• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observer-based leader-following tracking control under both fixed and switching topologies

    2016-12-22 05:18:55JinhuanWANGPengxiaoZHANGZhixinLIUXiaomingHU
    Control Theory and Technology 2016年1期

    Jinhuan WANG,Pengxiao ZHANG,Zhixin LIU,Xiaoming HU

    1.School of Sciences,Hebei University of Technology,Tianjin 300130,China;

    2.Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;

    3.Optimization and Systems Theory and ACCESS Linnaeus Center,Royal Institute of Technology,Stockholm 100 44,Sweden Received 27 November 2015;revised 17 December 2015;accepted 17 December 2015

    Observer-based leader-following tracking control under both fixed and switching topologies

    Jinhuan WANG1,Pengxiao ZHANG1,Zhixin LIU2,Xiaoming HU3?

    1.School of Sciences,Hebei University of Technology,Tianjin 300130,China;

    2.Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;

    3.Optimization and Systems Theory and ACCESS Linnaeus Center,Royal Institute of Technology,Stockholm 100 44,Sweden Received 27 November 2015;revised 17 December 2015;accepted 17 December 2015

    Thispaperstudiesthetrackingproblemforaclassofleader-followermulti-agentsystemsmovingontheplaneusingobserverbased cooperative control strategies.In our set-up,only a subset of the followers can obtain some relative information on the leader.We assume that the control input of the leader is not known to any of the followers while the system matrix is broadcast to all the followers.To track such a leader,an observer-based decentralized feedback controller is designed for each follower and detailed analysis for the convergence is presented for both fixed and switching interaction topologies between agents with the method of common Lyapunov function.We can also generalize the result to the higher dimension case for fixed topology and some special system matrices of the leader for switching topology.

    Multi-agent systems,leader-following,decentralized control,observer

    1 Introduction

    In recent years,there is a large amount of literature concerningthecoordinationproblemofmulti-agentsystems,such as consensus problem of communication networks[1,2],formation control of mobile robots[3],attitudecontrolofspacevehicles[4],andsoon,inwhich neighbor-based local rules are usually applied to each agent mainly based on the relative information between its own and its neighbors,e.g.,[1,2,5-9],to name a few.

    In collective behaviors of multiple agents,the leaderfollower model has been an interesting topic[10-19],since it may have various applications.The leaders are those agents that know the desired trajectory or destination for the whole group,while the other agents(followers)simply follow the leaders using relative information obtained from their neighbors including possibly some of the leaders.In[10],for the sake of reaching consen-sus,the connectivity keeping problem was considered by computing the ratio of the numbers of leaders and followers.In[11],Li et al.considered the distributed tracking control problem of multiagent systems with general linear dynamics and a leader whose control input is bounded and not available to any follower.[12]studied the consensus for a leader-follower system with a varying-velocity leader and delay.Cao et al.considered the distributed containment control problem of a group of mobile autonomous agents with multiple leaders under both fixed and switching directed network topologies[13].

    In practice,some state variables of agents(or even their leaders)may not be measured.In this case,decentralized observer design is needed for each agent.some estimation strategies have been proposed for multiagent systems with partial measurements and bounded disturbances.For example,Hong et al.proposed a neighbor-based observer to estimate the unmeasurable state variables of an active leader[14,15].Furthermore,Hu et al.developed a decentralized adaptive tracking control for the same system as in[15]with unknown dynamicsandrelativepositionmeasurements[16].In[17],the distributed observers were designed to estimate the velocity of the active leader and sampled-data controls were introduced in a disturbance environment.The robust consensus problem for second-order multi-agent systems with matched disturbances was studied in[20],in which a finite-time control technique was adopted to ensure that the virtual velocity can estimate the real velocity for each agent.In addition,some adaptive control protocols have been designed for multiagent systems subject to unknown disturbances.Some related literature can refer to[21-23],to name a few.

    In this paper,we consider the tracking problem for a class of leader-follower multi-agent systems moving on the plane.Different from the existing results,in this paper,the control inputul=Alxl+blof the leader is unknown to any of the followers andAlcan be of any form,which allows the two state variables of the leader coupled.With a differentAlthat is known to the followers,the leader moves along a different trajectory.To track such a leader,we first estimate the control inputul,based on which a decentralized feedback controller is designed for each follower.Both the observer and the controller are based on local information only.We proved that the tracking problem can be solved if the adjacent graph of the system is switching and connected at any time interval.Moreover,this result can be generalized to the higher dimensional case for fixed topologyandsomespecialsystemmatricesoftheleader for switching topology.

    We want to point out that our approach is partly motivated by applications from for example mobile robotics.A typical problem could be navigation in formation.It is reasonable to assume that in such a multi-agent system,only a few mobile robots are equipped with expensive sensors that can do both localization and path planning,while the rest of the robots only have on-board range sensors.With our approach what we aim to achieve is that once the parameters of the desired trajectory(for example,“we will move in a circle”)is broadcast to the followers,the trajectory will be tracked by all the follower robots using those onboard range sensors.

    The rest of the paper is organized as follows.Section2 is our problem formulation.Sections3 and 4 are the main results.We deals with the tracking problem by constructing neighbor-based controller and observer under the fixed and switching interaction topology,respectively.In Section5,an illustrative example is given.Section6 is the conclusion.

    2 Preliminaries and problem formulation

    In this paper,we consider a system withNfollowers and one leader.The topology relationship of theNfollowers and the leader is described by a graphˉG.Assume the information transfer between followers is undirected(denoted by an undirected graph G),while the followers are connected to the leader by directed edges.The graphˉG is said to be connected if at least one agent in each component of graph G is connected to the leader by a directed edge[14].Note that graphˉG is connected does not mean graph G is also connected.The adjacency matrix of graph G is denoted by A=[αij] ∈ RN×N,where αii=0 and αij= αji≥ 0.αij> 0 if and only if there is an edge between agentiandjand the two agents are called adjacent(or they are mutual neighbors).The set of neighbors of agentiis denoted by Ni={j∈V:(i,j)∈,j≠i}.Define Δ =diag{α1,...,αN}as the leader adjacency matrix,where αi> 0 if the leader is a neighbor of agenti(that is,there is a directed edge from agentito the leader)and otherwise αi=0.

