• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New results in global stabilization for stochastic nonlinear systems

    2016-12-22 05:19:04TaoBIANZhongPingJIANG
    Control Theory and Technology 2016年1期

    Tao BIAN,Zhong-Ping JIANG

    Control and Networks Lab,Department of Electrical and Computer Engineering,Tandon School of Engineering,New York University,5 Metrotech Center,Brooklyn,NY 11201,U.S.A.Received 18 November 2015;revised 9 December 2015;accepted 9 December 2015

    New results in global stabilization for stochastic nonlinear systems

    Tao BIAN?,Zhong-Ping JIANG

    Control and Networks Lab,Department of Electrical and Computer Engineering,Tandon School of Engineering,New York University,5 Metrotech Center,Brooklyn,NY 11201,U.S.A.Received 18 November 2015;revised 9 December 2015;accepted 9 December 2015

    This paper presents new results on the robust global stabilization and the gain assignment problems for stochastic nonlinear systems.Three stochastic nonlinear control design schemes are developed.Furthermore,a new stochastic gain assignment method is developed for a class of uncertain interconnected stochastic nonlinear systems.This method can be combined with the nonlinear small-gain theorem to design partial-state feedback controllers for stochastic nonlinear systems.Two numerical examples are given to illustrate the effectiveness of the proposed methodology.

    Stochastic nonlinear systems,stochastic input-to-output stability,stabilization,gain assignment,small-gain

    1 Introduction

    Over the past few decades,global stabilization of deterministic nonlinear dynamical systems has attracted a lot of attention;see,e.g.,[1-10],and numerous references therein.In parallel,considerable efforts have also been made for the control of stochastic nonlinear systems[11-16].In particular,different methods based on variants of Sontag’s input-to-state stability(ISS)[17-20]were developed for stochastic nonlinear systems;see[21]for γ-input-to-state stability(γ-ISS);[13,22-25]for noise-to-state stability(NSS);and[15,26-28]for stochastic input-to-state stability(SISS).

    Despite the above-mentioned developments,several issues still remain unresolved for stochastic nonlinear systems.One of such issues is how to generalize the existing global stabilization techniques[2-4]to stochastic systems.Although some efforts have been made[11,13-15,24,29-31]to solve this problem,these papers only considered state-dependent noise,and the control-dependent noise is overlooked.The main obstacle in conducting the control design in the presence of control-dependent noise is that using traditional control design methodologies has the potential to magnify the stochastic noise,and lead to instability for the closedloop system.Compared with the deterministic control design,extra conditions on the stochastic disturbanceare needed.

    Another issue is how to generalize the deterministic ISS gain assignment results[8,32,33]to uncertain stochastic systems.Roughly speaking,the ISS gain assignment aims at finding a feedback control law under which the closed-loop system is ISS with a desired gain function.It is equivalent to pole placement for linear time-invariant systems.One major application of gain assignment is to design a robust partial-state feedback controller for systems subject to dynamic uncertainties.In these cases,if the ISS gain of the nominal system can besomehowfreelyassignedviaafeedbacklaw,thenthe ISS gains of the nominal system and the dynamic uncertainty will satisfy the small-gain condition[32],thereby guaranteeing the global stability of the closed-loop system.Indeed,gain assignment has played a crucial role in solving various nonlinear feedback control design problems[3,5,7,8].

    This paper has at least two major contributions.First,we solve the global stabilization problem for stochastic nonlinear systems with control-dependent noise.Three nonlinear control design methodologies based on control Lyapunov function(CLF)[2]and Hamilton-Jacobi-Bellman(HJB)equation[6]are developed.Different from existing stochastic stabilization approaches[11,13-15,24],the obtained results can tackle the presence of control-dependent noise.Second,we extend the obtained stabilization technologies to conduct robust input-to-output gain assignment for a class of uncertain interconnected stochastic nonlinear systems.It can be shown that under some mild assumptions,given a nonlinear gain function,it is possible to develop a smooth feedback law under which the closed-loop system satisfies stochastic input-to-output stability(SIOS)with the desired gain function.Potential applications of the proposed stochastic gain assignment method include developing stochastic robust optimal control,stochastic output-feedback control,and decentralized control designs for large-scale stochastic networks,among other applications.

    The remainder of this paper is organized as follows.In Section 2,we introduce three novel control design methods for stochastic nonlinear systems.In Section 3,the SIOS gain assignment is developed for a class of uncertain interconnected stochastic nonlinear systems.Two simulation examples are presented in Section 4 to illustrate our results.Finally,the conclusion is drawn in Section 5.

    NotationsThroughout this paper,R denotes the set of real numbers.R+denotes the set of nonnegative real numbers.Indenotes the identity matrix of dimensionn.|·|denotes the Euclidean norm for vectors,or the induced matrix norm for matrices.|·|Fdenotes the Frobenius norm for matrices.A real-valued functionfis of classwithka nonnegative integer andQ?Rn,iffis continuous whenk=0,orfisk-times continuously differentiable onQwhenk≥1.A functionf:Q→R+,whereand 0∈Q,is called positive definite,iff(x)>0 for allx∈Qandf(0)=0.fis called proper,ifQ=and∞.A function γ :is of classif it is continuous,strictly increasing,and γ(0)=0;it is of classif,in addition,A function β :is of classif β(·,t)is of classfor any givent,and β(s,·)is decreasing and vanishes at the infinity for any givens.Given a measurable functionu:=andutis the truncation ofuon[0,t]satisfyingut(s)=u(s)for alls∈[0,t],andut(s)=0 otherwise.Denote bywaq-dimension standard Wiener process,andas the σ-field generated byw(s),0 ≤s≤t.L denotes the differential generator[34].

