• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Output regulation problem for discrete-time linear time-delay systems by output feedback control

    2016-12-22 05:19:02YaminYANJieHUANG
    Control Theory and Technology 2016年1期

    Yamin YAN,Jie HUANG

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,Hong Kong.Received 31 October 2015;revised 25 November 2015;accepted 25 November 2015

    Output regulation problem for discrete-time linear time-delay systems by output feedback control

    Yamin YAN,Jie HUANG?

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,Hong Kong.Received 31 October 2015;revised 25 November 2015;accepted 25 November 2015

    In this paper,we study the output regulation problem of discrete linear time-delay systems by output feedback control.We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.

    Output regulation,discrete linear systems,time-delay

    1 Introduction

    Theoutputregulationproblemofcontinuous-timelinear systems was thoroughly studied in[1-4],to just name a few.The output regulation problem of discretetime linear systems was also studied in[4]and chapter 1 ofthebook[5].Itisknownthatthesolvabilityoftheoutput regulation problem for either continuous-time linear systems or discrete-time linear systems depends on the solvability of a set of matrix equations called the regulator equations[4,5].Since the regulator equations for continuous-time linear systems and discrete-time linear systems are exactly the same,the results on the output regulation problem for continuous-time linear systems can be directly applied to the output regulation problem for discrete-time linear systems.

    Since the 2000s,there have been some studies on the output regulation problem of continuous-time linear time-delay systems[6-11].While references[6]and[7]studied the output regulation problem of linear time-delay systems using the operator approach,references[8-11]studied the output regulation problem of continuous-time linear time-delay systems using the finite-dimensional linear state space techniques.In particular,references[8]and[9]studied a quite general class of continuous-time linear time-delay systems and established the solvability conditions of the problem in terms of some matrix equations such as the regulator equations.

    In this paper,we will consider the output regulation problem for discrete-time linear time-delay systems of the form(1)to be introduced in the next section.The topic of this paper can be viewed as the discrete counterpart of the topic in[8]in which the output regu-lation problem of continuous-time linear systems with both state and input time-delays was studied.In order to simplify the notation,we only consider the input time-delay in this paper.It will be seen that,unlike the case without time-delay,certain key matrix equations such as the so-called discrete regulator equations associated with the problem in this paper are somehow different from those equations associated with the continuous-time case in[8].Thus,it is of interest to give the discrete-time case an independent treatment.Another motivation for this paper arises from studying the cooperative output regulation problem for discrete-time linear time-delay multi-agent systems which is quite different from its continuous-time counterpart.This paper will pave the way for studying this problem.

    The rest of this paper is organized as follows.Section2 gives the problem formulation and some preliminaries.Section3 establishes three lemmas for laying the foundation of the problem.Section4 presents our main result.An example is used to illustrate our design in Section5.The paper is closed with some concluding remarks in Section6.Finally,we note that the preliminary version of this paper appeared in[12]where the output regulation problem for a system somehow different from(1)was studied by both the state feedback control and the output feedback control.

    Notationσ(A)denotes the spectrum of a square matrixA.ForXi∈Rni,i=1,...,m,col(X1,...,Xm)=[XT1···XTm]T.ForX=[X1···Xm]whereXi∈ Rn×1,vec(X)=col(X1,...,Xm).For some nonnegative integerr,I[-r,0]denotes the set of integers{-r,-r+1,...,0}and C(I[-r,0],Rn)denotes the set of functions mapping the integer setI[-r,0]into Rn.Z+={0,1,...}.

    2 Problem formulation and preliminaries

    We consider the output regulation problem for discrete-time linear time-delay systems of the following form:

    wherex∈Rnis the state,u∈Rmthe input,e∈Rpthe error output,ym∈Rpmthe measurement output,randrl,l=0,...,h,are nonnegative integers satisfying 0=r0<r1<r2<...<rh=r<∞,v∈Rqis the measurable exogenous signal such as the reference input to be tracked,andw∈Rsis the unmeasurable exogenous signal such as the external disturbance.We assume thatvandware generated,respectively,by the exosystem of the following form:

    withS0∈ Rq×qa constant matrix,and

    withQ∈ Rs×sa constant matrix.

    We will consider the output feedback control law as follows:

    wherez∈ R(n+s),K1∈ Rm×n,K2w∈ Rm×sandK2v∈Rm×qare some constant matrices to be specified later.

