸出線(xiàn)路板中的Ag、Pd,取得良好效果.但銅-氯體系對(duì)于A(yíng)u的氧化浸出效果卻并不明顯,有研究將次氯酸鹽運(yùn)用于礦物中 Au的浸出,實(shí)驗(yàn)表明,次氯酸鹽對(duì)于 Au有良好的氧化浸出效果[19,27,29].

      采用HCl-CuCl2-NaClO體系濕法浸出手機(jī)元器件粉末中的 Pd、Au,通過(guò)對(duì)銅-氯體系的改良,解決了Au浸出率低的問(wèn)題,實(shí)現(xiàn)Pd、Au兩種貴金屬同時(shí)高效浸出.本實(shí)驗(yàn)研究溫度、銅離子濃度、次氯酸鈉濃度、鹽酸濃度以及固液比(反應(yīng)時(shí)固體粉末質(zhì)量與液體體積比,g/mL)各因素對(duì)Pd、Au浸出效果的影響.以期為手機(jī)元器件中Pd、Au回收提供技術(shù)支持.

      1 實(shí)驗(yàn)材料與方法

      1.1 實(shí)驗(yàn)材料

      實(shí)驗(yàn)所用的材料來(lái)自佛山某資源利用有限公司提供的廢舊手機(jī),手工拆解手機(jī),取下電路板,利用熱風(fēng)槍將電路板表面的元器件吹落,將吹落的元器件收集后利用高速旋轉(zhuǎn)破碎機(jī)破碎至 60目以上(<0.25mm)粉末.該手機(jī)元器件粉末即實(shí)驗(yàn)所用的原材料.取0.5g元器件粉末采用HNO3-HCl-HF進(jìn)行消解.消解徹底后進(jìn)行趕酸稀釋,利用火焰原子吸收(AAS)測(cè)定金屬含量,進(jìn)行 6次重復(fù)實(shí)驗(yàn),金屬含量取其平均值,結(jié)果見(jiàn)表1.

      表1 原材料中金屬含量Table 1 Metal contents of the sample

      1.2 實(shí)驗(yàn)方法

      采用HCl、CuCl2、NaClO化學(xué)試劑(分析純),研究不同試劑濃度、不同溫度以及固液比對(duì)手機(jī)元器件粉末中Au、Pd浸出效果的影響,稱(chēng)取3g粉末于500mL燒杯中,在不同反應(yīng)條件下進(jìn)行化學(xué)反應(yīng),HCl:1~2mol/L;CuCl2:0~0.125mol/L;NaClO: 5%~10%(體積比);固液比:1%~5%,置于不同溫度恒溫水浴鍋中,采用保鮮膜封口,在400r/min的數(shù)顯電動(dòng)攪拌器下攪拌均勻.于不同反應(yīng)時(shí)間點(diǎn)采用20mL一次性注射器取樣、0.22μm水系過(guò)濾頭過(guò)濾后,采用火焰原子吸收(AAS)測(cè)定浸出液中金屬含量.每組實(shí)驗(yàn)在同等實(shí)驗(yàn)反應(yīng)條件下重復(fù)3次,取平均值.并根據(jù)原粉末中金屬含量計(jì)算得出浸出率.

      2 結(jié)果與討論

      2.1 CuCl2對(duì)Pd、Au浸出率的影響

      在2mol/L HCl、5% NaClO,1%固液比,60℃反應(yīng)條件下,控制CuCl2的濃度,浸出率隨時(shí)間的變化見(jiàn)圖1.