    2 Stabilization of stochastic nonlinear systems with control-dependent noise

    2.1 Basic notions for deterministic systems

    In this section,we introduce some important concepts of nonlinear system theory.These concepts play an important role in deriving the main results in this paper.

    Control Lyapunov functionsControl Lyapunov function(CLF)waspreviouslyproposedin[1,2]totackle thenonlinearstabilizationforgeneralnonlinearsystems.Consider a deterministic affine nonlinear system

    wherex∈Rnis the state;u:R+→Rmis a measurable locally essentially bounded input signal;f:Rn→Rnandg:Rn→ Rn×mare locally Lipschitz functions.f(0)=0.

    Now,we give the definition of CLF.

    De fi nition 1A positive definite and proper functionis said to be a CLF for system(1),if for all

    where for allx∈Rn,

    It has been shown in[2]that(2)is equivalent to

    A nice feature of CLF is that the existence of a CLF is a necessary and sufficient condition for the global stabilizability of system(1).Based on a given CLF,a universal formula of controller design was proposed in[2].

    Proposition 1Consider system(1).Given a CLFV,one can construct the following feedback law μ∈

    whereb(x)=(LgV(x))T,such that system(1)underu=μ(x)is globally asymptotically stable(GAS)at the origin.

    Note that μ is not necessarily continuous at the origin.To tackle this problem,we can assume thatVpossesses small control property[2]:For each ε>0,there is a δ > 0 such that,ifx≠ 0 satisfies|x|< δ,then there is someuwith|u|< ε such that

    Input-to-state stabilityAnother important topic in nonlinear control theory is the disturbance attenuation problem.A key concept in this field is ISS[17].

    De fi nition 2System(1)is said to be input-to-state stable,if there existand ρ ∈,such that for allt≥ 0,x(0)∈Rn,

    ρ is usually referred to as the ISS gain of system(1).

    An equivalent definition in terms of ISS-Lyapunov function is given below.The proof of the following lemma can be found in[19].

    Lemma 1System(1)is input-to-state stable,if and onlyifthereexistsapositivedefiniteandproperfunctionsuch that for allx∈Rnandu∈Rm,

    Vis known as an ISS-Lyapunov function.

    In the sequel,we introduce three control design methodologies for stochastic nonlinear systems.

    2.2 CLF approach

    Consider the following stochastic system:

    wherex∈Rnis the state;u:adapted stochastic process representing the control input;f,gare as in system(1),andg0:is continuous and satisfiesg0(0,0)=0.

    First,an assumption is made on the diffusion term.Assumption 1There exist continuous functions κi:Rn→R+,i=0,1,such that for allx∈Rn,u∈Rm,

    Moreover,κ0(0)= κ1(0)=0.

    Next,assume the nominal system of(3)(without the diffusion term)is stabilizable.

    Assumption 2There exista positive definite functiona positive definite and proper functionand a nonnegative functionsuch that for allx∈ Rn,

    Theorem 1Consider(3).Under Assumptions 1 and 2,if

    where κ2(|x|) ≥ |μ(x)|,for allx∈ Rn,then,system(3)underu=μ(x)is GAS at the origin with probability one.

    ProofFor allx∈Rn,

    By(4),we know system(3)underu=μ(x)is GAS at the origin with probability one.This completes the proof. □

    Remark 1Note from Theorem 1 that when the stochastic noise is control-dependent,the stability is guaranteed either whenuhas a small influence on the stochastic noise,or a low-gain controller is used in the control design.

    Remark 2It is worth noticing that(4)can be regarded as a generalization of the small-gain condition[32]for deterministic nonlinear systems.

    Example 1Consider a scalar system

    ObviouslyAssumption2holdsforallandThen,as long aswe can chooseu=-|x|/(2ε2),such that the closed-loop system is GAS at the origin with probability one.

    2.3 HJB equation approach

    Consider the following stochastic system:

    wherex,u,fandgfollow the definitions in Section 2.2;andg0i:Rn→ Rn×m,i=1,2,···,q,are continuous.

    Theorem 2Consider system(5).If there exist a positive definite functionand a continuousR:Rn→ Rm×m,withR(x)=RT(x)> 0 for allx∈ Rn,such that the following HJB equation

    admits a positive definite and proper solutionV∈satisfying

    Then,there exists a feedback law μ∈such that system(5)underu=μ(x)is GAS at the origin with probability one.

    ProofDefine

    Thus,system(5)underu=μ(x)is GAS at the origin with probability one.This completes the proof. □

    Remark 3It is of interest to note that Theorem 2 recovers[35,Theorem 5]as a special case.

    2.4 Backstepping

    In this section,let us consider the following single input interconnected stochastic nonlinear systems:

    Remark 4The model(6)and(7)is in a more general form than the strict-feedback model investigated in[13,Chapter 3.2]and[15].

    Before proceeding,we denote

    for allx1∈Rnandx2∈R.

    Assumption 3There exist a smooth CLFV:Rn→R+,a smooth feedback law μ0:Rn→ R,κ :R+→ R+with κ(0)=0,and a positive definite function α ∈such that

    for allx1∈Rn.

    Assumption 4There exist=0,1,2,such that

    Theorem 3Consider system(6)and(7).Under Assumptions 3 and 4,iff,g1,andg2are smooth,and

    for allx1∈Rn,then there exists a smooth feedback law μ:Rn×R→R,such that system(6)and(7)withu=μ(x1,x2)is GAS at the origin with probability one.

    ProofDenotez=x2-μ0(x1).Then,by It?o’s lemma[36,Page 16],

    Then,Assumption 3 holds withV=/2 and μ0(x1)=-x1/2.By Theorem 3,we can design a state-feedback controlleru,such that the system is GAS at the origin with probability one.

    Remark 5Theorem 3 requires the precise knowledge of system(6)and(7)and the seemingly restrictive condition(8).These two drawbacks are relaxed in the next section for a subclass of interconnected stochastic systems.