    Remark 1The control law(4)is based on a combined controller and observer design.This control law can be put in the following more standard form:

    A special case of the measurement output feedback control is the dynamic error output feedback control whenym=e.In many cases,the error outputeis not the only measurement variable available for feedback control.Using the measurement output feedback control allows us to solve the output regulation problem for systems that cannot be solved by the error output feedback control.

    The composition of system(1),and the control law(5)is called the closed-loop system and can be put in the following form:

    wherexc=col(x,z),?v=col(v,w),and various matrices are given by

    Now we describe our problem as follows.

    De fi nition 1Linear output regulation problem:Design a control law of the form(4)such that the closedloop system(7)satisfies the following two properties.

    Property 1The closed-loop system(7)is exponentially stable whenv=0 andw=0,i.e.,the systemis exponentially stable.

    Property 2For any initial conditions andw0∈Rs,the trajectory of system(7)satisfies

    Clearly,the above problem is a generalization of the outputregulationproblemforlinearsystemswithoutdelay as studied in[1,2,5].In order to solve the problem,we list some assumptions as follows.

    Assumption 1S0andQhave no eigenvalues with modulus smaller than 1.

    Assumption 2There exists a matrixK1∈ Rm×nsuch that the systemx(t+1)=is exponentially stable.

    Assumption 3The pairis detectable.

    Assumption 4There exists a pair of matrices(X,U)that satisfies the following matrix equations:

    Remark 2Since the modes associated with the eigenvalues ofS0andQwith modulus smaller than 1 will not contribute to the steady-state of the closed-loop system satisfying Property1,Assumption 1 will not lose the generality of our result.It is made only for establishing the necessary condition of our main result.

    Remark 3It is known that the system

    is exponentially stable if and only if all the roots of the following characteristic polynomial of(11)

    have modulus smaller than 1.We call the equation Δ(λ)=0 the characteristic equation of(11).As a result,Assumption 2 is satisfied if and only if there exists a matrixK1∈ Rm×nsuch that all the roots of the following polynomial:

    have modulus smaller than 1.

    Remark 4Whenh=0,Equations(10)reduces to the regulator equations associated with linear systems without time delay as can be found,say,in[5,Chapter 1].However,in the presence of the time-delay,Equations(10)are somehow different from the regulator equations associated with continuous-time linear time-delay systems[8].In what follows,we call(10)the discrete regulator equations.It will play the same role as what the regulator equations do for continuous-time linear time-delay systems.

    3 Three lemmas

    In this section,we will first establish three lemmas for laying the foundation for studying the output regulation problem of discrete-time linear time-delay systems.

    Lemma 1Suppose all the eigenvalues of the matrixS∈Rˉq×ˉqhave no modulus smaller than 1 and the systemis exponentially stable.Then,for anythe following matrix equation:

    has one unique solutionX∈Rn×ˉq.

    ProofUsing the properties of the Kronecker product,equation(14)can be transformed into the following standard form:

    Thus,equation(14)has a unique solution for any matrixˉBif and only ifis nonsingular.Denote the eigenvalues ofSby λi,i=1,..and let Δ(λ)=Toobtaintheconditionunderwhichis nonsingular,similar to the proof of Theorem 1.9 of[5],we assume,without loss of generality,thatSis in the following Jordan form:

    whereJihas dimensionnisuch thatn1+n2+...+nk=ˉqand is given by

    where λi∈ σ(S).A simple calculation shows,for any integerm>0,is an upper triangular matrix with its diagonal elements being.Thus,the matrixQˉ is a block lower triangular matrix ofkblocks with itsith,1≤i≤k,diagonal block having the form

    Lemma 2Under Assumption 1,consider the controller(4).Assume the closed-loop system(7)has Property1.Then,the controller solves the linear output regulation problem if and only if there exists a unique matrixXc∈ Rnc×(q+s)withnc=2n+sthatsatisfies thefollowing matrix equations:

    ProofSince the closed-loop system(7)has Property1,by Lemma 1,the first equation of(19)has a unique solutionXc.Letˉxc(t)=xc(t)-Xc?v(t).Then,

    That is,the controller solves the linear output regulation problem.

    for all?v(t)=St?v(0)with any?v(0)∈R(q+s).Under Assumption 1,?v(t)will not decay to zero.Therefore,

    Remark 5From the proof of Lemma 1,the solvability of(14)does not require that none of the eigenvalues of the matrixShave modulus smaller than 1.It suffices to require that the eigenvalues of the matrixSdo not coincide with the roots of Δ(λ).Thus,Assumption 1 is not necessary for the validity of Lemma 2.