      從圖1可以看出,浸取金屬化學(xué)反應(yīng)進(jìn)行速率很快,對(duì)于Pd浸出,Cu2+濃度增加會(huì)提高Pd的浸出效率,但是基本上在半小時(shí)內(nèi)就達(dá)到平衡.在Cl-存在情況下,Cu2+作為氧化劑將金屬氧化為離子狀態(tài)進(jìn)入溶液中,Cu2+具有氧化性是由于它可作為Cl-的配位體.例如,在Cu2+和Cl-存在下金屬Cu首先溶解為亞銅(Cu+),隨后形成銅氯配合物(1≤n≤4)[12,26],溶液應(yīng)保證氯化物的濃度,以防止Cu+以CuCl沉淀形式存在.隨著Cl-濃度的不同,Cu2+也可能以 CuCln2-n的形式存在.增加Cl-濃度時(shí),能夠降低普通金屬與貴金屬的反應(yīng)勢(shì)能(Cu、Fe、Au、Pd等)[30].Cu2+作為氧化劑將Cu、 Pd、Au氧化為、、Zhang等[28]研究發(fā)現(xiàn)Cu/Cu2+對(duì)于鈀的浸出效率有很大影響,當(dāng) Cu/Cu2+≥1.4時(shí),主要跟元器件粉末中的Cu發(fā)生反應(yīng),生成CuCl沉淀,當(dāng)Cu/Cu2+≤0.95時(shí),Pd被氧化,Pd的回收效率高達(dá)98%,Cu2+作為氧化劑將Cu、Pd、Au、Ag氧化,主要發(fā)生以下反應(yīng)[26]:

      圖1 鈀和金的浸出率隨時(shí)間的變化([HCl]:2mol/L, [NaClO]:5%, 60℃, 1%固液比)Fig.1 Varations of palladium and gold leaching efficiencies with time ([HCl]:2mol/L, [NaClO]: 5%, 60℃, 1% S/L)

      2.2 NaClO對(duì)Pd、Au浸出率的影響

      在2mol/L HCl、0.075mol/L CuCl2,1%固液比,60℃反應(yīng)溫度下,控制 NaClO的量,浸出率隨時(shí)間的變化見(jiàn)圖2.

      NaClO在有 HCl的情況下,可以水解為HClO、Cl2等,HClO的氧化性強(qiáng)于 ClO-.在有HClO、Cl2時(shí),氧化性更強(qiáng),加快 Pd的浸出速率.Au屬于高正電位金屬,溶解Au需要電極電位高的活性氧化劑.僅從標(biāo)準(zhǔn)電極電位的角度考慮,氯氣、次氯酸1.49V)的標(biāo)準(zhǔn)電極電位均小于 Au的氧化電位,不足以將Au氧化.但在有Cl-存在的溶液中,由于金離子與氯離子生成穩(wěn)定的絡(luò)離子,,使其活度降低,從而使 Au的溶解電位大幅度降低[29].Cl--Cl2體系對(duì)于 Au的氧化浸出具有很好的效果,氯化物跟 Au的反應(yīng)速率比氰化物更快,同時(shí)不會(huì)在金的表面產(chǎn)生鈍化[27].當(dāng)pH≤2,溶液中存在Cl2、Cl-時(shí),容易將Au氧化為.在氯化物溶液中 Au的溶解機(jī)理為:首先形成AuCl,進(jìn)一步跟Cl-結(jié)合為,最終被氧化為.主要發(fā)生的反應(yīng)為:

      圖2 鈀和金的浸出率隨時(shí)間的變化([HCl]:2mol/L, [CuCl2]:0.075mol/L, 60℃, 1%固液比)Fig.2 Varations of palladium and gold leaching efficiencies with time ([HCl]:2mol/L, [CuCl2]:0.075mol/L, 60℃, 1% S/L)

      2.3 HCl對(duì)Pd、Au浸出率的影響

      在 0.075mol/L CuCl2、5%NaClO,1%固液比,60℃反應(yīng)條件下,控制 HCl的量,浸出率隨時(shí)間的變化見(jiàn)圖3.

      圖3 鈀和金的浸出率隨時(shí)間的變化Fig.3 Varations of palladium and gold leachingefficiencies with time

      HCl濃度的增加會(huì)促進(jìn)Pd、Au的溶出,在大氣壓條件下,高濃度氯化物溶液可以增加質(zhì)子活性,促進(jìn)穩(wěn)定的金屬氯化復(fù)合物的形成.增加氯化物的濃度導(dǎo)致普通金屬與貴金屬(例如 Cu,Au, Pd,Ag)的氧化還原電位的降低[23].一些金屬氯化物添加Cl-后氧還原電位的變化見(jiàn)表2.