    3 Gain assignment for a class of interconnected stochastic systems

    Consider the following second-order stochastic systems:

    whereis the state;u:R+→R andv:processes representing the control input and the disturbance input,respectively;f1:R2×Rm→R,f2:R2×R×Rm→R,g1:R×Rm→Rq,andg2:R2×Rm→Rqare uncertain locally Lipschitz functions.f1(0,0)=f2(0,0,0)=0,g1(0,0)=g2(0,0)=0.

    First,following[26,Definition 2.1],we give the concept of SIOS.

    De fi nition 3The uncontrolled system(10)-(12)withu≡0 is SIOS,if for any 0<?≤1,there existsuch that for allt≥ 0 and ξ∈R2,

    wherePξ,0{A}denotes the probability of an eventA∈,givenx(0)=

    ρ is known as the SIOS gain of system(10)-(12).

    In this section,our aim is to solve the following control problem:

    Problem 1(Gain assignment)Consider system(10)-(12).For a given ρ ∈find a static statefeedback controlleru= μ(x),where μ,such that for all ?∈(0,1],the closed-loop solutions satisfy(13)for somedepending on ?.

    To address Problem 1,the following assumption is imposed on system(10)and(11).

    Assumption 5There exist εi∈ [0,1),i=1,2,and smooth functions κi:R+→ R+,i=1,2,3,4,such that for allx∈R2,u∈R,andv∈Rm,

    Before giving the main result,a lemma is given.The proof of Lemma 2 can be found in[26].

    Lemma 2Consider the uncontrolled system(10)and(11)withu≡ 0.Suppose there exist αii= 1,2,and positive definite functionssuch that for allx∈R2,

    Then,for any ?∈ (0,1],t≥ 0,and ξ ∈ R2,

    Theorem 4Consider system(10)-(12).For anywith ρ-1(|x1|)/|x1|locally bounded by a smooth function at the origin,if Assumption 5 holds,then there exists a feedback lawsuch that for system(10)-(12)withu=μ(x),(13)holds for any 0<?≤1 with the given ρ and some β?∈

    ProofThe proof is inspired by[13,Chapter 3.2].First,denotez=x2- μ0(x1)andu=-zχ2(x),where μ0(x1)=-x1χ1(x1),and χ1:R → R+and χ2:R2→R+are smooth functions given later.Then,by It?o’s lemma[36,Page 16],

    Since ρ-1(|x1|)/|x1|is locally bounded by a smooth function at the origin,there exists a strictly increas-ingsuch thatall x1∈ R.For anyone has from Assumption5 and Young’s inequality[13,Corollary A.3]that

    Now,we can choose χ1and χ2,such that

    By Lemma 2,we know the system composed by(10)and(16)satisfies(15).Thus,(13)holds with the given ρ and someThis completes the proof. □

    Remark 6It is worth noticing that we can consider higher-ordersystemsbyapplyingthebacksteppingtechnique in the proof of Theorem 4 repeatedly.

    Example 3Consider a scalar system

    Obviously Assumption 5 holds.Then,for any ρ ∈satisfying the conditions in Theorem 4,we can chooseu=-x(1+ γ(x)+3/2x2+3/2γ2(x)),where γ(x)=ρ-1(|x|)/|x|,such that(13)holds for any ?∈ (0,1]with some

    4 Numerical results

    4.1 Stochastic IOS gain assignment for uncertain system

    To illustrate the obtained results in Section 3,let us consider an elementary example of a second-order nonlinear system:

    wherewis the standard Wiener process and Δ is an unknown function satisfying

    Then,all the conditions in Theorem 4 hold.Note that[13,Example 3.6.3]can be considered as a special case of system(18)and(19).

    Suppose the gain function in(13)is given as ρ(s)=s1/3,for alls≥0.By Theorem 4,the controller can be chosen as

    The plots of the closed-loop states corresponding tox(0)=[0.2-1.2]Tare shown in Fig.1.

    Fig.1 Plots of the trajectories x1and x2.

    4.2 Single-joint human arm movement

    In this example,a numerical simulation of the singlejoint human arm movement is given to illustrate the obtained results.

    The dynamic model of the single-joint human arm movement is given below[37]:

    wherem=1.65kg is the mass of segment,I=0.0779 kg·m2is the inertia,g=9.81m/s2is the gravitational constant,l=0.179m is the distance of the center of mass from the joint,θ is the joint angular position,Tmis the input to the muscle from the motoneurons,andndenotes the inputs from the neural integrator satisfying

    wherecudwrepresentsthesignal-dependentnoise[39];c=0.05.Note that(20)is regarded as the dynamic uncertainty.

    Based on our design scheme,the controller is chosen as

    The plots of closed-loop trajectories under the proposed controller given above are shown in Fig.2.

    Fig.2 Simulation of the single-joint human arm movement.

    5 Conclusions

    Thispaperhasinvestigatedglobalstabilizationandrobust gain assignment problems for stochastic nonlinear systems.Three nonlinear control design methodologies based on CLF and HJB equation have been developed.Moreover,a robust SIOS gain assignment technique has been proposed for a class of uncertain interconnected stochastic nonlinear systems.The effectiveness of the obtained results is demonstrated by two simulation examples.Future extensions of the proposed results include data-driven nonlinear control[40-43],event-triggered control[44,45],and decentralized control[8,24,33].

    [1]Z.Artstein.Stabilizationwithrelaxedcontrols.NonlinearAnalysis:Theory,Methods&Applications,1983,7(11):1163-1173.

    [2]E.D.Sontag.A ‘universal’construction of Artstein’s theorem on nonlinear stabilization.Systems&Control Letters,1989,13(2):117-123.

    [3]M.Krsti’c,I.Kanellakopoulos,P.V.Kokotovi’c.Nonlinear and Adaptive Control Design.New York:John Wiley&Sons,1995.

