張黎明,陳家斌,房 聰,周 露,胡金梅,郝尚斌,李文衛(wèi),王忠明,黃天寅*(.蘇州科技大學環(huán)境科學與工程學院,江蘇 蘇州 5009;.中國科學技術大學化學與材料科學學院,安徽 合肥 3006)
Cl-對碳納米管/過一硫酸鹽體系降解金橙G的影響
張黎明1,陳家斌1,房 聰1,周 露1,胡金梅1,郝尚斌1,李文衛(wèi)2,王忠明1,黃天寅1*(1.蘇州科技大學環(huán)境科學與工程學院,江蘇 蘇州 215009;2.中國科學技術大學化學與材料科學學院,安徽 合肥 230026)
采用碳納米管(CNT)活化過一硫酸鹽(PMS)的方法產(chǎn)生自由基,研究氯離子(Cl-)對CNT/PMS體系氧化降解金橙G(OG)的影響.發(fā)現(xiàn)Cl-對CNT/PMS體系氧化降解OG的過程具有雙重影響,低濃度Cl-會抑制OG的脫色,高濃度Cl-會促進OG的脫色;無CNT存在時Cl-會直接與PMS作用使OG脫色.研究了CNT/PMS/Cl-體系降解OG的主要影響因素(PMS濃度、反應溫度、OG初始濃度、Cl-濃度、初始pH)和反應機制,結(jié)果表明PMS濃度為1.6mmol/L、反應溫度為25℃時、OG初始濃度為0.8mmol/L、Cl-濃度為50mmol/L和pH=7的條件下, 25min內(nèi)OG脫色率可達到100%,反應體系的活化能為88.45kJ/mol;隨著初始pH升高, OG脫色率先減后升,降解OG的活性物質(zhì)為和HOCl.對OG降解過程的礦化率分析表明,CNT存在條件下OG的礦化率要比無CNT存在時要好;然后通過紫外可見掃描光譜掃描和GC-MS分析,發(fā)現(xiàn)OG分子中偶氮鍵及萘環(huán)結(jié)構(gòu)被破壞后,生成了其他小分子物質(zhì).
碳納米管;Cl-;過一硫酸鹽;金橙G;脫色率
偶氮染料是分子結(jié)構(gòu)中含有一個或者多個偶氮基(—N=N—)的染料,是紡織、造紙、制革等工業(yè)常用染料,其生產(chǎn)廢水具有毒性、致突變、致癌、難降解等特點[1-3],不經(jīng)處理直接排放會對環(huán)境造成嚴重污染.偶氮染料廢水的常用的處理方法有吸附[4-5]、絮凝[6-7]、光催化[8-9]、臭氧化[10]
等.其中吸附和絮凝方法處理偶氮染料廢水可使偶氮染料分子轉(zhuǎn)移至吸附劑或絮凝劑去除,但是偶氮染料沒有得到降解和礦化;光催化和臭氧化對偶氮染料脫色的同時有降解和礦化的效果,但是他們也存在一些缺陷,比如光催化劑的效率低、穩(wěn)定性差、有毒性以及不易回收利用等,臭氧氧化對設備要求高、易產(chǎn)生有毒有害物質(zhì)等.
偶氮染料廢水普遍具有含鹽量高的特點[28],探索廢水基質(zhì)(如Cl-)在PMS活化過程中的作用對于將該技術用于染料廢水處理具有重要的意義.徐蕾等[29]報道了 Cl-對鈷/單過硫酸鹽體系降解 2,4,6-三氯苯酚(2,4,6-TCP)的影響,發(fā)現(xiàn)低濃度Cl-(0~10mmol/L)會與·反應生成·,抑制2,4,6-TCP的降解,而高濃度Cl-(>100mmol/L)會直接與單過硫酸鹽反應產(chǎn)生 HOCl,促進2,4,6-TCP的降解;本文在CNT活化PMS降解OG的基礎上,研究了Cl-對CNT/PMS體系降解OG過程的影響,并分析了其可能存在的機制以及主要影響因素.