    We close this section by providing the solvability condition for the discrete regulator equations(10).

    Lemma 3For any matricesEandF,the regulator equations(10)are solvable if and only if,for all λ ∈ σ(S),

    ProofThe idea of the proof is similar to the proof of[5,Theorem 1.9].Like the proof of Lemma 1,using the properties of the Kronecker product,equation(10)can be transformed to the following standard form:

    Thus,equation(24)hasauniquesolution forany?bifand only if?Qis nonsingular.Similar to the proof of Lemma1,we assumeSis in the Jordan form(16)and thusJiis in the form(17).A simple calculation shows that the matrix?Qis a block lower triangular matrix ofkblocks with itsith,1≤i≤k,diagonal block having the form

    4 Main result

    In this section,we will present our main result.

    Theorem 1Under Assumptions 2 and 3,the linear output regulation problem is solvable by the output feedback controller of the form(4)if Assumption 4 is satisfied,andundertheadditionalAssumption1,thelinear output regulation problem is solvable by the output feedback controller of the form(4)only if Assumption 4 is satisfied.

    Proof(If part) For system(1),lump the statexand the disturbanceswtogether to obtain the following system:

    Let(X,U)satisfythediscreteregulatorequations(10),K2=U-K1X,and partitionK2asK2=[K2vK2w]whereK2v∈Rm×qandK2w∈Rm×s.Letˉx=x-X?v,ˉu=u-U?v,ze=z-col(x,w).Then it can be verified that

    Substituting(28)into(29)gives

    Denote the characteristic polynomial of the systemand system(30)by Δx(λ)and Δz(λ),respectively.Then it is ready to see thatthecharacteristicpolynomialoftheclosed-loopsystem composed of(32)and(30)is given by Δx(λ)Δz(λ).Under Assumption 2,all the roots of Δx(λ)have modulus smaller than 1,and,by our design ofL,all the roots of Δz(λ)have modulus smaller than 1.Thus,all the roots of Δx(λ)Δz(λ)have modulus smaller than 1.Thus,by Remark 3,the closed-loop system composed of(32)and(30)is exponentially stable.Thus,we have,Therefore,from(28),we haveFinally,from(31),we haveThus,the proof is completed.

    (Only if part) Under the control law(4),the closedloop system can be put in the form(7).Since the linear output regulation problem is solved by the control law(4),by Lemma 2,equations(19)has a unique solutionLetXc=col(X,Z)whereandZDecompose equations(19)into the following form:

    LettingU=KzZ+[K2v0]in the first and the third equations of(33)completes the proof. □

    5 An example

    Consider the discrete time-delay systems of the form(1)with

    The exogenous signalsvandware generated by(2)and,respectively,by(3)with

    LettingK1=[-0.075-0.465]gives the roots of the polynomial det(λI2-A-B0K1-B1K1λ-1)as follows:

    which are all inside the unit circle.Thus,Assumption 2 is satisfied.Assumption 3 is also satisfied.In fact,letting

    With random initial conditions,the control input is as shown in Fig.1 which is bounded,and the error outputeof the system is as shown in Fig.2 which approaches the origin asymptotically.

    Fig.1 The control input u(t)of the system.

    Fig.2 The tracking error e(t)of the closed-loop system.

    6 Conclusions

    In this paper,we have studied the output regulation problem of discrete-time linear time-delay systems by measurement output feedback control law where the delay is assumed to be known and constant.We will further consider the random delays as studied in,say,[13]and[14].

    [1]E.J.Davison.The robust control of a servomechanism problem for linear time-invariant multivariable systems.IEEE Transactions on Automatic Control,1976,21(1):25-34.

    [2]B.A.Francis.The linear multivariable regulator problem.SIAM Journal on Control and Optimization,1977,15(3):486-505.

    [3]B.A.Francis,W.M.Wonham.The internal model principle of control theory.Automatica,1976,12(5):457-465.

    [4]C.A.Desoer,Y.T.Wang.Lineartime-invariantrobust servomechanism problem:A self-contained exposition.Control and Dynamic Systems,1980,16:81-129.