    [4]A.Isidori.Nonlinear Control Systems.3rd ed.London:Springer,1995.

    [5]A.Isidori.Nonlinear Control Systems II.London:Springer,1999.

    [6]E.D.Sontag.Mathematical Control Theory:Deterministic Finite Dimensional Systems.2nd ed.New York:Springer,1998.

    [7]I.Karafyllis,Z.P.Jiang.Stability and Stabilization of Nonlinear Systems.London:Springer,2011.

    [8]T.Liu,Z.P.Jiang,D.J.Hill.Nonlinear Control of Dynamic Networks.New York:CRC Press,2014.

    [9]Z.Xi,D.Cheng,Q.Lu,et al.Nonlinear decentralized saturated controller design for power systems.Automatica,2002,38(3):527-534.

    [10]Z.Xi,G.Feng,D.Cheng,et al.Nonlinear decentralized controllerdesign formultimachinepowersystemsusing Hamiltonian function method.IEEE Transactions on Control System Technology,2003,11(4):539-547.

    [11]P.Florchinger.A universal formula for the stabilization of control stochastic differential equations.Stochastic Analysis and Applications,1993,11(2):155-162.

    [12]P.Florchinger.Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method.SIAM Journal on Control and Optimization,1997,35(2):500-511.

    [13]M.Krsti’c,H.Deng.Stabilization of Nonlinear Uncertain Systems.New York:Springer,1998.

    [14]X.Mao.Stochastic versions of the LaSalle theorem.Journal of Differential Equations,1999,153(1):175-195.

    [15]S.-J.Liu,J.-F.Zhang,Z.P.Jiang.Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems.Automatica,2007,43(2):238-251.

    [16]A.R.Teel,J.P.Hespanha,A.Subbaraman.A converse Lyapunov theorem and robustness for asymptotic stability in probability.IEEE Transactions on Automatic Control,2014,59(9):2426-2441.

    [17]E.D.Sontag.Smooth stabilization implies coprime factorization.IEEE Transactions on Automatic Control,1989,34(4):435-443.

    [18]E.D.Sontag.Further facts about input to state stabilization.IEEE Transactions on Automatic Control,1990,35(4):473-476.

    [19]E.D.Sontag,Y.Wang.On characterizations of the input-to-state stability property.Systems&Control Letters,1995,24(5):351-359.

    [20]E.D.Sontag.On the input-to-state stability property.European Journal of Control,1995,1(1):24-36.

    [21]J.Tsinias.Stochastic input-to-state stability and applications to global feedback stabilization.International Journal of Control,1998,71(5):907-930.

    [22]H.Deng,M.Krsti’c.Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance.Systems&Control Letters,2000,39(3):173-182.

    [23]H.Deng,M.Krsti’c,R.J.Williams.Stabilization of stochastic nonlinear systems driven by noise of unknown covariance.IEEE Transactions on Automatic Control,2001,46(8):1237-1253.

    [24]A.S.Rufino Ferreira,M.Arcak,E.D.Sontag.Stability certification of large scale stochastic systems using dissipativity.Automatica,2012,48(11):2956-2964.

    [25]D.Mateos-N’u?nez,J.Cort’es.pth moment noise-to-state stability of stochastic differential equations with persistent noise.SIAM Journal on Control and Optimization,2014,52(4):2399-2421.

    [26]C.Tang,T.Ba?sar.Stochastic stability of singularly perturbed nonlinear systems.Proceedings of the 40th IEEE Conference on Decision and Control,Orlando:IEEE,2001:399-404.

    [27]A.R.Teel,J.P.Hespanha,A.Subbaraman.Equivalent characterizationsofinput-to-statestabilityforstochasticdiscretetime systems.IEEE Transactions on Automatic Control,2014,59(2):516-522.

    [28]H.Ito,Y.Nishimura.Stochastic robustness of interconnected nonlinear systems in an iISS framework.Proceedings of the AmericanControlConference,Portland:IEEE,2014:5210-5216.

    [29]Y.-G.Liu,Z.Pan,S.Shi.Output feedback control design for strictfeedbackstochasticnonlinearsystemsunderarisk-sensitivecost.IEEE Transactions on Automatic Control,2003,48(3):509-513.

    [30]Z.-J.Wu,X.-J.Xie,S.-Y.Zhang.Adaptive backstepping controller design using stochastic small-gain theorem.Automatica,2007,43(4):608-620.

    [31]P.R.Kumar,P.Varaiya.StochasticSystems:Estimation,Identification,and Adaptive Control.Englewood Cliffs:Prentice Hall,1986.

    [32]Z.P.Jiang,A.R.Teel,L.Praly.Small-gain theorem for ISS systems and applications.Mathematics of Control,Signals and Systems,1994,7(2):95-120.

    [33]Z.P.Jiang,I.M.Y.Mareels.A small-gain control method for nonlinear cascaded systems with dynamic uncertainties.IEEE Transactions on Automatic Control,1997,42(3):292-308.

    [34]L.Arnold.StochasticDifferentialEquations:Theoryand Applications.New York:John Wiley&Sons,1974.

    [35]J.L.Willems,J.C.Willems.Feedback stabilizability for stochastic systems with state and control dependent noise.Automatica,1976,12(3):277-283.

    [36]H.J.Kushner.Stochastic Stability and Control.London:Academic Press,1967.

    [37]R.Shadmehr,S.P.Wise.The Computational Neurobiology of Reaching and Pointing:A Foundation for Motor Learning.Cambridge:MIT Press,2005.

    [38]Y.Jiang,Z.P.Jiang.Robust adaptive dynamic programming for optimal nonlinear control design.Proceedings of the 9th Asian Control Conference,Istanbul:IEEE,2013:1-6.