1.1 材料與試劑
CNT(含量 95%,內(nèi)直徑 2~5nm,長度 10~30μm)購于南京先豐納米材料科技有限公司,過一硫酸鹽(KHSO5·0.5KHSO4·0.5K2SO4,PMS)購于Sigma-Aldrich;金橙G(OG)購于國藥集團化學試劑有限公司,化學結(jié)構(gòu)式如圖 1所示,氯化鈉(NaCl)、亞硝酸鈉(NaNO2)、甲醇(CH3OH )、硫酸銨[(NH4)2·SO4]、氫氧化鈉(NaOH)、硫酸(H2SO4)均為分析純購于國藥集團化學試劑有限公司.實驗用水為超純水.
1.2 降解實驗
在一定的溫度下,將一定量PMS和NaCl注入250mL的錐形瓶中,同時往錐形瓶中加入一定量的超純水,并用稀H2SO4或NaOH調(diào)節(jié)pH值,然后迅速加入一定量的CNT和一定量的OG溶液,使得總?cè)芤哼_到250mL,采用磁力攪拌混合啟動反應.每隔一段時間取樣,迅速加入過量淬滅劑NaNO2終止反應,猝滅后的樣品經(jīng) 0.45μm濾膜過濾后,收集濾液待后續(xù)測定.
圖1 金橙G的化學結(jié)構(gòu)式Fig.1 Molecule structure of Orange G
1.3 分析方法
使用Mapada UV-1600(PC)紫外可見分光光度計,于OG最大吸收波長479nm處測定濾液的吸光度,代入標準曲線求得濃度C.TOC采用總有機碳分析儀(TOC-LCPH,島津)測定.
降解產(chǎn)物采用 GC/MS測試分析,儀器型號為Agilent 7890A/5975C,色譜柱為HP-5毛細管柱(30m×320μm×0.25μm).質(zhì)譜檢測器(MSD)采用EI電離源(70eV),離子源溫度為 230℃.載氣(He)流量為 1.0mL/min,進樣量 1μL,進樣口溫度為250℃,采用不分流模式.升溫程序如下:40℃保持2min,然后以12℃/min的速率升溫到100℃,再以5℃/min的速率升溫到200℃,最后以20℃/min升溫到 270℃保持 5min.降解產(chǎn)物的鑒定采用Nist-11標準圖庫,匹配度大于90%.
2.1 不同初始條件對OG的降解性能和機制
從圖2可看出,45min內(nèi)CNT單獨吸附體系OG的脫色率僅為9%,PMS單獨氧化體系OG的脫色率僅為5%,而PMS和CNT一起作用時OG的脫色率明顯增加,達到 85%;然后往 CNT/PMS體系加入Cl-,發(fā)現(xiàn)OG的脫色率會受到影響,當Cl-濃度為10mmol/L時,OG的脫色率受到抑制,減少到75%,而Cl-濃度增加到100mmol/L時,OG的脫色效率顯著提高,僅15min就達到了100%,同時發(fā)現(xiàn)往單獨PMS體系里加入Cl-(100mmol/L),45min仍可使OG的脫色率達到100%,高于CNT/PMS體系的85%.
圖2 不同初始條件下Cl-濃度對OG脫色效率的影響Fig.2 Effect of chloride ion on the degradation of OGpH=7.0,T=298K,C(OG)=0.08mmol/L,C(CNT)=0.1g/L, C(PMS)=1.6mmol/L
由此得出,Cl-對CNT/PMS體系氧化降解OG具有雙重作用,即低濃度Cl-會抑制OG降解,高濃度Cl-會促進OG的降解,且單獨PMS體系中加入 Cl-(100mmol/L)也能高效的氧化降解OG.Wang等[30]曾研究Cl-對Co2+/PMS體系降解AO7的影響,得出 Cl-濃度較低時,Cl-會與·反應生成氧化性較低的·,使AO7的降解受到抑制,而Cl-濃度提高時,Cl-會直接與PMS反應生成HOCl,在·和 HOCl的共同作用下,使得AO7的降解速率大大提高.同樣Cl-對CNT/PMS體系氧化降解OG具有雙重作用的原因,可能也是低濃度的 Cl-會與·反應生成氧化性較小的物質(zhì),而高濃度的Cl-會直接與PMS反應生成HOCl 氧化降解 OG.同時比較加入 100mmol/L Cl-的CNT/PMS體系和單獨PMS體系,后者仍可使OG快速脫色,說明外加Cl-可以和PMS直接反應并對OG進行降解,同時該條件下OG的脫色率要小于有CNT存在時發(fā)生的自由基反應.