    [5]J.Huang.Nonlinear Output Regulation:Theory and Applications.Philadelphia:SIAM,2004.

    [6]C.I.Byrnes,D.S.Gilliam,V.I.Shubov.The regulator equations for retarded delay differential equations.Proceedings of the 41st IEEE Conference on Decision and Control,Las Vegas:IEEE,2002:973-974.

    [7]C.I.Byrnes,I.G.Lauko,D.S.Gilliam,et al.Output regulation for linear distributed parameter systems.IEEE Transactions on Automatic Control,2000,45(12):2236-2252.

    [8]M.Lu,J.Huang.Output regulation problem for linear time-delay systems.IEEE International Conference on Cyber Technology in Automation,Control and Intelligent Systems,Hong Kong:IEEE,2014:274-279.

    [9]M.Lu,J.Huang.Robustoutputregulationproblemforlineartimedelaysystems.InternationalJournalofControl,2015,88(6):1236-1245.

    [10]B.Castillo-Toledo,E.N’u?nez-P’erez.On the regulator problem for a class of LTI systems with delays.Kybernetika,2001,39(4):415-432.

    [11]D.Wang,J.Wang,P.Shi,et al.Output regulation of time delay systems based on internal model principle.Proceedings of the 10th IEEE Internaltional Conference on Control and Automation,Hangzhou:IEEE,2013:1633-1638.

    [12]Y.Yan,J.Huang.Output regulation problem for discrete-time linear time-delay systems.Proceedings of the 34th Chinese Control Conference,Hangzhou:IEEE,2015:5681-5686.

    [13]L.Zhang,Y.Shi,T.Chen.A new method for stabilization of networkedcontrolsystemswithrandomdelays.IEEETransactions on Automatic Control,2005,50(8):1177-1181.

    [14]C.Han,H.Zhang,G.Feng.Optimal linear estimator for discretetime systems with random delays.Journal of Control Theory and Applications,2012,10(1):19-27.

    DOI10.1007/s11768-016-5110-1

    ?Corresponding author.

    E-mail:jhuang@mae.cuhk.edu.hk.Tel.:+852-39438473;fax:+852-26036002.

    This work was supported in part by the Research Grants Council of the Hong Kong Special Administration Region(No.412813)and in part by the National Natural Science Foundation of China(No.61174049).

    her B.Eng.degree in 2013 from Sichuan University,Chengdu,China.She is currently a Ph.D.candidate in the Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Hong Kong,China.Her research interests include discrete-time systems,outputregulation,and time-delaysystems.E-mail:ymyan@mae.cuhk.edu.hk.

    Jie HUANGis Choh-Ming Li professor and chairman of the Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Hong Kong,China.Hisresearchinterestsincludenonlinear control theory and applications,multiagent systems,and flight guidance and control.Dr.Huang is a Fellow of IEEE,a Fellow of IFAC,and a Fellow of CAA.E-mail:jhuang@mae.cuhk.edu.hk.