    Define the LaplacianLwith respect to graph G as

    where the diagonal matrixD=diag{d1,...,dN}∈ RN×Nis called degree matrix with the diagonal elementsdi=

    By the definition,for an undirected graph,Lis symmetric and every row sum of it is zero.0 is an eigenvalue ofLand1Nis the associated eigenvector,that is,L1N=0,where1N=[1 1 ···1]T∈ RN.If G is connected,then 0 is the algebraically simple eigenvalue ofLand all the other eigenvalues are positive.

    The following lemma,reported in[24],is very helpful to check the positive definiteness of a matrix.

    Lemma 1(Schur complement)Suppose that a symmetric matrix is partitioned as

    whereAandCare square.This matrix is positive definite if and only if bothAandC-ETA-1Eis positive definite.

    In this paper,the dynamics of each follower is

    wherexi∈R2is the state andui∈R2is the control input of thei-th follower.

    The dynamics of the leader is

    wherexl=[x1lx2l]T,ul∈R2are the state and the control of the leader,respectively.For simplicity,we choose

    whereAl∈ R2×2,bl=[b1lb2l]Tcan be any matrix such that the leader can move along different trajectories.

    To track the leader,uiis designed only by the relative information between itself and its neighbors.In our problem,ulis unknown to each follower.Therefore,it cannot be used in the control design.Instead,we have to estimateulin the evolution.The estimated value ofulby agentiis denoted by.

    Remark1Insomesense,Alandbldenotetheshape and the translation of the leader’s trajectory,respectively.We assume thatAlandblare known to each agent,which means each follower may know the shape of the leader’s trajectory,but not the initial value.In fact,it is necessary to know the shape of the target’s trajectory in the tracking problem,according to the Internal Model Principle.

    3 Tracking control under fi xed interaction topology

    In this section,we consider the case when the adjacent topology is fixed.

    Foreachfollower,weproposethefollowingneighborbased control law:

    and the decentralized observer

    whereK,Kl∈R2×2need to be determined,is the estimate ofxlby agenti,i=1,...,N.

    Letthen associate with(2)and(3),we have the error closed-loop system

    The control aim is to findK,Klsuch that all the followers can track the leader asymptotically and at the same time allconverge toul,that is,

    Denotebyeandelthestacksofandrespectively.We have

    where?denotes the Kronecker product,H:=L+Δ,Lis the Laplacian of graph G and Δ =diag{α1,...,αN}is the leader adjacency matrix of graphdefined in Section2.

    Lemma 2[14]If graphis connected,then the symmetric matrixHassociated withis positive definite.

    SinceHis symmetric,there is an orthogonal matrixTsuch that

    is diagonal,where λi,i=1,...,Nare the eigenvalues ofH.By Lemma 2,if graphˉG is connected,all λi>0.

    Denote λmin=min{λi,i=1,...,N}the smallest eigenvalue ofH.Similar to Theorem 2 in[25],for the fixed adjacent graph case,we give the following result.

    Theorem 1Consider the leader-follower multiagentsystem(2)and(3).Assumetheadjacentgraphis connected.ChooseKl=wherePis any symmetric positive definite matrix whose smallest eigenvalue δ is larger than the largest eigenvalue ρ of,then for anyAlandbl,all the followers can track the leader asymptotically via the decentralized feedback control(5)and the observer(6)and simultaneouslyconverge toulastgoes to infinity fori=1,2,...,N.

    ProofBy the above analysis,we need to provewhich is equivalent to prove→0 and→0 since(11)is an orthogonal transformation.

    Consider system(12)(or(13)).Construct the candidate Lyapunov function

    Then the time derivative ofVialong the trajectory of each subsystem(13)is

    By the LaSalle’s invariance principle,the solution to system(12)converge to the largest invariant set contained in the setFrom=0 we have=0.Associated with system(12),we obtain the largest invariant set of the setis,which implies the conclusion. □

    Remark 2From the proof of Theorem 1,the result of Theorem 1 is also true for any dimension ofAl∈ Rn×nandbl∈Rn.

    4 Tracking control under switching interaction topology

    Next,we consider the case when the topology structureoftheadjacentgraphistime-varyingandconnected.

    In time-varying topology case,we define the switching signal σ(t):[0,+∞) → P={1,2,...,m}which is a piecewise constant right continuous function.A switched system is said to have a non-vanishing dwell time,if there is a positive time period τ>0,such that the switching moments 0<t1<...<tk<...,satisfy

    De fi nition 1For a switched linear system

    where the switching signal σ(t)is defined above.If there exists a quadratic functionV(x)=xTPxwith positive definite matrixP>0 and satifying the following property

    thenV(x)(or briefly,P)is called a common quadratic Lyapunov function(CQLF)of system(15).

    In this paper,we assume that

    A1)Admissibleswitchingsignals haveapositive dwell time τ>0.

    A2)The adjacent graph is switching and connected at any time.

    Then the control law(5)and the observer(6)are changed into

    where the neighbor set Ni(t)of agentiis time-varying.For simplicity,we assume the weights of all the interaction links are time-invariant.That is,when agentj∈ Ni(t),the weight αij(t)= αij> 0 is a constant.Similarly,αi(t)= αi> 0 is also a constant once agentiis connected to the leader.

    Similar to last section,still letand denoteeandelthe stacks ofrespectively.Then the error system becomes

    whereHσ(t)=Lσ(t)+ Δσ(t),Lσ(t)is the Laplacian of the graph Gσ(t)and Δσ(t)is its leader adjacency matrix.

    Now for each subsystem of(19)by the orthogonal transformation

    fori=1,...,N,p∈P,whereTpis an orthogonal matrix such thatdiagonal,andare the eigenvalues ofHp.