圖3 甲醇和對Cl-/CNT/PMS體系降解OG的影響Fig.3 Effect of methanol andon the degradation of OG in the Cl-/CNT/PMS systempH=7.0,T=298K,C(OG)=0.08mmol/L,C(CNT)=0.1g/L, C(PMS)=1.6mmol/L
為了驗證CNT/PMS/Cl-體系降解OG的機理,往反應體系中加入自由基(·、OH-·)淬滅劑甲醇[31]和HOCl淬滅劑加入的甲醇和濃度分別為0.16mol/L和100mmol/L.如圖3a所示,往 CNT/PMS/Cl-體系中添加 0.16mol/L甲醇淬滅反應,發(fā)現(xiàn)體系中無Cl-存在時,OG的降解受到明顯抑制,脫色率從85%下降到29%,而隨著Cl-的加入CNT/PMS/Cl-體系降解OG的速率又開始提高,當 Cl-濃度分別為 50,75,100mmol/L時,OG的脫色率均達到100%,且脫色速率分別為0.0725,0.2657,0.3516min-1.由此可知,在無 Cl-的CNT/PMS/Cl-體系中,·幾乎被甲醇淬滅,導致OG 的脫色效果快速下降,而加入 Cl-的CNT/PMS/Cl-體系,由于 Cl-會直接與 PMS反應產(chǎn)HOCl,盡管·被甲醇淬滅無法降解OG,但是HOCl不受甲醇影響,仍然可使OG脫色,且Cl-濃度越高產(chǎn)生的HOCl就越多,OG的脫色效果就越好.
為了進一步證明CNT/PMS/Cl-體系降解OG的效果不受甲醇的影響,向反應體系中同時加入甲醇和,如圖3b所示, OG的脫色率顯著下降,均小于32%,與圖3a僅加入甲醇時OG的脫色效率對比,發(fā)現(xiàn)加入甲醇和時,Cl-濃度在0~100mmol/L范圍內(nèi),OG脫色反應均被抑制;而僅加入甲醇時,在Cl-濃度在0mmol/L時,OG降解反應被抑制,而Cl-濃度在50~100mmol/L,OG脫色反應沒有受到抑制;說明除了·外還存在別的氧化物(HOCl)可以使OG脫色,且這種氧化物(HOCl)可被淬滅,進一步證明其就是HOCl.
2.2 PMS濃度和OG初始濃度對OG降解的影響
如圖 4a所示,PMS濃度從 0增加到1.6mmol/L,OG脫色率增大了83% ,PMS濃度為2.4mmol/L時,僅15min OG脫色率就達到100%,通過動力學擬合得出OG脫色的表觀速率常數(shù)k分別為 0.0011、0.0135、0.0544、0.1415、0.3609min-1.結(jié)果表明,PMS濃度越高OG脫色效率越快,即PMS濃度提高使得CNT活化PMS產(chǎn)生·或Cl-與PMS作用產(chǎn)生HOCl的效率增加,更有利于對偶氮染料OG的氧化降解.
由圖4b可看出OG初始濃度從0.04升高到0.8mmol/L,45min后偶氮染料OG脫色率從100%減少為21%,且OG脫色的表觀速率常數(shù)k也從0.2939減小為0.0027min-1.可知OG脫色效率隨著 OG初始濃度升高而降低;分析原因,可能是OG降解過程中的降解產(chǎn)物和礦化產(chǎn)物過多,與目標污染物(OG)對·或HOCl形成競爭;也可能是反應過程中活化產(chǎn)生·和HOCl的速率一定,當OG的濃度較高時,多余的OG分子無法被·或HOCl氧化降解.
圖4 PMS濃度和OG初始濃度對Cl-/CNT/PMS體系降解OG的影響Fig.4 Effect of PMS and OG initial concentration on the degradation of OG in the Cl-/CNT/PMS systempH=7.0,T=298K,C(Cl-)=50mmol/L,C(CNT)=0.1g/L
2.3 Cl-濃度對OG降解速率的影響
不同Cl-濃度對CNT/PMS/Cl-體系氧化降解OG的影響,如圖 5a所示,Cl-濃度分別為 0,5,10, 25,50,75,100mmol/L時,45min后OG的脫色率分別為85%、83%、75%、99%、100%、100%、100%;圖5b顯示了, OG脫色的表觀速率常數(shù)K與Cl-濃度的關系.