    av卡一久久| .国产精品久久| 国产精品一区www在线观看| 国产一区二区激情短视频| 亚洲国产精品sss在线观看| 免费看光身美女| 麻豆av噜噜一区二区三区| 高清日韩中文字幕在线| 亚洲色图av天堂| 天堂影院成人在线观看| 一进一出抽搐动态| 免费看美女性在线毛片视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美成人精品一区二区| 老司机影院成人| 精品乱码久久久久久99久播| 神马国产精品三级电影在线观看| 亚洲av二区三区四区| 亚洲三级黄色毛片| 女的被弄到高潮叫床怎么办| 国产欧美日韩精品亚洲av| 欧美日韩一区二区视频在线观看视频在线 | 一a级毛片在线观看| 高清午夜精品一区二区三区 | 最近手机中文字幕大全| 国产蜜桃级精品一区二区三区| 亚洲av五月六月丁香网| 亚洲欧美日韩高清在线视频| 欧美另类亚洲清纯唯美| 午夜爱爱视频在线播放| 高清毛片免费观看视频网站| 欧美性感艳星| 久久精品夜夜夜夜夜久久蜜豆| 全区人妻精品视频| 日本三级黄在线观看| 国产视频内射| 久久久色成人| 毛片一级片免费看久久久久| 天美传媒精品一区二区| 成年女人永久免费观看视频| 亚洲美女黄片视频| 亚洲专区国产一区二区| 国产亚洲欧美98| 日韩 亚洲 欧美在线| 男人的好看免费观看在线视频| 国产黄色小视频在线观看| a级毛片免费高清观看在线播放| 男人舔女人下体高潮全视频| 99视频精品全部免费 在线| 真人做人爱边吃奶动态| 国产精品久久电影中文字幕| 色av中文字幕| aaaaa片日本免费| 久久精品夜色国产| 国产欧美日韩一区二区精品| 99久久无色码亚洲精品果冻| 在线观看美女被高潮喷水网站| 女生性感内裤真人,穿戴方法视频| 99久久精品热视频| 国产男靠女视频免费网站| 免费在线观看影片大全网站| av天堂中文字幕网| 欧美绝顶高潮抽搐喷水| 成人精品一区二区免费| 级片在线观看| 精品99又大又爽又粗少妇毛片| 最近的中文字幕免费完整| 亚洲五月天丁香| 听说在线观看完整版免费高清| 国产黄a三级三级三级人| 乱人视频在线观看| 美女内射精品一级片tv| 亚洲欧美日韩卡通动漫| 黄色视频,在线免费观看| 成人漫画全彩无遮挡| 日本爱情动作片www.在线观看 | 校园春色视频在线观看| 国产av一区在线观看免费| 老司机福利观看| 亚洲av电影不卡..在线观看| 女人被狂操c到高潮| 免费看a级黄色片| 久久久久久九九精品二区国产| 蜜臀久久99精品久久宅男| 无遮挡黄片免费观看| 村上凉子中文字幕在线| 国产午夜精品久久久久久一区二区三区 | 成人美女网站在线观看视频| 欧美另类亚洲清纯唯美| 欧美日本视频| 九九在线视频观看精品| 国产熟女欧美一区二区| 97在线视频观看| 又黄又爽又刺激的免费视频.| 午夜久久久久精精品| 国产又黄又爽又无遮挡在线| 淫妇啪啪啪对白视频| 97超碰精品成人国产| 国产精品国产高清国产av| 五月伊人婷婷丁香| 不卡一级毛片| 一个人看的www免费观看视频| 国产免费一级a男人的天堂| 美女大奶头视频| 国产成人福利小说| 最好的美女福利视频网| 91午夜精品亚洲一区二区三区| 两个人的视频大全免费| 日本黄色视频三级网站网址| 成人亚洲欧美一区二区av| 日韩,欧美,国产一区二区三区 | 亚洲熟妇熟女久久| 国产精品三级大全| 九九热线精品视视频播放| 中文字幕熟女人妻在线| 色综合站精品国产| 99九九线精品视频在线观看视频| 淫秽高清视频在线观看| 嫩草影院精品99| av在线天堂中文字幕| 久久久精品94久久精品| 亚洲性夜色夜夜综合| 日本爱情动作片www.在线观看 | 国产成人一区二区在线| 欧美不卡视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 一区二区三区高清视频在线| 日本免费一区二区三区高清不卡| 此物有八面人人有两片| ponron亚洲| 一级a爱片免费观看的视频| 男人舔女人下体高潮全视频| 亚洲av成人av| 综合色丁香网| 亚洲五月天丁香| 精品欧美国产一区二区三| 非洲黑人性xxxx精品又粗又长| 一级av片app| 国产av一区在线观看免费| 亚洲av成人精品一区久久| 在线国产一区二区在线| 大香蕉久久网| 女同久久另类99精品国产91| 麻豆久久精品国产亚洲av| 人人妻,人人澡人人爽秒播| 