    Note that system(21)is a switched system.The common Lyapunov function method is a useful tool for stability analysis of switched systems.But it is difficult to construct a common Lyapunov-like function for system(21).Moreover,the control aim is to findKandKlsuch thatas timet→ +∞.From the analysis of last section,we can see that system(21)(and system(9)for the fixed topology case)is not stabilized unless the matrixAlis nonsingular.

    Next,we will analyze the tracking problem for different structure ofAl.Since all possible cases of matrixAlwill be considered,by the similarity transformation we transformAlinto the Jordan canonical form,whereSis nonsingular matrix.

    Notethatthecoordinatetransformationkeepsthestability unchanged.Hereafter,without loss of generality,we assume that the matrixAlis already in the Jordan canonical form.

    According to the eigenvalues ofAl,we will discuss the following six cases.

    Case 1A trivial case:Al=0 ∈ R2×2,thenul=bl.The leader moves with the constant velocitybl,which is the same as in[1],[6]and[7],etc.In this case,we do not need to estimateuland just choose the control

    Infact,choosethecommonLyapunovfunctionV(t)=eT(t)e(t),then the derivative ofValong the trajectory of system(25)is

    for any positive definite matrixK>0.

    Case 2Alhas two positive(real part)eigenvalues.

    SinceAlhas two positive(real part)eigenvalues(called anti-stable),there is a unique positive definite matrixP1∈ R2×2satisfying the Lyapunov equation

    For any connected graph Gp,define

    Proposition 1Consider system(2)and(3).Assume Assumptions A1 and A2 hold and the system matrixAlhas two positive(real part)eigenvalues.ChooseK=kAlandKl=γkAl,wherek,γ∈R satisfy

    whereP1is the solution to the Lyapunov equation(26)and ‖·‖2denotes the matrix 2-norm.Then system(22)is asymptotically stable.Hence all the followers can track the leader asymptotically via the decentralized feedback control(17)and the observer(18)and simultaneouslyconverge toulfori=1,2,...,N.

    ProofSetK=kAlandKl= γkAlwithk> 0,γ > 0.Then the system matrix of(22)becomes

    where

    due to(26).

    By Lemma 1,is positive definite if and only if bothanyp∈P.Then by virtue of(28),is positive definite,which shows thatVis a common Lyapunov function.The conclusion is true. □

    Corollary 1ForAlwith both negative(real part)eigenvalues case,the conclusion of Proposition 1 is also true,if γ andksatisfy

    whereP1∈ R2×2is the unique positive definite matrix solution to the Lyapunov equation

    Infact,wechoosethesamePasintheproofofProposition 1,butP1satisfies(30)sinceAlis stale.

    Remark 3The method in Case 2 is independent of thedimensionofAl.Therefore,theresultsofProposition 1 and Corollary 1 can be generalized to any dimension ofAl∈ Rn×nandbl∈ Rn.

    Case 3Alhas one positive and one negative eigenvalues.

    Under the Jordan canonical form,σ1< 0< σ2.In this case,we chooseK=diag{k1,k2}andKl=diag{γk1,μk2}.Then the error system(22)becomes

    fori=1,...,N,?p∈P,which can be further rewritten to two separate systems

    Denote the system matrix of system(32)by=For system(32),choose the common

    quadraticLyapunovfunctionasP=then

    is positive definite if and only if both γk1> 0 and0 for anyp∈ P.

    Note that σ1< 0,then we can get 0 < γ < 1 andHence system(32)is asymptotically stable.Similarly,for system(33),we can choose the common quadratic Lyapunov function asPwith μ > 0.A similar calculation gets that system(33)is asymptotically stable if μ>1

    Now,we summarize the above analysis as follows.

    Proposition 2Assume Assumptions A1 and A2 hold and under the Jordan canonical form,with σ1< 0 < σ2.ChooseK=diag{k1,k2}andKl=diag{γk1,μk2},wherek1,k2,γ,μ ∈ R satisfy

    Then system(22)is asymptotically stable,that is,all the followers can track the leader asymptotically via the decentralized feedback control(17)and the observer(18)and simultaneouslyconverge toulfori=1,2,...,N.

    Case 4Alhas one zero and one positive(negative)eigenvalues.

    whereHσ(t)=Lσ(t)+ Δσ(t).

    Then we have

    Proposition3Assume Assumptions A1 and A2 hold and0.Under the control law(17)and the observer(36)withK=kI2satisfying

    Then system(37)is asymptotically stable.

    ProofThe stability ofe1is obvious under the Assumptions A1 and A2.We only need to consider the last two equations of(37),that is,

    Under Assumption A2,is positive definite if and only if γkHp> 0 andanyp∈ P.One can see thatγ>1 assure>0.Hence system(37)is asymptotically stable. □

    Corollary 2If σ <0,the conclusion of Proposition3 is also true,if choose

    Case 5Alhas two zero eigenvalues.

    In this case,the Jordan canonical form ofAlisTherefore,we just need to estimatex2l.Choose the control law the same as in(17)withK=kI2and the reduced-order decentralized observer

    where γ >0,k>0,is the estimate ofx2lby agenti.Using the same notations as in Case 4,the error system is

    If system(42)is asymptotically stable,we are done.

    Proposition 4Assume Assumptions A1 and A2 hold andUnder the control law(17)and the observer(41)withK=kI2satisfying

    Then system(42)is asymptotically stable.

    ProofThe stability ofe2is obvious under the Assumptions A1 and A2.We only need to consider the first and the last equations of(42),that is,γ>0,then

    Case 6Alhas a pair of pure imaginary eigenvalues.

    Proposition 5AssumeAssumptions A1 and A2 hold and the system matrixChoosewhere γ,k∈ R satisfy

    Then,system(21)is asymptotically stable,that is,all the followers can track the leader asymptotically via the decentralized feedback control(17)and the observer(18)and simultaneouslyconverge toulfori=1,2,...,N.