結(jié)果表明,Cl-濃度在0~10mmol/L范圍內(nèi)時, OG的脫色效率明顯受到抑制,Cl-濃度在 25~100mmol/L范圍內(nèi)時,OG的脫色效率顯著增加,且隨著Cl-濃度增大而變快;結(jié)合2.1節(jié)的結(jié)論分析可知,Cl-濃度低時 CNT/PMS/Cl-體系產(chǎn)生的·與 Cl-反應變成氧化性較低的·,即部分的·被·取代,由于·對OG的脫色效率要小于·,使得OG的脫色率下降,而Cl-濃度高時Cl-可直接與PMS反應產(chǎn)生HOCl使OG脫色,且Cl-濃度越高與PMS作用產(chǎn)生的HOCl越多,對OG的脫色效率就越高.
圖5 Cl-濃度對CNT/PMS體系降解OG動力學及其表觀速率常數(shù)的影響Fig.5 Effect of chloride ion on kinetics and apparent rate constant for degradation of OG in the CNT/PMS systempH=7.0,T=298K,C(OG)=0.08mmol/L,C(CNT)=0.1g/L, C(PMS)=1.6mmol/L
2.4 無CNT存在 Cl-濃度對OG降解速率的影響
前文對圖2的分析已表明,在無CNT存在的條件下,Cl-能自發(fā)地與PMS反應降解OG,為了研究Cl-濃度對PMS/Cl-體系降解OG過程的影響,控制pH值為7.0,溫度為298K,OG和PMS濃度分別為0.08mmol/L和1.6mmol/L,改變PMS/Cl-體系中Cl-濃度,觀察OG的脫色率變化情況.從圖6 可看出,Cl-濃度分別為 0,5,10,25,50,75, 100mmol/L時,45min后OG的脫色率分別為5%、3%、43%、41%、82%、100%、100%.
圖6 Cl-濃度對單獨PMS體系降解OG的影響Fig.6 Effect of chloride ion on the degradation of OG in the PMS systempH=7.0,T=298K,C(OG)=0.08mmol/L,C(PMS)=1.6mmol/L
結(jié)果表明,基本上Cl-濃度越高PMS/Cl-體系氧化降解OG的速率越快,表明無CNT存在的條件下,Cl-能自發(fā)地與 PMS反應產(chǎn)生活性氯物質(zhì)降解OG,Lou等[33]研究得出Cl-與PMS反應產(chǎn)生活性氯物質(zhì)的反應,其反應方程式如下:
體系中產(chǎn)生 HOCl是具有氧化活性的鹵化物,能夠直接迅速氧化降解OG.
2.5 初始pH值對OG降解的影響
如圖7所示,反應初始pH分別為2、4、6、8、10時,CNT/PMS/Cl-體系對OG的脫色率分別為97%、89%、91%、92%、100%,隨反應體系初始pH值升高,染料OG降解效果是一個先減后升的過程.
已知 CNT/PMS/Cl-體系中產(chǎn)生的氧化物質(zhì)為·和HOCl,其中HOCl為弱酸性物質(zhì),隨著pH(2~8)升高會電離成ClO-和H+,而ClO-的氧化性要小于HOCl,使得氧化降解OG的速率下降;而pH=10時,在強堿性條件下PMS可自發(fā)產(chǎn)生·[34],使得反應體系中生成的·量增加,表現(xiàn)為 OG氧化降解速率提高;另外 pH為 4~8時,OG氧化降解效果可能與CNT表面零電荷點(pHpzc)有關,經(jīng)測得 CNT的 pHpzc為 7.2,當溶液pH<pHpzc時,CNT表面為正電性,有利于陰離子染料OG的吸附;當溶液pH>pHpzc時,CNT表面為負電性,不有利于陰離子染料 OG的吸附;在pH值為4、6時,吸附到CNT表面的OG分子,會阻止CNT與PMS有效接觸,不利于·的產(chǎn)生,使得氧化降解 OG的速率下降;而 pH=8時,CNT表面為負電性,不利于染料 OG吸附,使得CNT接觸活化PMS產(chǎn)生·的機率變大,進而加快OG氧化降解速率.