搡老岳熟女国产| 午夜a级毛片| 91麻豆精品激情在线观看国产| 久久久久久久久久黄片| 99久久中文字幕三级久久日本| 精品久久久久久久久av| 亚洲最大成人av| 免费搜索国产男女视频| 禁无遮挡网站| 欧美中文日本在线观看视频| 国产av一区在线观看免费| 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜添小说| 中文字幕av在线有码专区| 国产精品不卡视频一区二区| 久久久久国产网址| 欧美区成人在线视频| 日韩人妻高清精品专区| 国产精品福利在线免费观看| 亚洲精品成人久久久久久| 久久精品国产亚洲av香蕉五月| av在线天堂中文字幕| 深爱激情五月婷婷| 狠狠狠狠99中文字幕| 久久天躁狠狠躁夜夜2o2o| 中国美女看黄片| 亚洲va在线va天堂va国产| 国产亚洲精品久久久com| av女优亚洲男人天堂| 久99久视频精品免费| 97热精品久久久久久| 嫩草影院入口| 中国美女看黄片| 别揉我奶头~嗯~啊~动态视频| 国产美女午夜福利| 最近的中文字幕免费完整| 啦啦啦啦在线视频资源| 欧美色欧美亚洲另类二区| 国产黄色视频一区二区在线观看 | 国产黄a三级三级三级人| www.色视频.com| 免费高清视频大片| or卡值多少钱| 日本爱情动作片www.在线观看 | 不卡视频在线观看欧美| 国产视频一区二区在线看| 午夜福利高清视频| 国产午夜精品久久久久久一区二区三区 | 国产女主播在线喷水免费视频网站 | 久久久精品大字幕| 国产成人一区二区在线| 欧美最新免费一区二区三区| 午夜福利在线观看免费完整高清在 | 午夜福利成人在线免费观看| 又黄又爽又刺激的免费视频.| 看片在线看免费视频| 婷婷精品国产亚洲av| 久久久久久九九精品二区国产| 国产伦精品一区二区三区视频9| 97超视频在线观看视频| 毛片一级片免费看久久久久| 欧美丝袜亚洲另类| 国产在线精品亚洲第一网站| 久久久久久久久中文| 看十八女毛片水多多多| 大型黄色视频在线免费观看| 一a级毛片在线观看| 久久久久久久午夜电影| 卡戴珊不雅视频在线播放| 免费在线观看成人毛片| 99热精品在线国产| 亚洲电影在线观看av| 亚洲激情五月婷婷啪啪| 草草在线视频免费看| 精品久久国产蜜桃| 亚洲婷婷狠狠爱综合网| 99热这里只有是精品在线观看| 91精品国产九色| 亚洲人成网站在线观看播放| 精品不卡国产一区二区三区| av中文乱码字幕在线| 色吧在线观看| 午夜亚洲福利在线播放| 精品欧美国产一区二区三| 一本精品99久久精品77| 亚洲,欧美,日韩| 成人毛片a级毛片在线播放| 久久精品国产清高在天天线| 最近中文字幕高清免费大全6| 可以在线观看的亚洲视频| 亚洲av不卡在线观看| 日韩在线高清观看一区二区三区| 不卡一级毛片| 美女黄网站色视频| 久久精品综合一区二区三区| 麻豆国产av国片精品| 亚洲图色成人| 亚洲av中文字字幕乱码综合| 日韩精品中文字幕看吧| 亚洲精品日韩在线中文字幕 | 男女做爰动态图高潮gif福利片| 欧美成人a在线观看| av天堂在线播放| 国产精品无大码| 床上黄色一级片| 欧美xxxx黑人xx丫x性爽| 久久久国产成人免费| 国产精品永久免费网站| 中文字幕av在线有码专区| 国产精品亚洲一级av第二区| av天堂在线播放| 成年女人永久免费观看视频| 欧美成人一区二区免费高清观看| 校园春色视频在线观看| 搡老熟女国产l中国老女人| 国产成人精品久久久久久| 国产不卡一卡二| 俄罗斯特黄特色一大片| 男人狂女人下面高潮的视频| 99久久精品一区二区三区| 欧美+亚洲+日韩+国产| 偷拍熟女少妇极品色| 少妇熟女欧美另类| 亚洲三级黄色毛片| 亚洲,欧美,日韩| 在线观看av片永久免费下载| 免费电影在线观看免费观看| 欧美一区二区亚洲| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 久久亚洲国产成人精品v| 直男gayav资源| 国产精品亚洲美女久久久| 男人舔奶头视频| 国产欧美日韩精品亚洲av| 男人的好看免费观看在线视频| 欧美高清性xxxxhd video| 亚洲欧美日韩东京热| 2021天堂中文幕一二区在线观| 黑人高潮一二区| 亚洲七黄色美女视频| 久久久国产成人精品二区| 日韩欧美在线乱码| 人人妻,人人澡人人爽秒播| 97超视频在线观看视频| 