    [39]C.M.Harris,D.M.Wolpert.Signal-dependent noise determines motor planning.Nature,1998,394(6695):780-784.

    [40]T.Bian,Y.Jiang,Z.P.Jiang.Adaptive dynamic programming and optimal control of nonlinear nonaffine systems.Automatica,2014,50(10):2624-2632.

    [41]T.Bian,Y.Jiang,Z.P.Jiang.Decentralized adaptive optimal control of large-scale systems with application to power systems.IEEE Transactions on Industrial Electronics,2015,62(4):2439-2447.

    [42]T.Bian,Z.P.Jiang.Robust adaptive dynamic programming for continuous-time linear stochastic systems.IEEE International Symposium on Intelligent Control(ISIC),Juan Les Pins:IEEE,2014:536-541.

    [43]Y.Jiang,Z.P.Jiang.Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.IEEE Transactions on Neural Networks and Learning Systems,2014,25(5):882-893.

    [44]T.Liu,Z.P.Jiang.Event-based control of nonlinear systems with partial state and output feedback.Automatica,2015,53:10-22.

    [45]T.Liu,Z.P.Jiang.A small-gain approach to robust event-triggered control of nonlinear systems.IEEE Transactions on Automatic Control,2015,60(8):2072-2085.

    DOI10.1007/s11768-016-5117-7

    ?Corresponding author.

    E-mail:tbian@nyu.edu.Tel.:+1 7182603779.

    This work was partially supported by the National Science Foundation(Nos.ECCS-1230040,ECCS-1501044).

    the B.Eng.degree in Automation from Huazhong University of Science and Technology,Wuhan,China,in 2012,and the M.Sc.degree in Electrical Engineering from New York University,NY,in 2014,where he is currently working toward the Ph.D.degree.His research interests include approximate/adaptive dynamic programming,nonlinearcontrol,andstochastic control systems..E-mail:tbian@nyu.edu.

    Zhong-Ping JIANGreceived the B.Sc.degree in Mathematics from the University of Wuhan,Wuhan,China,in 1988,the M.Sc.degree in Statistics from the Universite de Paris-sud,France,in1989,andthePh.D.degree in Automatic Control and Mathematics fromtheEcoledesMinesdeParis,France,in 1993.Currently he is a Professor of Electrical and Computer Engineering at New York University Tandon School of Engineering(formerly called Polytechnic University).His main research interests include stability theory,the theory of robust and adaptive nonlinear control,and their applications to underactuated mechanical systems,congestion control,wireless

    networks,multi-agent systems and systems physiology.Dr.Jiang has served as a Subject Editor for the International Journal of Robust and Nonlinear Control,and as an Associate Editor for Systems&Control Letters,IEEE Transactions on Automatic Control and European Journal of Control.Dr.Jiang is a recipient of the prestigious Queen Elizabeth II Fellowship Award from the Australian Research Council,the CAREER Award from the U.S.National Science Foundation,and the Young Investigator Award from the National Natural Science Foundation of China.He(together with coauthor Yuan Wang)received the Best Theoretic Paper Award at the 2008 World Congress on Intelligent Control and Automation,June 2008,for the paper“A Generalization of the Nonlinear Small-Gain Theorem for Large-Scale Complex Systems”.Dr.Jiang is a Fellow of the IEEE and a Fellow of IFAC.E-mail:zjiang@nyu.edu.