圖7 初始pH對Cl-/CNT/PMS體系降解OG的影響Fig.7 Effect of initial pH on the degradation of OG in the Cl-/CNT/PMS systemT=298K,C(OG)=0.08mmol/L,C(CNT)=0.1g/L, C(Cl-)=0.1g/L, C(PMS)=1.6mmol/L
2.6 反應溫度對OG降解的影響
為了研究溫度對CNT/PMS/Cl-降解OG的影響,反應過程中控制 pH值為 7.0,OG、Cl-和PMS濃度分別為0.08,50,1.6mmol/L,CNT投加量為0.1g/L.如圖8a和圖8b所示,反應溫度從25℃升高到55℃的過程中,20min后CNT/PMS/Cl-體系對OG的脫色率均達到100%,且隨著溫度升高降解OG的表觀速率常數(shù)k越來越大.說明提高溫度有利于反應的進行,分析原因可能是提高溫度加大反應體系中分子的運動速率,使得生成·和 HOCl速率變快,并且·和HOCl與OG分子的接觸頻率也更快.假設k與溫度間存在如下關系:
圖8 反應溫度對Cl-/CNT/PMS體系降解OG的影響Fig.8 Effect of reaction temperature on the degradation of OG in the Cl-/CNT/PMS systempH=7.0,C(OG)=0.08mmol/L,C(CNT)=0.1g/L, C(PMS)=1.6mmol/L
對ln(K)和1/T進行線性擬合,得到的直線的斜率為-10638.33,即-Ea/R的值,R的值已知,可以求出反應過程中的活化能為88.45kJ/mol.
2.7 外加Cl-對CNT/PMS/Cl-體系TOC去除的影響
為研究 Cl-對 CNT/PMS/Cl-體系氧化降解OG 礦化度的影響,實驗對比了不同 Cl-濃度下,CNT存在和無CNT的CNT/PMS/Cl-體系氧化降解OG的礦化率.由圖9a可見,CNT存在的條件下,當Cl-濃度分別為0,25,50,75,100mmol/L時,OG的礦化率分別是28.1%、23.2%、19.5%、19.2%、19.6%.可知隨著Cl-濃度增加OG的礦化率在下降,分析原因可能是 CNT/PMS/Cl-體系同時發(fā)生CNT活化PMS產(chǎn)生·的自由基反應和Cl-與PMS反應產(chǎn)生HOCl的非自由基反應,兩種反應產(chǎn)生的·和HOCl降解OG的礦化效果強弱不同所致,由于 Cl-濃度提高會導致CNT/PMS/Cl-體系中產(chǎn)生HOCl的數(shù)量增多,在氧化降解 OG的過程占的比重變大,而·占的比重變小,雖然最終結(jié)果是 OG的脫色率都達到100%(圖5a),但是Cl-濃度增加導致OG的礦化率變小,說明HOCl對OG礦化效果比·要差.
圖9 不同Cl-濃度對CNT/PMS和單獨PMS體系降解OG礦化度的影響Fig.9 Effect of chloride ion on TOC changes for degradation of OG in the CNT/PMS and PMS systempH=7.0,T=298K,C(OG)=0.08mmol/L, C(Cl-)=50mmol/L, C(PMS)=1.6mmol/L
無CNT的條件下,當Cl-濃度分別為0,25,50, 75,100mmol/L時,PMS/Cl-體系對OG的礦化率分別是7.7%、9.8%、9.9%、11.1%(圖9b).盡管隨著Cl-濃度增加OG的礦化率在增加,但是在相同Cl-濃度的條件下,PMS/Cl-體系對 OG的礦化效果要明顯弱于 CNT/PMS/Cl-體系,原因可能是CNT/PMS/Cl-體系同時發(fā)生CNT活化PMS產(chǎn)生·的自由基反應和Cl-與PMS反應產(chǎn)生HOCl的非自由基反應,其中前者更有利于OG的礦化,而PMS/Cl-體系只存在產(chǎn)生HOCl的非自由基反應,導致OG的礦化率不如CNT/PMS/Cl-體系,由此可知 CNT/PMS/Cl-體系中發(fā)生的自由基反應更有利OG的降解.