      表2 金屬氯化物的氧化還原電位Table 2 Potential of some metal cholride complexes[31]

      2.4 溫度對(duì)Pd、Au浸出率的影響

      在 2mol/L HCl、5% NaClO、0.075mol/L CuCl2,1%固液比,控制反應(yīng)溫度,浸出率隨時(shí)間的變化見(jiàn)圖4.

      圖4 鈀和金的浸出率隨時(shí)間的變化Fig.4 Varations of palladium and gold leaching efficiencies with time

      從圖4可以看出,溫度對(duì)于Pd、Au的浸出率及反應(yīng)速度都有很大的影響.溫度的升高可以提高金屬的浸出率和反應(yīng)速率,主要是因?yàn)榻饘俚难趸鍪俏鼰岱磻?yīng),增加反應(yīng)溫度可以降低氧化還原電位,促進(jìn) Pd、Au氧化為PdCl42-、AuCl4-.但同時(shí)過(guò)高的溫度會(huì)造成HCl、NaClO的揮發(fā), 60℃與80℃時(shí)Pd、Au的浸出率并沒(méi)有相差很多,有可能是HCl、NaClO揮發(fā)損失所造成.

      2.5 固液比對(duì)Pd、Au、Ag浸出率的影響

      不同固液比(1%~5%)在反應(yīng) 4h后的金屬浸出率見(jiàn)圖5,反應(yīng)條件為:60℃,2mol/L HCl、0.075mol/L CuCl2、5% NaClO.從圖中可以看出該體系對(duì)于金屬Ag也有良好的浸出效率,即使在較高的固液比下,Ag也有良好的浸出率.在5%固液比條件下,Pd的浸出率仍有80%.但Au隨固液比的增加,浸出率下降很快,這是因?yàn)锳u的氧化電位在這些金屬中最高,最難溶出,當(dāng)溶液中的氧化性不夠時(shí),Au的浸出率最先出現(xiàn)下降.

      圖5 不同固液比金屬浸出率Fig.5 The effect of solid/liquid ratio on the extraction of metals over 240min

      3 結(jié)論

      3.1 HCl-CuCl2-NaClO體系對(duì)于Pd的浸出率主要是由Cu2+、Cl-的濃度決定,NaClO的加入可加快反應(yīng)的進(jìn)行,溫度的升高同樣可促進(jìn)反應(yīng)的進(jìn)行,在 2mol/L HCl、0.075mol/L CuCl2、5%NaClO、1%固液比、80℃條件下5h后可實(shí)現(xiàn)93%的浸出率.

      3.2 銅-氯體系中加入 NaClO可大大提高 Au的溶出,在一定濃度HCl存在時(shí),金的浸出率主要與NaClO、溫度有關(guān).

      3.3 該體系不僅對(duì)于Pd、Au的浸出效果好,同時(shí)對(duì)于Cu、Ag的浸出率也很高,在2mol/L HCl、0.075mol/L CuCl2、5%NaClO、60℃條件下,即使固液比為5%時(shí),4h后也可實(shí)現(xiàn)Cu、Ag 90%以上的浸出率.

      [1] Li J H, Zeng X L, Chen M J, et al. "Control-alt-delete": rebooting solutions for the E-waste problem [J]. Environmental Science & Technology, 2015,49:7095-7108.

      [2] Zeng X L, Gong R Y, Chen W Q, et al. Uncovering the recycling potential of “New” WEEE in China [J]. Environmental Science & Technology, 2016,50:1347-1358.

      [3] 李 博,楊建新,呂 彬,等.中國(guó)廢舊手機(jī)產(chǎn)生量時(shí)空分布研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2015,35(12):4095-4101.

      [4] Petter P M H, Veit H M, Bernardes A M. Evaluation of gold and silver leaching from printed circuit board of cellphones [J]. Waste Management, 2014,34(2):475-482.

      [5] Cui J, Forssberg E. Mechanical recycling of waste electric and electronic equipment: a review [J]. Journal of Hazardous Materials, 2003,99(3):243-263.