    丰满人妻熟妇乱又伦精品不卡| 久久亚洲真实| 乱人伦中国视频| 无限看片的www在线观看| 制服人妻中文乱码| 日韩有码中文字幕| www.www免费av| 欧美激情高清一区二区三区| 在线永久观看黄色视频| 午夜福利高清视频| 亚洲国产欧美日韩在线播放| 国产精品一区二区精品视频观看| 亚洲精品av麻豆狂野| 国产精品永久免费网站| 狂野欧美激情性xxxx| 69精品国产乱码久久久| av视频在线观看入口| 长腿黑丝高跟| 日本 av在线| 午夜福利高清视频| 妹子高潮喷水视频| 日韩精品中文字幕看吧| 可以在线观看毛片的网站| 免费久久久久久久精品成人欧美视频| 国产麻豆69| 日本一区二区免费在线视频| 十八禁人妻一区二区| 亚洲欧美一区二区三区黑人| 国产精品自产拍在线观看55亚洲| 日韩三级视频一区二区三区| 在线观看免费视频网站a站| 久久久久亚洲av毛片大全| 麻豆久久精品国产亚洲av| 国产精品亚洲一级av第二区| 欧美日韩瑟瑟在线播放| 午夜日韩欧美国产| 波多野结衣巨乳人妻| 50天的宝宝边吃奶边哭怎么回事| 99久久综合精品五月天人人| 无人区码免费观看不卡| 美女 人体艺术 gogo| 日韩有码中文字幕| 女人精品久久久久毛片| 99久久精品国产亚洲精品| 亚洲成a人片在线一区二区| 日本 av在线| 男女做爰动态图高潮gif福利片 | 亚洲欧美日韩另类电影网站| 亚洲va日本ⅴa欧美va伊人久久| 色播在线永久视频| 国产在线精品亚洲第一网站| 国产麻豆69| 桃色一区二区三区在线观看| 久久久精品国产亚洲av高清涩受| 亚洲人成伊人成综合网2020| 精品国产一区二区久久| 久久香蕉国产精品| 两个人免费观看高清视频| 精品不卡国产一区二区三区| 在线观看舔阴道视频| 男男h啪啪无遮挡| 亚洲一区中文字幕在线| 在线观看免费视频日本深夜| 一区二区三区高清视频在线| 大型黄色视频在线免费观看| 亚洲 国产 在线| 欧美日韩精品网址| 中文亚洲av片在线观看爽| 成人特级黄色片久久久久久久| 国产亚洲av高清不卡| 一区二区三区激情视频| 国产成人欧美| 成人国产一区最新在线观看| 最好的美女福利视频网| 在线视频色国产色| 亚洲成人国产一区在线观看| 日韩欧美三级三区| www.999成人在线观看| 久久精品影院6| 91成年电影在线观看| 51午夜福利影视在线观看| 18美女黄网站色大片免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| av网站免费在线观看视频| 国产麻豆成人av免费视频| 性欧美人与动物交配| 国产精品永久免费网站| 一级毛片女人18水好多| 好看av亚洲va欧美ⅴa在| 午夜福利影视在线免费观看| 亚洲国产精品合色在线| 777久久人妻少妇嫩草av网站| 一二三四在线观看免费中文在| 亚洲成人免费电影在线观看| 精品电影一区二区在线| 日本黄色视频三级网站网址| 久久人人97超碰香蕉20202| 在线视频色国产色| 两个人免费观看高清视频| 亚洲第一青青草原| 亚洲av电影在线进入| 人成视频在线观看免费观看| 精品欧美国产一区二区三| 三级毛片av免费| 可以免费在线观看a视频的电影网站| 欧美成人免费av一区二区三区| 国产成人av激情在线播放| 91九色精品人成在线观看| 又紧又爽又黄一区二区| 精品电影一区二区在线| 国产成人系列免费观看| 久热这里只有精品99| 亚洲精品国产精品久久久不卡| 大陆偷拍与自拍| а√天堂www在线а√下载| 在线观看午夜福利视频| 中文字幕人妻熟女乱码| 国产精品秋霞免费鲁丝片| 自拍欧美九色日韩亚洲蝌蚪91| 国产人伦9x9x在线观看| 99精品在免费线老司机午夜| 国产亚洲精品av在线| 国产亚洲精品综合一区在线观看 | 色综合站精品国产| 欧美日韩亚洲综合一区二区三区_| 日本a在线网址| 99在线视频只有这里精品首页| bbb黄色大片| 精品欧美一区二区三区在线| 欧美久久黑人一区二区| 一区二区三区国产精品乱码| 超碰成人久久| av免费在线观看网站| 日本黄色视频三级网站网址| 久久人人97超碰香蕉20202| 美女大奶头视频| 久久精品国产清高在天天线| 亚洲精品美女久久久久99蜜臀| 国产精品九九99| 人成视频在线观看免费观看| 嫁个100分男人电影在线观看| 国产成人av教育| 美女扒开内裤让男人捅视频| 成人18禁高潮啪啪吃奶动态图| 在线国产一区二区在线| 国产精品国产高清国产av| 999精品在线视频| 无遮挡黄片免费观看| 久久亚洲精品不卡| 久久精品影院6| 国产高清有码在线观看视频 | 国产aⅴ精品一区二区三区波| 淫妇啪啪啪对白视频| 成人永久免费在线观看视频| 中文亚洲av片在线观看爽| av中文乱码字幕在线| 国产私拍福利视频在线观看| 变态另类丝袜制服| 亚洲中文字幕一区二区三区有码在线看 | 视频在线观看一区二区三区| 给我免费播放毛片高清在线观看| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 窝窝影院91人妻| av电影中文网址| 在线观看66精品国产| 亚洲一区中文字幕在线| 桃色一区二区三区在线观看| 午夜福利18| 69av精品久久久久久| 啦啦啦观看免费观看视频高清 | 久久人妻av系列| av天堂久久9| 亚洲国产日韩欧美精品在线观看 | 日本撒尿小便嘘嘘汇集6| √禁漫天堂资源中文www| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 欧美日韩精品网址| 自线自在国产av| 黄片小视频在线播放| 国产精品av久久久久免费| 老鸭窝网址在线观看| 国产麻豆成人av免费视频| 欧洲精品卡2卡3卡4卡5卡区| 怎么达到女性高潮| 久久精品国产综合久久久| 精品少妇一区二区三区视频日本电影| 妹子高潮喷水视频| 久久狼人影院| 亚洲精品国产精品久久久不卡| 精品免费久久久久久久清纯| 高清毛片免费观看视频网站| 后天国语完整版免费观看| 日韩有码中文字幕| 十八禁人妻一区二区| 成年人黄色毛片网站| 日韩大码丰满熟妇| 久久草成人影院| 日日夜夜操网爽| 一边摸一边抽搐一进一出视频| 亚洲精品中文字幕在线视频| 成人三级黄色视频| 国产一区二区三区综合在线观看| 久久久久久久精品吃奶| 制服诱惑二区| 国产精品永久免费网站| 欧美乱码精品一区二区三区| 成人特级黄色片久久久久久久| 午夜a级毛片| 美女高潮到喷水免费观看| 久久亚洲真实| 首页视频小说图片口味搜索| 一级毛片女人18水好多| 午夜激情av网站| 嫩草影视91久久| 99精品欧美一区二区三区四区| 51午夜福利影视在线观看| 免费不卡黄色视频| 50天的宝宝边吃奶边哭怎么回事| 熟妇人妻久久中文字幕3abv| 伊人久久大香线蕉亚洲五| 丰满的人妻完整版| 国产高清有码在线观看视频 | 亚洲最大成人中文| 99国产极品粉嫩在线观看| 国产精品二区激情视频| 亚洲av第一区精品v没综合| 三级毛片av免费| 啦啦啦韩国在线观看视频| 999久久久精品免费观看国产| av在线播放免费不卡| 黄色视频不卡| 91国产中文字幕| 国产精品 欧美亚洲| 香蕉久久夜色| 日本免费一区二区三区高清不卡 | 国产av一区在线观看免费| 少妇熟女aⅴ在线视频| 伊人久久大香线蕉亚洲五| 99国产精品免费福利视频| 1024视频免费在线观看| www.