    ProofSince,the system matrix of(21)is denoted by

    ConstructtheCQLFofsystem (21)asP=Sinceby Lemma 1,it is not difficult to see thatPis positive definite for any

    Note that=0,then

    By Lemma 1,Qpis positive definite if and only if bothfor anyp∈P.Under AssumptionsA1andA2,Q>0isobviousif0By a straightforward computation,

    To summarize,we have the following result:

    Theorem 2Consider the leader-follower multiagent system(2)and(3).Under Assumptions A1 and A2,for any matricesAlandbl,there existKandKlsuch that all the followers can track the leader asymptotically via the decentralized feedback control(17)and the observer(18)and,simultaneously,the observed valueconverge toulastgoes to infinity fori=1,2,...,N.Specifically,

    1)forAl=0,the controller is degenerated to(24)with any positive definite matrixK>0;

    2)if the eigenvalues ofAlare both positive(real part),chooseK=kAl,Kl= γkAlwithkand γ satisfying(28)(or(29)for the negative case);

    Remark 4For the switching topology case,we assumeAl∈ R2×2and construct the common Lyapunov function case by case.This method is difficult for highdimensional systems.Hence we do not generalize the results to higher dimension case except Case 2.

    5 Illustrative example

    Finally,we give an example to validate the theoretical results.

    Example 1Consider a leader-follower multi-agent system with 4 followers satisfying system(2)and(3)with

    Assume the interaction topology between agents is time-varying.Three possible adjacent graphs denoted by(with a leader labeled 0)are given in Fig.1.For simplicity,assume the switching signal σ(t)is periodic and the period is 1 second.The interconnection graphs are switched according to

    Fig.1 Possible interaction topologies between agents.(a).

    The Laplacian of graphs G1,G2,G3(without leader)are

    and the leader adjacency matrices are

    The smallest eigenvalue ofHp=Lp+Δp,p=1,2,3 is λmin=0.1206.

    TakeK=where γ,ksatisfy(45).Chooseandk=12,then by the observer-based feedback control(17)and(18),the tracking problem is solved.Refer to Fig.2 for the simulation result with the initial values

    All four trajectories converge to a common circle which is the trajectory of the leader.Fig.3 shows that all the followers can track the leader eventually.Fig.4 shows that the estimated valueby agentiwill converge toxl. □

    Fig.2 The trajectories of four followers and one leader.

    Fig.3 The tracking errors of four followers.

    Fig.4 The estimate errors:,i=1,2,3,4.

    6 Conclusions

    In this paper,the tracking problem for leader-follower multi-agent systems was considered.We allow the two state variables of the leader to be coupled,which is different from many existing results.The control inputulof the leader is further to be assumed unknown to the followers even if they are connected to the leader.To track such a leader,we first constructed a neighbor-based observer to estimate the controlul,based on which a local feedback controller was designed for each follower.We proved that the tracking problem can be solved if the adjacent graph of the system is switching and connected at any time interval.

    This paper just considered the case that all the agents will track the leader asymptotically,regardless of the collision problem.Further research will focus on the true platooning problem.By designing appropriate controller,all the agents move along the same trajectories but keep certain distance to avoid collision.

    [1]A.Jadbabaie,J.Lin,A.S.Morse.Coordination of groups of mobile autonomous agents using nearest neighbor rules.IEEE Transactions on Automatic Control,2003,48(6):998-1001.

    [2]R.Olfati-Saber,R.Murray.Consensus problems in networks of agentswithswitchingtopologyandtime-delays.IEEETransactions on Automatic Control,2004,49(9):1520-1533.

    [3]M.Guo,M.Zavlanos,D.Dimarogonas.Controllingthe relative agent motion in multi-agent formation stabilization.IEEE Transactions on Automatic Control,2014,59(3):820-826.

    [4]S.Weng,D.Yue,T.Yang.Coordinated attitude motion control of multiple rigid bodies on manifold SO(3).IET Control Theory and Applications,2013,7(16):1984-1991.

    [5]W.Ren.On consensusalgorithmsfordouble-integrator dynamics.IEEE Transactions on Automatic Control,2008,53(6):1503-1509.

    [6]Y.Hong,L.Gao,D.Cheng,et al.Coordination of multiagent systems with varying interconnection topology using common Lyapunovfunction.IEEETransactionsonAutomaticControl,2007,52(5):943-948.

    [7]D.Cheng,J.Wang,X.Hu.An extension of LaSalle’s invariance principle and its application to multi-agent consensus.IEEE Transactions on Automatic Control,2008,53(7):1765-1770.

    [8]H.Shi,L.Wang,T.Chu.Flocking of multi-agent systems with a dynamic virtual leader.International Journal of Control,2009,82(1):43-58.

    [9]G.Shi,K.Johansson,Y.Hong.Reaching an optimal consensus:dynamical systems that compute intersections of convex sets.IEEE Transactions on Automatic Control,2013,58(3):610-622.

    [10]T.Gustavi,D.Dimarogonas,M.Egerstedt,et al.Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks.Automatica,2010,46(1):133-139.

    [11]Z.Li,X.Liu,W.Ren,et al.Distributed tracking control for linear multiagent systems with a leader of bounded unknown input.IEEE Transactions on Automatic Control,2013,58(2):518-523.

    [12]K.Peng,Y.Yanga.Leader-following consensus problem with a varying-velocity leader and time-varying delays.Physica A,2009,388(2/3):193-208.

    [13]Y.Cao,W.Ren,M.Egerstedt.Distributed containment control with multiple stationary or dynamic leaders in directed networks.Automatica,2012,48(8):1586-1597.

    [14]Y.Hong,J.Hu,L.Gao.Trackingcontrolformulti-agentconsensus with an active leader and variable topology.Automatica,2006,42(7):1177-1182.

    [15]Y.Hong,G.Chen,L.Bushnell.Distributed observers design for leader-following control of multi-agent networks.Automatica,2008,44(3):846-850.