      [6] Tuncuk A, Stazi V, Akcil A, et al. Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling [J]. Minerals Engineering, 2012,25(1):28-37.

      [7] Cui J R, Zhang L F. Metallurgical recovery of metals from electronic waste: a review [J]. Journal of Hazardous Materials, 2008, 158(2/3):228-256.

      [8] Ilyas S, Lee J-c, Chi R-a. Bioleaching of metals from electronic scrap and its potential for commercial exploitation [J]. Hydrometallurgy, 2013,131-132,138-143.

      [9] Shah M B, Tipre D R, Dave S R. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones [J]. Waste Management, 2014,32(11):1134-1141.

      [10] Hadi P, Xu M, Carol S K, et al. Waste printed circuit board recycling techniques and product utilization [J]. Journal of Hazardous Materials, 2015,283:234-243.

      [11] Silvas F P, Correa M M, Caldas M P, et al. Printed circuit board recycling: Physical processing and copper extraction by selective leaching [J]. Waste Management, 2015,46:503-510.

      [12] Yazici E Y, Deveci H. Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4-CuSO4-NaCl solutions [J]. Hydrometallurgy, 2013,139:30-38.

      [13] Zhu P, Fan Z Y, Liu Q, et al. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board [J]. Journal of Hazardous Materials, 2009,166(2/3): 746-750.

      [14] Birloaga I, Coman V, Kopacek B, et al. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals [J]. Waste Management, 2014,34(12):2581-2586.

      [15] Petter P M, Veit H M, Bernardes A M. Evaluation of gold and silver leaching from printed circuit board of cellphones [J]. WasteManagement, 2014,34(2):475-482.

      [16] Yu H, Zi F T, Hu X Z, et al. The copper- ethanediamine -thiosulphate leaching of gold ore containing limonite with cetyltrimethyl ammonium bromide as the synergist [J]. Hydrometallurgy, 2014,150:178-183.

      [17] Eksteen J J, Oraby E A. The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: Effect of catalytic ions, sulphide minerals and amino acid type [J]. Minerals Engineering, 2015,70:36-42.

      [18] Oraby E A, Eksteen J J. The leaching of gold, silver and their alloys in alkaline glycine–peroxide solutions and their adsorption on carbon [J]. Hydrometallurgy, 2015,152:199-203.

      [19] Behnamfard A, Salarirad M M, Veglio F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation [J]. Waste Management, 2013,33(11):2354-2363.

      [20] Zhang Z Y, Zhang F S. Synthesis of cuprous chloride and simultaneous recovery of Ag and Pd from waste printed circuit boards [J]. Journal of Hazardous Materials, 2013,261:398-404.

      [21] Zhang Z Y, Zhang F S. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process [J]. Journal of Hazardous Materials, 2014,279:46-51.

      [22] Li J Y, Xu X L, Liu W Q. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones [J]. Waste Management, 2012,32(6):1209–1212.

      [23] Kim E-y, Kim M-s, Lee J-c, et al. Leaching behavior of copper using electro-generated chlorine in hydrochloric acid solution [J]. Hydrometallurgy, 2010,100(3/4):95-102.

      [24] Birloaga I, De Michelis I, Ferella F, et al. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery [J]. Waste Management, 2013,33(4):935-941.

      [25] Yazici E Y, Deveci H. Ferric sulphate leaching of metals from waste printed circuit boards [J]. International Journal of Mineral Processing, 2014,133:39-45.

      [26] Yazici E Y, Deveci H. Cupric chloride leaching (HCl-CuCl2-NaCl) of metals from waste printed circuit boards (WPCBs) [J]. International Journal of Mineral Processing, 2015,134:89-96.

      [27] Baghalha M. Leaching of an oxide gold ore with chloride/ hypochlorite solutions [J]. International Journal of Mineral Processing, 2007,82(4):178-186.

      [28] Zhang Z Y, Zhang F S. A Green Process for Copper Recovery from Waste Printed Circuit Boards [J]. Advanced Materials Research, 2014,878:374-379.