精华液| 激情在线观看视频在线高清| 亚洲精品在线观看二区| 美女高潮到喷水免费观看| 麻豆国产av国片精品| 色尼玛亚洲综合影院| 日韩精品中文字幕看吧| 波多野结衣av一区二区av| 午夜福利免费观看在线| 真人一进一出gif抽搐免费| 人人澡人人妻人| 国产乱人伦免费视频| 啦啦啦免费观看视频1| 丝袜美腿诱惑在线| aaaaa片日本免费| 精品国产乱子伦一区二区三区| 午夜精品久久久久久毛片777| av天堂久久9| 黄网站色视频无遮挡免费观看| 欧美黑人精品巨大| 久久人妻熟女aⅴ| 18禁黄网站禁片午夜丰满| 国产成人av激情在线播放| 一区二区三区激情视频| 午夜福利一区二区在线看| 大陆偷拍与自拍| 国产欧美日韩综合在线一区二区| 在线国产一区二区在线| 国产高清视频在线播放一区| 精品国产美女av久久久久小说| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 免费在线观看视频国产中文字幕亚洲| 日韩精品青青久久久久久| 亚洲成av片中文字幕在线观看| 久久性视频一级片| 久久久久精品国产欧美久久久| 美女国产高潮福利片在线看| 欧美黑人精品巨大| 1024视频免费在线观看| 午夜久久久久精精品| 亚洲色图av天堂| 久久国产精品男人的天堂亚洲| 黄频高清免费视频| 桃色一区二区三区在线观看| 欧美最黄视频在线播放免费| 女同久久另类99精品国产91| 婷婷六月久久综合丁香| 免费搜索国产男女视频| 国产成人欧美在线观看| 欧美乱色亚洲激情| 涩涩av久久男人的天堂| 少妇裸体淫交视频免费看高清 | 欧美乱码精品一区二区三区| 嫩草影视91久久| 国产精品日韩av在线免费观看 | 99久久久亚洲精品蜜臀av| 男女床上黄色一级片免费看| 成年人黄色毛片网站| 高潮久久久久久久久久久不卡| 麻豆成人av在线观看| 国产精品久久久人人做人人爽| 桃红色精品国产亚洲av| 久久热在线av| 久久久久久免费高清国产稀缺| 日韩欧美三级三区| 大香蕉久久成人网| 久久影院123| 国产视频一区二区在线看| 日本 av在线| 中国美女看黄片| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 在线视频色国产色| 久久精品国产亚洲av高清一级| 亚洲avbb在线观看| 少妇 在线观看| 欧美老熟妇乱子伦牲交| 午夜免费激情av| 九色国产91popny在线| 麻豆久久精品国产亚洲av| 国产一区二区三区在线臀色熟女| 桃色一区二区三区在线观看| 成人永久免费在线观看视频| 美女午夜性视频免费| 人成视频在线观看免费观看| 法律面前人人平等表现在哪些方面| 国语自产精品视频在线第100页| 久久精品国产清高在天天线| 亚洲色图 男人天堂 中文字幕| 久久青草综合色| 天天躁夜夜躁狠狠躁躁| 亚洲人成77777在线视频| 少妇的丰满在线观看| 麻豆成人av在线观看| 国产成年人精品一区二区| 国产精品美女特级片免费视频播放器 | 久久午夜亚洲精品久久| 午夜免费鲁丝| 自线自在国产av| 91av网站免费观看| 免费久久久久久久精品成人欧美视频| 一级a爱视频在线免费观看| 99精品欧美一区二区三区四区| 99香蕉大伊视频| 在线观看舔阴道视频| 国产av一区二区精品久久| 91国产中文字幕| 亚洲中文日韩欧美视频| av天堂在线播放| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 大型黄色视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 熟女少妇亚洲综合色aaa.| 久久香蕉精品热| 淫秽高清视频在线观看| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 宅男免费午夜| 亚洲五月天丁香| 久久国产精品人妻蜜桃| 嫩草影视91久久| 国产精品久久视频播放| 淫妇啪啪啪对白视频| 人人妻人人澡欧美一区二区 | 美女国产高潮福利片在线看| 免费在线观看完整版高清| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区mp4| 国产一区二区在线av高清观看| 狂野欧美激情性xxxx| 久久精品91蜜桃| 久久久久久大精品| 自拍欧美九色日韩亚洲蝌蚪91| 成人av一区二区三区在线看| 成熟少妇高潮喷水视频| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 一进一出抽搐动态| 欧美 亚洲 国产 日韩一| 两个人免费观看高清视频| 在线观看日韩欧美| 国产1区2区3区精品| 国产又色又爽无遮挡免费看| 久久久国产成人免费| 亚洲国产精品合色在线| 中文字幕人妻丝袜一区二区| 可以免费在线观看a视频的电影网站| 夜夜看夜夜爽夜夜摸| 亚洲九九香蕉| 精品日产1卡2卡| 在线观看www视频免费| 欧美激情高清一区二区三区| 日韩欧美国产在线观看| 男人舔女人的私密视频| 亚洲国产精品成人综合色| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久九九精品影院| 搡老熟女国产l中国老女人| 精品国产美女av久久久久小说| 真人一进一出gif抽搐免费| 国产精品乱码一区二三区的特点 | 久久草成人影院| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 熟女少妇亚洲综合色aaa.