    [16]J.Hu,W.Zheng.Adaptive tracking control of leader-follower systems with unknown dynamics and partial measurements.Automatica,2014,50(5):1416-1423.

    [17]Y.Cheng,D.Xie.Distributed observer design for bounded tracking control of leader-follower multi-agent systems in a sampled-data setting.International Journal of Control,2014,87(1):41-51.

    [18]W.Ni,D.Cheng.Leader-following consensus of multi-agent systems under fixed and switching topologies.Systems&Control Letters,2010,59(3/4):209-217.

    [19]X.Lu,R.Lu,S.Chen,et al.Finite-time distributed tracking control for multi-agent systems with a virtual leader.IEEE Transactions on Circuits and Systems-I:Regular Papers,2013,60(2):352-362.

    [20]H.Du,S.Li,P.Shi.Robust consensus algorithm for second-order multiagent systems with external disturbances.International Journal of Control,2012,85(12):1913-1928.

    [21]H.Yu,X.Xia.Adaptive consensus of multi-agents in networks withjointlyconnectedtopologies.Automatica,2012,48(8):1783-1790.

    [22]H.Bai,M.Arcak,J.Wen.Adaptive design for reference velocity recoveryinmotioncoordination.Systems&ControlLetters,2008,57(8):602-610.

    [23]A.Das,F.Lewis.Distributed adaptive control for synchronization of unknown nonlinear networked systems.Automatica,2010,46(12):2014-2021.

    [24]R.Horn,C.Johnson.Matrix Analysis.New York:Cambbridge University Press,1985.

    [25]L.Wang,J.Markdahl,X.Hu,et al.High level decentralized tracking algorithm for three manipulators subject to motion constraints.Proceedings of the 10th World Congress on Inteligent Control and Automation,Beijing:IEEE,2012:1920-1924.

    DOI10.1007/s11768-016-5121-y

    ?Corresponding author.

    E-mail:hu@kth.se.

    This work was supported by the National Natural Science Foundation of China(Nos.61203142,61304161),the Natural Science Foundation of Hebei Province(Nos.F2014202206,F2015202231).

    Jinhuan WANGwas born in 1980 in Shandong Province,China.She received the B.Sc.and M.Sc.degrees from School of Mathematical Sciences,Shandong Normal University,in 2002 and 2005,respectively,and the Ph.D.degree from Academy of Mathematics and Systems Science,Chinese Academy of Sciences in 2008.She is currently an associate professor of School of Sciences,Hebei University of Technology.Her research interests include complex systems control and switched systems.E-mail:jinhuan@hebut.edu.cn.

    Pengxiao ZHANGwas born in 1992 in Hebei Province,China.She received the B.Sc.degree in Mathematics from Tianjin Normal University in 2014.She is currently a postgraduate student in Hebei University of Technology.Her research interest is multi-agent systems.E-mail:821319896@qq.com.

    the B.Sc.degree in Mathematics from Shandong University,in 2002,and the Ph.D.degree in Control Theory from Academy of Mathematics and Systems Science(AMSS),Chinese Academy of Sciences(CAS)in 2007.She is currently an associate professor of AMSS,CAS.From February 2009 to April 2009,she was with Royal Institute of Technology,Sweden,as a visiting researcher.Her current research interests are complex systems and multi-agent systems.E-mail:lzx@amss.ac.cn.

    Xiaoming HUwas born in Chengdu,China,in 1961.He received the B.Sc.degree from University of Science and Technology of China in 1983.He received the M.Sc.and Ph.D.degrees from Arizona State University,in 1986 and 1989,respectively.He served as a research assistant at the Institute of Automation,the Chinese Academy of Sciences,from 1983 to 1984.From 1989 to 1990 he was a Gustafsson Postdoctoral Fellow at the Royal Institute ofTechnology,Stockholm,whereheiscurrentlyafullprofessorofOptimization and Systems Theory,and a vice director of the Center for Autonomous Systems.He is leading or participating in many research projects sponsored by EU,the Swedish Research Council,the Swedish Strategic Research Foundation,and the Swedish Defense Institute.His mainresearchinterests areinnonlinearcontrolsystems,nonlinearobserver design,sensing and active perception,motion planning,control of multi-agent systems,and mobile manipulation.E-mail:hu@kth.se.

    宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品一区三区| 下体分泌物呈黄色| av线在线观看网站| 日韩熟女老妇一区二区性免费视频| 亚洲av中文av极速乱| 国产精品国产三级国产av玫瑰| 免费大片18禁| 最近2019中文字幕mv第一页| 一级爰片在线观看| 香蕉丝袜av| 国产男女超爽视频在线观看| 黄片无遮挡物在线观看| 亚洲av成人精品一二三区| 一级片'在线观看视频| 99久久综合免费| 国产无遮挡羞羞视频在线观看| 久久婷婷青草| 欧美精品一区二区大全| 久久久国产一区二区| 国产免费一区二区三区四区乱码| 亚洲成人一二三区av| 考比视频在线观看| 男女啪啪激烈高潮av片| 大码成人一级视频| 国产在视频线精品| 丝瓜视频免费看黄片| 亚洲成av片中文字幕在线观看 | 精品少妇黑人巨大在线播放| 成人手机av| 高清av免费在线| 99久久综合免费| 18禁动态无遮挡网站| 国产成人午夜福利电影在线观看| 亚洲av中文av极速乱| 亚洲精品一二三| 亚洲一码二码三码区别大吗| 免费久久久久久久精品成人欧美视频 | 黄色毛片三级朝国网站| 久久久久久久国产电影| 精品人妻熟女毛片av久久网站| 亚洲精品日韩在线中文字幕| 精品久久蜜臀av无| 一本久久精品| 午夜影院在线不卡| 久久久久久久久久久免费av| 日韩精品有码人妻一区| 亚洲精品av麻豆狂野| 少妇熟女欧美另类| av视频免费观看在线观看| 亚洲av日韩在线播放| 美女国产视频在线观看| 成人无遮挡网站| 欧美成人精品欧美一级黄| 午夜影院在线不卡| 亚洲av中文av极速乱| 欧美另类一区| 午夜激情av网站| 天天影视国产精品| 亚洲第一区二区三区不卡| 精品久久久久久电影网| 人妻人人澡人人爽人人| 国产日韩欧美在线精品| 最近中文字幕2019免费版| 最新中文字幕久久久久| 热re99久久国产66热| 国产精品蜜桃在线观看| 成人免费观看视频高清| 桃花免费在线播放| 日本欧美国产在线视频| 国产午夜精品一二区理论片| 91国产中文字幕| 亚洲欧洲精品一区二区精品久久久 | 日韩一本色道免费dvd| 大片电影免费在线观看免费| 免费大片18禁| 国产精品久久久久成人av| 麻豆精品久久久久久蜜桃| 97在线人人人人妻| 精品视频人人做人人爽| 亚洲精品一二三| 国产成人精品福利久久| 欧美日韩综合久久久久久| 男的添女的下面高潮视频| 免费人妻精品一区二区三区视频| 五月伊人婷婷丁香| 午夜av观看不卡| 少妇人妻 视频| 亚洲综合色网址| 五月玫瑰六月丁香| 精品第一国产精品| av卡一久久| 国产黄色视频一区二区在线观看| 丝袜在线中文字幕| 高清在线视频一区二区三区| 丝袜喷水一区| 中国美白少妇内射xxxbb| av有码第一页| 天天躁夜夜躁狠狠久久av| 欧美日韩成人在线一区二区| 一区二区av电影网| 亚洲国产欧美在线一区| 黑人欧美特级aaaaaa片| 99久久综合免费| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久久性| 久久久a久久爽久久v久久| 久久久久久久久久久免费av| 啦啦啦在线观看免费高清www| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 大话2 男鬼变身卡| 久久久久视频综合| 美女国产高潮福利片在线看| 亚洲性久久影院| 香蕉国产在线看| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 亚洲av电影在线进入| 久久99蜜桃精品久久| 99香蕉大伊视频| 久久久国产欧美日韩av| 午夜福利乱码中文字幕| 欧美日本中文国产一区发布| 日本免费在线观看一区| 日韩av在线免费看完整版不卡| 亚洲欧洲国产日韩| 97在线视频观看| 日韩成人av中文字幕在线观看| 最近手机中文字幕大全| 激情视频va一区二区三区| 国产一区有黄有色的免费视频| 午夜福利,免费看| 日本黄色日本黄色录像| 满18在线观看网站| av福利片在线| 国产亚洲午夜精品一区二区久久| av国产久精品久网站免费入址| 建设人人有责人人尽责人人享有的| 国产一区有黄有色的免费视频| 日韩熟女老妇一区二区性免费视频| 美女脱内裤让男人舔精品视频| 新久久久久国产一级毛片| 日本欧美视频一区| 在线精品无人区一区二区三| 成人综合一区亚洲| 亚洲第一区二区三区不卡| av福利片在线| 精品第一国产精品| 精品一区二区三区视频在线| 大片免费播放器 马上看| 久久鲁丝午夜福利片| 18禁国产床啪视频网站| 精品国产露脸久久av麻豆| 欧美亚洲 丝袜 人妻 在线| 精品一区二区免费观看| 9色porny在线观看| 亚洲精品国产av成人精品| 妹子高潮喷水视频| 国产一区有黄有色的免费视频| 成人亚洲精品一区在线观看| 91午夜精品亚洲一区二区三区| 日韩大片免费观看网站| 男女边吃奶边做爰视频| 久久午夜福利片| 飞空精品影院首页| 国产精品不卡视频一区二区| 人成视频在线观看免费观看| 国产精品无大码| 亚洲综合色网址| 国产亚洲精品久久久com| 十八禁高潮呻吟视频| 成年美女黄网站色视频大全免费| 美女xxoo啪啪120秒动态图| 亚洲精品中文字幕在线视频| 色5月婷婷丁香| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 日本欧美视频一区| 国产 一区精品| 人人妻人人添人人爽欧美一区卜| 精品亚洲成国产av| 成人手机av| 人妻人人澡人人爽人人| 久久av网站| 亚洲欧洲国产日韩| 人妻系列 视频| 中国美白少妇内射xxxbb| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 欧美精品av麻豆av| 一区二区三区四区激情视频| 丰满饥渴人妻一区二区三| h视频一区二区三区| 在线天堂最新版资源| 国产免费一级a男人的天堂| 亚洲精品乱码久久久久久按摩| 婷婷色麻豆天堂久久| 一区在线观看完整版| 精品国产乱码久久久久久小说| 如日韩欧美国产精品一区二区三区| 哪个播放器可以免费观看大片| 久久99蜜桃精品久久| av福利片在线| 精品久久久久久电影网| 