2.8 OG降解過程分析
研究不同pH條件下,OG在CNT/PMS/Cl-體系降解過程中的紫外可見光譜.如圖10所示, OG有三處特征吸收波峰,分別在可見光區(qū)479nm處以及在紫外光區(qū)330nm和250nm處,根據(jù)文獻[35]可知,479nm 處對應的是發(fā)色基團偶氮鍵,330nm和 250nm處分別對應的是萘環(huán)和苯環(huán)結(jié)構(gòu). 在各個 pH條件下,隨著反應時間的增加,OG 在479nm處和330nm處的兩處波峰強度都在減少,當pH=2~4之間時,OG 在479nm和330nm的兩處波峰強度下降速率表現(xiàn)為pH=2大于pH=4,然后隨著pH升高,OG 在479nm和330nm的兩處波峰強度下降速率變快,符合不同pH下OG降解的結(jié)果.由圖10d可看出,當反應體系pH為8.0時隨著反應的進行,位于479nm和330nm處分別代表偶氮鍵和萘環(huán)結(jié)構(gòu)的特征峰強度不斷下降,反應至35min時兩處特征峰接近于消失,這表明OG結(jié)構(gòu)中的偶氮鍵和萘環(huán)結(jié)構(gòu)不斷被·和HOCl氧化.
表 1顯示了①(CNT/PMS)、②(PMS/Cl-)和③(CNT/PMS/Cl-)體系氧化降解 OG的中間產(chǎn)物,可以看出中間產(chǎn)物多以苯環(huán)為主要結(jié)構(gòu),即三個體系產(chǎn)生的氧化物質(zhì)都能破壞OG結(jié)構(gòu)中的偶氮鍵和萘環(huán),有學者得到了類似的結(jié)果,Lou等[33]發(fā)現(xiàn) Cl-和 PMS反應生成 HOCl可氧化降解羅丹明 B,使其結(jié)構(gòu)中的偶氮鍵和萘環(huán)斷開降解為苯環(huán)類物質(zhì);Yang等[36]研究活性碳纖維催化PMS產(chǎn)生·氧化降解AO7,發(fā)現(xiàn) AO7降解的中間產(chǎn)物是以苯環(huán)為主要結(jié)構(gòu)的芳香族化合物.本實驗中各體系均可氧化降解OG,其主要區(qū)別是體系①中產(chǎn)生的中間產(chǎn)物不含 Cl,而體系②和③產(chǎn)生的中間產(chǎn)物部分含有 Cl,由此可知 CNT/PMS/ Cl-體系產(chǎn)生的·和HOCl均可使OG結(jié)構(gòu)中的偶氮鍵和萘環(huán)斷開,且隨著Cl-濃度提高體系產(chǎn)生HOCl的數(shù)量增多,導致 OG降解過程中含氯的中間產(chǎn)物變多.
表1 GC/MS測得OG降解的降解產(chǎn)物Table 1 Degradation products of OG determined by GC/MS(注:①CNT/PMS②PMS/Cl-③CNT/PMS/Cl-)
3.1 Cl-對CNT/PMS體系氧化降解OG的過程具有雙重影響,低濃度 Cl-(<10mmol/L)會抑制OG的降解,高濃度Cl-(>25mmol/L)能促進OG的降解,且發(fā)現(xiàn)無CNT存在Cl-會直接與PMS作用使OG脫色.
3.2 體系中的PMS濃度、反應溫度與OG的脫色率成正相關;OG初始濃度與OG的脫色率成負相關,初始pH越低有利于HOCl對OG脫色,初始pH越高有利于·對OG脫色.
3.3 CNT存在的條件下 OG的礦化率要比無CNT存在要好,OG在479nm和330nm處吸收峰強度明顯減少,表明OG分子中偶氮鍵及萘環(huán)結(jié)構(gòu)均一定程度被破壞.
3.4 對比PMS/Cl-、CNT/PMS和CNT/PMS/Cl-體系的GC-MS結(jié)果,得出·和HOCl均斷開OG結(jié)構(gòu)中的偶氮鍵和萘環(huán),且隨著Cl-濃度提高體系產(chǎn)生HOCl的數(shù)量增多,導致OG降解過程中含氯的中間產(chǎn)物變多.