| 欧美亚洲日本最大视频资源| 免费观看人在逋| 九色国产91popny在线| 久久欧美精品欧美久久欧美| 中亚洲国语对白在线视频| 亚洲 欧美一区二区三区| 久久国产精品男人的天堂亚洲| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| 岛国视频午夜一区免费看| 可以免费在线观看a视频的电影网站| 精品国产超薄肉色丝袜足j| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 国产精品久久久av美女十八| 国产精华一区二区三区| 欧美乱色亚洲激情| 午夜福利,免费看| 色av中文字幕| 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 久久久精品国产亚洲av高清涩受| 国语自产精品视频在线第100页| 精品久久久久久成人av| 精品卡一卡二卡四卡免费| 18禁国产床啪视频网站| 亚洲人成伊人成综合网2020| 日韩中文字幕欧美一区二区| 欧美日韩乱码在线| 欧美最黄视频在线播放免费| 国产精品香港三级国产av潘金莲| 国产国语露脸激情在线看| 成年版毛片免费区| videosex国产| 久久午夜综合久久蜜桃| 日本欧美视频一区| 99香蕉大伊视频| 精品福利观看| 日韩视频一区二区在线观看| 亚洲情色 制服丝袜| 一a级毛片在线观看| aaaaa片日本免费| 国产成人欧美| 麻豆av在线久日| 国产亚洲精品av在线| 国产精品久久久久久精品电影 | 久久九九热精品免费| 老熟妇乱子伦视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美精品济南到| 老熟妇乱子伦视频在线观看| 19禁男女啪啪无遮挡网站| 日本撒尿小便嘘嘘汇集6| 久久人人爽av亚洲精品天堂| 国产精品一区二区精品视频观看| av有码第一页| 天堂影院成人在线观看| 国产成人系列免费观看| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 亚洲性夜色夜夜综合| 免费观看精品视频网站| www.自偷自拍.com| 久久久久九九精品影院| 老司机午夜福利在线观看视频| 禁无遮挡网站| 国产麻豆成人av免费视频| 9色porny在线观看| 亚洲精品国产区一区二| 欧美+亚洲+日韩+国产| 露出奶头的视频| 桃色一区二区三区在线观看| 亚洲av五月六月丁香网| 在线观看一区二区三区| 久久性视频一级片| 人妻丰满熟妇av一区二区三区| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 亚洲天堂国产精品一区在线| 麻豆久久精品国产亚洲av| 91成年电影在线观看| 99久久综合精品五月天人人| 国产精品98久久久久久宅男小说| 琪琪午夜伦伦电影理论片6080| 色尼玛亚洲综合影院| 精品电影一区二区在线| 午夜亚洲福利在线播放| 日韩大尺度精品在线看网址 | 欧美另类亚洲清纯唯美| 人人妻,人人澡人人爽秒播| 久久久久九九精品影院| 国产精品98久久久久久宅男小说| 亚洲狠狠婷婷综合久久图片| 操美女的视频在线观看| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av香蕉五月| 国产av又大| 亚洲va日本ⅴa欧美va伊人久久| 国产精品,欧美在线| 国产激情久久老熟女| 色在线成人网| 操出白浆在线播放| 身体一侧抽搐| 久久午夜亚洲精品久久| 久热爱精品视频在线9| 亚洲中文av在线| 国产高清videossex| 美女免费视频网站| 欧美色欧美亚洲另类二区 | 狠狠狠狠99中文字幕| 9191精品国产免费久久| 国产黄a三级三级三级人| 国产在线精品亚洲第一网站| 日韩欧美一区视频在线观看| bbb黄色大片| 麻豆成人av在线观看| 国产一区二区三区综合在线观看| 可以免费在线观看a视频的电影网站| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合一区二区三区| 丝袜美腿诱惑在线| 亚洲国产日韩欧美精品在线观看 | 一级a爱视频在线免费观看| 男女下面插进去视频免费观看| 精品久久久精品久久久| 露出奶头的视频| 中文字幕av电影在线播放| 91麻豆精品激情在线观看国产| 欧美色欧美亚洲另类二区 | 99riav亚洲国产免费| 亚洲国产精品合色在线| 叶爱在线成人免费视频播放| 丝袜美足系列| 91精品三级在线观看| 在线播放国产精品三级| 在线观看免费视频网站a站| 亚洲av电影不卡..在线观看| 国产精品影院久久| 日韩有码中文字幕| 国产高清视频在线播放一区| 欧美色视频一区免费| 999精品在线视频| 好男人在线观看高清免费视频 | 亚洲精品国产区一区二| 在线观看日韩欧美| 精品国产超薄肉色丝袜足j| 一级片免费观看大全| 国产免费男女视频| 香蕉丝袜av| 熟妇人妻久久中文字幕3abv| 日韩欧美免费精品| av电影中文网址| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 婷婷六月久久综合丁香| 日韩欧美在线二视频| 久久亚洲精品不卡| 国产精品 欧美亚洲| 国产av一区二区精品久久| 国产成人啪精品午夜网站| 国产主播在线观看一区二区| 日韩欧美在线二视频| 午夜免费观看网址| 久久久久精品国产欧美久久久| 啦啦啦免费观看视频1| 国产亚洲欧美98| av中文乱码字幕在线| 一进一出抽搐动态| 好男人电影高清在线观看| 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 日韩欧美国产一区二区入口| 操美女的视频在线观看| 97人妻精品一区二区三区麻豆 | 日韩三级视频一区二区三区| 亚洲欧美日韩高清在线视频| 欧美黄色片欧美黄色片| 久久热在线av| 欧美黄色片欧美黄色片| 高潮久久久久久久久久久不卡| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 亚洲av成人av| 久久青草综合色| 亚洲精品美女久久av网站| 亚洲 欧美一区二区三区| 欧美日本中文国产一区发布| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 国产精品一区二区免费欧美| 日韩三级视频一区二区三区| 在线国产一区二区在线| 黄频高清免费视频| 亚洲av五月六月丁香网| 亚洲国产欧美一区二区综合| 欧美日韩精品网址| a级毛片在线看网站| 国产精品一区二区精品视频观看| 欧美在线一区亚洲| 手机成人av网站| 母亲3免费完整高清在线观看| 亚洲色图av天堂| 亚洲五月天丁香|