制服诱惑二区| 日韩一本色道免费dvd| 亚洲美女黄色视频免费看| 国产国语露脸激情在线看| 国产精品国产三级国产av玫瑰| 有码 亚洲区| 国产成人av激情在线播放| 中文字幕av电影在线播放| 亚洲高清免费不卡视频| 中文字幕精品免费在线观看视频 | 成年动漫av网址| 国产av一区二区精品久久| 亚洲国产精品999| 岛国毛片在线播放| 美女脱内裤让男人舔精品视频| 国产女主播在线喷水免费视频网站| 国产极品粉嫩免费观看在线| 久久精品久久久久久久性| 午夜老司机福利剧场| 午夜久久久在线观看| 女人精品久久久久毛片| av福利片在线| 欧美激情 高清一区二区三区| 亚洲精品一区蜜桃| 国产成人aa在线观看| 亚洲高清免费不卡视频| 我要看黄色一级片免费的| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲成a人片在线观看| 香蕉精品网在线| 亚洲五月色婷婷综合| 高清欧美精品videossex| 国产 精品1| 人妻 亚洲 视频| 精品人妻熟女毛片av久久网站| 中国美白少妇内射xxxbb| 这个男人来自地球电影免费观看 | 精品亚洲成a人片在线观看| 日韩,欧美,国产一区二区三区| 男人操女人黄网站| 国产成人精品婷婷| 嫩草影院入口| 国产精品一二三区在线看| 97超碰精品成人国产| 日本爱情动作片www.在线观看| 高清欧美精品videossex| 亚洲伊人色综图| 免费看不卡的av| 蜜臀久久99精品久久宅男| 欧美精品国产亚洲| 卡戴珊不雅视频在线播放| 亚洲精品一区蜜桃| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 777米奇影视久久| 综合色丁香网| 狂野欧美激情性bbbbbb| 亚洲,欧美,日韩| 日本av免费视频播放| av卡一久久| 久久久精品区二区三区| 午夜影院在线不卡| 在线观看免费日韩欧美大片| 国产精品欧美亚洲77777| 一级毛片我不卡| 在线观看免费视频网站a站| 国产成人精品无人区| 免费大片18禁| 美女国产高潮福利片在线看| 国产成人欧美| 久热这里只有精品99| 日韩成人伦理影院| 在线精品无人区一区二区三| 午夜av观看不卡| 国产男女内射视频| 国产成人a∨麻豆精品| 丝袜在线中文字幕| 999精品在线视频| 赤兔流量卡办理| 国产在线视频一区二区| 欧美精品一区二区免费开放| 国产极品粉嫩免费观看在线| av又黄又爽大尺度在线免费看| 老司机亚洲免费影院| 女人被躁到高潮嗷嗷叫费观| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 又大又黄又爽视频免费| 熟女人妻精品中文字幕| 你懂的网址亚洲精品在线观看| 免费大片18禁| 两个人免费观看高清视频| 亚洲欧美成人综合另类久久久| 欧美人与性动交α欧美软件 | av国产久精品久网站免费入址| 精品人妻熟女毛片av久久网站| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 视频在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 男女无遮挡免费网站观看| 日韩制服骚丝袜av| 国产老妇伦熟女老妇高清| 秋霞在线观看毛片| 国产av一区二区精品久久| 国产成人精品婷婷| 久久99热6这里只有精品| 人成视频在线观看免费观看| 美女福利国产在线| 90打野战视频偷拍视频| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区蜜桃 | 国国产精品蜜臀av免费| 亚洲精品国产av蜜桃| 欧美xxⅹ黑人| 大香蕉97超碰在线| 精品人妻熟女毛片av久久网站| av天堂久久9| 精品少妇久久久久久888优播| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 成年av动漫网址| 一级片免费观看大全| 久久青草综合色| 内地一区二区视频在线| 中文天堂在线官网| 男男h啪啪无遮挡| h视频一区二区三区| 日韩不卡一区二区三区视频在线| 国产精品国产三级国产专区5o| 亚洲成av片中文字幕在线观看 | 如日韩欧美国产精品一区二区三区| 亚洲人与动物交配视频| av.在线天堂| 亚洲成人手机| 宅男免费午夜| 色哟哟·www| 18禁动态无遮挡网站| 亚洲色图 男人天堂 中文字幕 | 久久鲁丝午夜福利片| 少妇的丰满在线观看| 国产在线一区二区三区精| 亚洲av欧美aⅴ国产| 国产片特级美女逼逼视频| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 少妇的丰满在线观看| 在线观看人妻少妇| 欧美日韩成人在线一区二区| 人妻人人澡人人爽人人| 久久久国产精品麻豆| 国产激情久久老熟女| 蜜桃国产av成人99| 日韩伦理黄色片| 青春草国产在线视频| 国产高清不卡午夜福利| 91久久精品国产一区二区三区| 丁香六月天网| 少妇人妻 视频| 日韩免费高清中文字幕av| 九草在线视频观看| 免费av中文字幕在线| 两个人免费观看高清视频| 边亲边吃奶的免费视频| 午夜激情av网站| 亚洲一码二码三码区别大吗| 一区二区三区乱码不卡18| 国产精品一区二区在线观看99| 国产视频首页在线观看| 日韩在线高清观看一区二区三区| 男的添女的下面高潮视频| 欧美精品亚洲一区二区| 久久久久久久久久久免费av| 美国免费a级毛片| 秋霞伦理黄片| 亚洲av电影在线观看一区二区三区| 99热全是精品| 精品福利永久在线观看| 国产亚洲精品久久久com| 男人添女人高潮全过程视频| 亚洲一级一片aⅴ在线观看| 九色亚洲精品在线播放| 国产精品国产三级专区第一集| 婷婷色综合www| 亚洲第一区二区三区不卡| 一区二区三区四区激情视频| 亚洲性久久影院| √禁漫天堂资源中文www| 久久婷婷青草| 桃花免费在线播放| 美女中出高潮动态图| 欧美日韩视频精品一区| 亚洲精品国产av蜜桃| 国产成人精品福利久久| 人妻人人澡人人爽人人| 亚洲欧美精品自产自拍| 亚洲欧美日韩卡通动漫| 亚洲av电影在线进入| 丰满乱子伦码专区| 亚洲久久久国产精品| 日韩成人av中文字幕在线观看| 在线天堂中文资源库| 