[1] Saratale R G, Saratale G D, Chang J S, et al. Bacterial decolorization and degradation of azo dyes: A review [J]. Journal of the Taiwan Institute of Chemical Engineers, 2011,42(1):138-157.
[2] Chen K, Wu J, Huang C, et al. Decolorization of azo dye using PVA-immobilized microorganisms [J]. Journal of Biotechnology, 2003,101(3):241-252.
[3] Zhang F, Feng C P, Li W Q, et al. Indirect Electrochemical Oxidation of Dye Wastewater Containing Acid Orange 7Using Ti/Ru O2-Pt Electrode [J]. International Journal of Electrochemical Science, 2014,9(2):943-954.
[4] Gupta V K, Gupta B, Rastogi A, et al. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113 [J]. Journal of Hazardous Materials, 2011,186(1):891-901.
[5] Papic S, Koprivanac N, Lon?ari? Bo?i? A, et al. Removal of some reactive dyes from synthetic wastewater by combined Al (III) coagulation/carbon adsorption process [J]. Dyes and Pigments, 2004,62(3):291-298.
[6] Yang C, Mcgarrahan J. Electrochemical coagulation for textile effluent decolorization [J]. Journal of Hazardous Materials, 2005,127(1-3):40-47.
[7] Ellouze E, Ellouze D, Jrad A, et al. Treatment of synthetic textile wastewater by combined chemical coagulation/membrane processes [J]. Desalination and Water Treatment, 2011,33(1-3):118-124.
[8] Saleh T A, Gupta V K. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide [J]. Journal of Colloid and Interface Science, 2012,371(1):101-106.
[9] Khataee A R, Pons M N, Zahraa O. Photocatalytic degradation of three azo dyes using immobilized TiO2nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure [J]. Journal of Hazardous Materials, 2009, 168(1):451-457.
[10] Cuiping B, Xianfeng X, Wenqi G, et al. Removal of rhodamine B by ozone-based advanced oxidation process [J]. Desalination, 2011,278(1-3):84-90.
[11] Shi P, Dai X, Zheng H, et al. Synergistic catalysis of Co3O4and graphene oxide on Co3O4/GO catalysts for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals [J]. Chemical Engineering Journal, 2014,240:264-270.
[12] George C, Chovelon J. A laser flash photolysis study of the decay of SO4- and Cl2- radical anions in the presence of Cl-in a queous solutions [J]. Chemosphere, 2002,47(4):385-393.
[13] Liang C, Liang C, Chen C. pH dependence of persulfate activation by EDTA/Fe (III) for degradation of trichloroethylene [J]. Journal of Contaminant Hydrology, 2009,106(3/4):173-182.
[14] Liang C, Lin Y, Shih W. Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies [J]. Industrial & Engineering Chemistry Research, 2009,48(18): 8373-8380.
[15] Anipsitakis G P, Dionysiou D D. Transition metal/UV-based advanced oxidation technologies for water decontamination [J]. Applied Catalysis B: Environmental, 2004,54(3):155-163.
[16] He X, de la Cruz A A, Dionysiou D D. Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254nm activation of hydrogen peroxide, persulfate and peroxymonosulfate [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013,251:160-166.
[17] Huang K, Zhao Z, Hoag G E, et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation [J]. Chemosphere, 2005,61(4):551-560.
[18] Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products [J]. Environmental Science & Technology, 2007,41(3): 1010-1015.
[19] Liang C, Bruell C J. Thermally activated persulfate oxidation of trichloroethylene: Experimental investigation of reaction orders [J]. Industrial & Engineering Chemistry Research, 2008,47(9): 2912-2918.
[20] Li B, Li L, Lin K, et al. Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process [J]. Ultrasonics Sonochemistry, 2013,20(3):855-863.
[21] Chen W, Su Y. Removal of dinitrotoluenes in wastewater by sono-activated persulfate [J]. Ultrasonics Sonochemistry, 2012, 19(4):921-927.
[22] Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion [J]. Chemosphere, 2004,55(9):1225-1233.
[23] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by theconjunction of peroxymonosulfate with cobalt [J]. Environmental Science & Technology, 2003,37(20):4790-4797.