      [29] 金創(chuàng)石,張廷安,牟望重,等.液氯化法浸金過(guò)程熱力學(xué) [J]. 稀有金屬, 2012,36(1):129-134.

      [30] Winand R. Chloride hydrometallurgy [J]. Hydrometallurgy, 1991, 27(3):285-316.

      [31] Puvvada G V K, Sridhar R, Lakshmanan V I, Chloride metallurgy: PGM recovery and titanium dioxide productions [J]. The Journal of The Minerals, Metals & Materials Society, 2003,55:38-41.

      Extraction of Pd,Au from Phone components in HCl-CuCl2-NaClO solutions.

      DING Jiang-ling1,3, ZHANG Xiao-ping1,2,3*, ZHU Ya-ru1,3, ZHANG Tian-yu1,3, LIU Jing-hui1,3(1.School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;2.Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China;3.Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, China). China Environmental Science, 2016,36(12):3711~3716

      A novel hydrometallurgical process for recovery of palladium and gold from phone components in HCl-CuCl2-NaClO leaching system was offered, different factors of Pd, Au leaching process were investigated. The results of experiment indicated that, on the condition of 2mol/L HCl, 5% NaClO, 0.075mol/L CuCl2at 333K for 2h with a solid/liquid ratio of 1/100, over 85% of Pd and Au was leached. Cu2+, Cl-, the temperature for the Pd leaching rates played a significant role. NaClO was added to solutions could accelerate the Pd leaching reaction rates; NaClO, the temperature for the Au leaching rates had a significant influence. The additions of HCl, Cu2+to promotes Au leaching. Therefore, HCl-CuCl2-NaClO leaching system for Pd, Au leaching have a positive effect.

      waste electrical and electronic equipment;gold;palladium;cupric-chloride leaching;hydrometallugry;mobile phone

      X705

      A

      1000-6923(2016)12-3711-06

      丁江鈴(1992-),女,江西鷹潭人,華南理工大學(xué)碩士研究生,主要從事電子廢棄物資源化處理與處置方面的研究.

      2016-06-02

      國(guó)家自然科學(xué)基金(21377041);廣東省科技計(jì)劃項(xiàng)目(2013B021300022);亞熱帶建筑科學(xué)基金會(huì)國(guó)家重點(diǎn)實(shí)驗(yàn)室(2013KB28)

      * 責(zé)任作者, 教授, xpzhang@scut.edu.cn

      猜你喜歡
      氧化劑固液元器件
      元器件國(guó)產(chǎn)化推進(jìn)工作實(shí)踐探索
      我國(guó)新一代首款固液捆綁運(yùn)載火箭長(zhǎng)征六號(hào)甲成功首飛
      上海航天(2022年2期)2022-04-28 11:58:46
      “氧化劑與還原劑”知識(shí)解讀
      熟悉優(yōu)先原理 迅速準(zhǔn)確解題
      裝備元器件采購(gòu)質(zhì)量管理與控制探討
      基于DSP+FPGA的元器件焊接垂直度識(shí)別方法
      不同氧化劑活化過(guò)硫酸鈉對(duì)土壤中多環(huán)芳烴降解的影響
      固液結(jié)合復(fù)合酶在保育豬日糧上的應(yīng)用研究
      廣東飼料(2016年1期)2016-12-01 03:43:00
      固液分離旋流器壁面磨損的數(shù)值模擬
      炭黑氣力輸送裝置主要元器件的選擇
      杨浦区| 垦利县| 抚松县| 德兴市| 万宁市| 酒泉市| 饶阳县| 集贤县| 广东省| 尼木县| 钟山县| 葵青区| 赞皇县| 佳木斯市| 通辽市| 肥乡县| 昌江| 三河市| 油尖旺区| 同心县| 西安市| 剑河县| 望城县| 永德县| 怀化市| 东方市| 阿克| 清水县| 新田县| 海口市| 舞钢市| 耒阳市| 丰城市| 祁连县| 金乡县| 建德市| 阿瓦提县| 安顺市| 济宁市| 平度市| 佛坪县|