国产精品偷伦视频观看了| 999精品在线视频| 国产精品一区二区在线观看99| 午夜老司机福利剧场| 色婷婷久久久亚洲欧美| 亚洲激情五月婷婷啪啪| 嫩草影院入口| 寂寞人妻少妇视频99o| 美女国产视频在线观看| 精品视频人人做人人爽| 国产国拍精品亚洲av在线观看| av线在线观看网站| 亚洲国产欧美在线一区| videos熟女内射| 少妇人妻久久综合中文| 久久久久久久精品精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | videossex国产| 大香蕉久久网| 亚洲,一卡二卡三卡| 免费看不卡的av| 在线观看美女被高潮喷水网站| 秋霞伦理黄片| 人人妻人人添人人爽欧美一区卜| 亚洲欧美成人精品一区二区| 亚洲精品久久午夜乱码| 免费人成在线观看视频色| 亚洲综合色网址| 婷婷成人精品国产| 男人操女人黄网站| 十八禁高潮呻吟视频| 看非洲黑人一级黄片| 婷婷色av中文字幕| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 女的被弄到高潮叫床怎么办| 夫妻性生交免费视频一级片| 高清不卡的av网站| 天堂俺去俺来也www色官网| 亚洲成人手机| 啦啦啦啦在线视频资源| 免费观看在线日韩| 777米奇影视久久| 中文字幕免费在线视频6| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 久久精品夜色国产| 久久精品人人爽人人爽视色| 国产精品三级大全| 国产日韩欧美视频二区| 欧美日韩综合久久久久久| 日本-黄色视频高清免费观看| 在线观看三级黄色| 亚洲第一av免费看| 中文字幕最新亚洲高清| 午夜免费观看性视频| 亚洲国产精品一区三区| 午夜视频国产福利| 亚洲精品久久午夜乱码| 亚洲成av片中文字幕在线观看 | 亚洲精品久久久久久婷婷小说| 免费观看性生交大片5| 嫩草影院入口| 大片免费播放器 马上看| 国产成人精品一,二区| 制服丝袜香蕉在线| 看免费av毛片| 久久国内精品自在自线图片| 一区二区日韩欧美中文字幕 | 亚洲av欧美aⅴ国产| av在线播放精品| 另类亚洲欧美激情| 永久网站在线| 国产一区二区三区av在线| 午夜视频国产福利| 中文字幕免费在线视频6| 大陆偷拍与自拍| 精品一区在线观看国产| 午夜影院在线不卡| 亚洲熟女精品中文字幕| 免费不卡的大黄色大毛片视频在线观看| 性色avwww在线观看| 一个人免费看片子| 最近最新中文字幕大全免费视频 | 精品一区二区免费观看| www日本在线高清视频| 国产av一区二区精品久久| 美女国产视频在线观看| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 有码 亚洲区| 伊人久久国产一区二区| 婷婷色综合大香蕉| www日本在线高清视频| av.在线天堂| 亚洲国产精品一区三区| 日韩制服丝袜自拍偷拍| 啦啦啦啦在线视频资源| 久久婷婷青草| 亚洲精品久久久久久婷婷小说| 中文字幕最新亚洲高清| 一级爰片在线观看| 伊人亚洲综合成人网| 黄片播放在线免费| 久久毛片免费看一区二区三区| 国产熟女午夜一区二区三区| 最近手机中文字幕大全| 老司机影院毛片| 9色porny在线观看| 另类亚洲欧美激情| 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 亚洲情色 制服丝袜| 久久精品aⅴ一区二区三区四区 | 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| av免费观看日本| 久久久国产欧美日韩av| 亚洲精品色激情综合| 欧美人与善性xxx| 免费大片18禁| 成年美女黄网站色视频大全免费| 欧美性感艳星| 最近中文字幕2019免费版| 天美传媒精品一区二区| 狠狠婷婷综合久久久久久88av| 最近的中文字幕免费完整| av在线观看视频网站免费| 伊人久久国产一区二区| 国产片内射在线| 国产成人一区二区在线| 2021少妇久久久久久久久久久| 99国产综合亚洲精品| 欧美人与性动交α欧美软件 | 亚洲国产精品成人久久小说| 高清黄色对白视频在线免费看| 欧美 日韩 精品 国产| 国产一区亚洲一区在线观看| 精品人妻在线不人妻| 啦啦啦视频在线资源免费观看| 亚洲中文av在线| 制服人妻中文乱码| 国产黄色视频一区二区在线观看| 欧美亚洲 丝袜 人妻 在线| 丁香六月天网| 又粗又硬又长又爽又黄的视频| 九草在线视频观看| 人人澡人人妻人| 久久久久久久久久人人人人人人| 侵犯人妻中文字幕一二三四区| 蜜臀久久99精品久久宅男| 老女人水多毛片| 亚洲精品色激情综合| 亚洲国产日韩一区二区| a 毛片基地| 婷婷色麻豆天堂久久| 乱码一卡2卡4卡精品| 欧美精品av麻豆av| 亚洲国产日韩一区二区| 九色亚洲精品在线播放| 亚洲美女视频黄频| 日本欧美视频一区| 国产免费视频播放在线视频| 日韩人妻精品一区2区三区| 一边摸一边做爽爽视频免费| 免费播放大片免费观看视频在线观看| 少妇精品久久久久久久| 亚洲精品色激情综合| 欧美日本中文国产一区发布| 国产精品99久久99久久久不卡 | 精品人妻一区二区三区麻豆| 18在线观看网站| 亚洲国产毛片av蜜桃av| 亚洲色图综合在线观看| 91精品三级在线观看| 丝袜脚勾引网站| 国产黄色免费在线视频| 国产一区有黄有色的免费视频| 人人澡人人妻人| 成人免费观看视频高清| 三级国产精品片| 1024视频免费在线观看| 男女午夜视频在线观看 | 91成人精品电影| 亚洲国产精品一区三区| 99re6热这里在线精品视频| 黄色视频在线播放观看不卡| av播播在线观看一区| 18禁观看日本| 在线观看国产h片| 国产免费又黄又爽又色| 精品少妇内射三级| 只有这里有精品99| 人妻系列 视频| 啦啦啦在线观看免费高清www| 亚洲成色77777| 婷婷色综合www| 99热国产这里只有精品6| 热re99久久精品国产66热6| 女人精品久久久久毛片| 看免费成人av毛片| 青春草亚洲视频在线观看| 午夜福利在线观看免费完整高清在| 王馨瑶露胸无遮挡在线观看| av网站免费在线观看视频| 亚洲精品一区蜜桃| 十分钟在线观看高清视频www|