[24] Yang S, Yang X, Shao X, et al. Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7at ambient temperature [J]. Journal of Hazardous Materials, 2011,186(1):659-666.
[25] Zhang J, Shao X, Shi C, et al. Decolorization of Acid orange 7with peroxymonosulfate oxidation catalyzed by granular activated carbon [J]. Chemical Engineering Journal, 2013,232:259-265.
[26] Yang S, Xiao T, Zhang J, et al. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid orange 7in aqueous solution [J]. Separation and Purification Technology, 2015,143:19-26.
[27] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis [J]. Applied Catalysis A: General, 2003,253(2):337-358. [28] Muthukumar M, Selvakumar N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation [J]. Dyes and Pigments. 2004,62(3):221-228.
[29] 徐 蕾,袁瑞霞,郭耀廣,等.氯離子對鈷/單過氧硫酸鹽體系降解2,4,6一三氯苯酚的影響 [J]. 武漢大學學報(理學版), 2013(1).
[30] Wang P, Yang S, Shan L, et al. Involvements of chloride ion in decolorization of Acid Orange 7by activated peroxydisulfate or peroxymonosulfate oxidation [J]. J. Environ. Sci. (China), 2011, 23(11):1799-1807.
[31] Liang C, Wang Z, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures [J]. Chemosphere. 2007,66(1):106-113.
[32] Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review [J]. Water Research, 2008,42(1/2): 13-51.
[33] Lou X, Guo Y, Xiao D, et al. Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation [J]. Environ. Sci. Poll. Res. 2013,20(9):6317-6323.
[34] Zhou Y, Jiang J, Gao Y, et al. Activation of peroxymonosulfate by Benzoquinone: A novel nonradical oxidation process [J]. Environmental Science & Technology, 2015,49(21):12941-12950.
[35] El-Ghenymy A, Centellas F, Garrido J A, et al. Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors [J]. Electrochimica Acta, 2014,130:568-576.
[36] Yang S, Xiao T, Zhang J, et al. Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7in aqueous solution [J]. Separation & Purification Technology., 2015,143:19-26.
Effect of chloride ions on degradation of Orange G with peroxymonosulfate activated by carbon nanotubes.
ZHANG Li-ming1, CHEN Jia-bin1, FANG Cong1, ZHOU Lu1, HU Jin-mei1, HAO Shang-bin1, LI Wen-wei2, WANG Zhong-ming1, HUANG Tian-yin1*(1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;2.School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China). China Environmental Science, 2016,36(12):3591~3600
The radical was formed by the carbon nanotube (CNT) activation of peroxymonosulfate (PMS). Effect of chloride ion (Cl-) on degradation of Orange G (OG) by CNT/PMS system were investigated. Cl-had a dual effect on OG decolorization in the CNT/PMS system. Low dosage of Cl-could inhibit OG decolorization, whereas high dosage could promote its decolorization. Meanwhile, Cl-could directly react with PMS alone to decolorize OG. In the CNT/PMS/Clsystem, effect of various factors were explored, including PMS dosage, reaction temperature, initial concentration of OG, Cl-concentration, and initial pH, and the degradation mechanism was further proposed. The results indicated that 100% decolorization of OG was observed after 25min when 1.6mmol/L of PMS, 0.08mmol/L of OG, 50mmol/L of Cl-were present at 25℃. The activation energy of reaction system was determined to be 88.45kJ/mol. With the increasing initial pH, OG decolorization was decreased first and then gradually increased. Both of SO4-· and HOCl were found to be responsible for OG degradation. The mineralization rate during the degradation of OG were analyzed, and higher mineralization rate was observed when CNT was present in the system. From the analysis of UV-vis spectra and GC-MS, the azo band and naphthaline ring of OG were destroyed to generate other small intermediates.
carbon nanotubes;chloride ion;peroxymonosulfate;Orange G;decolourization ratio
X703
A
1000-6923(2016)12-3591-10
張黎明(1991-),男,苗族,湖南懷化人,蘇州科技大學碩士研究生,主要研究方向為污水處理與回用技術.發(fā)表論文1篇.
2016-05-01
國家自然科學基金項目(51478283);蘇州科技學院學術學位研究生科研創(chuàng)新計劃項目(SKCX15_026)
* 責任作者, 教授, huangtianyin111@sohu.com