男女视频在线观看网站免费| a级毛色黄片| 成人欧美大片| 精品福利观看| 欧美日本亚洲视频在线播放| 在线免费观看的www视频| 99久久无色码亚洲精品果冻| 97超级碰碰碰精品色视频在线观看| 中文字幕久久专区| 国产亚洲精品久久久久久毛片| 少妇被粗大猛烈的视频| 亚洲av一区综合| 少妇熟女欧美另类| 麻豆一二三区av精品| 免费在线观看影片大全网站| 亚洲自偷自拍三级| 俺也久久电影网| 午夜精品一区二区三区免费看| 99国产极品粉嫩在线观看| 日本免费a在线| 精品无人区乱码1区二区| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 深夜精品福利| 国产黄色视频一区二区在线观看 | avwww免费| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 精品少妇黑人巨大在线播放 | 国产精品嫩草影院av在线观看| 国产精品一二三区在线看| 亚洲在线观看片| 在线a可以看的网站| 国产伦精品一区二区三区视频9| 狠狠狠狠99中文字幕| 免费黄网站久久成人精品| 日韩成人伦理影院| av在线观看视频网站免费| 国产高清有码在线观看视频| 秋霞在线观看毛片| 波多野结衣巨乳人妻| 欧美+亚洲+日韩+国产| 乱人视频在线观看| 成人亚洲精品av一区二区| 亚洲人成网站在线播放欧美日韩| 国产三级中文精品| 搡老岳熟女国产| 国产欧美日韩精品亚洲av| 日韩欧美精品免费久久| 亚洲av电影不卡..在线观看| 国产亚洲精品av在线| 国产男靠女视频免费网站| or卡值多少钱| 99热全是精品| 欧美日本视频| 久久精品人妻少妇| 亚洲av美国av| 别揉我奶头~嗯~啊~动态视频| 亚洲丝袜综合中文字幕| 悠悠久久av| 97在线视频观看| 国产日本99.免费观看| 国产精品人妻久久久久久| 国产一区二区三区av在线 | 悠悠久久av| 日本精品一区二区三区蜜桃| 日韩高清综合在线| 久久久久精品国产欧美久久久| 亚洲色图av天堂| 国产精品av视频在线免费观看| 日本a在线网址| 中出人妻视频一区二区| 熟妇人妻久久中文字幕3abv| 蜜臀久久99精品久久宅男| 成人特级av手机在线观看| 久久精品夜色国产| 18+在线观看网站| 亚洲激情五月婷婷啪啪| 久久久久久国产a免费观看| 可以在线观看的亚洲视频| 欧美日韩国产亚洲二区| 日本 av在线| 国产成人aa在线观看| 黄色一级大片看看| 在线免费观看的www视频| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 插逼视频在线观看| 亚洲精品色激情综合| 男插女下体视频免费在线播放| 淫妇啪啪啪对白视频| 99久久久亚洲精品蜜臀av| 九色成人免费人妻av| 亚洲欧美中文字幕日韩二区| 看黄色毛片网站| 99国产极品粉嫩在线观看| 亚洲av一区综合| 如何舔出高潮| 亚洲精品一卡2卡三卡4卡5卡| 热99在线观看视频| 成人无遮挡网站| 丝袜喷水一区| 免费在线观看影片大全网站| 国国产精品蜜臀av免费| 日本撒尿小便嘘嘘汇集6| 在线播放无遮挡| 91av网一区二区| 日日摸夜夜添夜夜爱| 天堂影院成人在线观看| 麻豆久久精品国产亚洲av| 有码 亚洲区| a级毛色黄片| 久久久久国产网址| 99久久精品热视频| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 国产爱豆传媒在线观看| 久久人人爽人人爽人人片va| 久久精品夜色国产| 亚洲性久久影院| avwww免费| 国产精华一区二区三区| 国产探花在线观看一区二区| 男人舔奶头视频| 亚洲七黄色美女视频| 在线播放国产精品三级| 日本黄色视频三级网站网址| 免费不卡的大黄色大毛片视频在线观看 | 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 久久婷婷人人爽人人干人人爱| 日本一二三区视频观看| 午夜视频国产福利| 亚洲精品成人久久久久久| 亚洲精品久久国产高清桃花| 国产成人a区在线观看| 91久久精品电影网| 嫩草影院精品99| 中文字幕免费在线视频6| .国产精品久久| 国产av不卡久久| 日本黄色片子视频| 亚洲经典国产精华液单| 波多野结衣高清作品| 久久精品国产亚洲网站| 亚洲av二区三区四区| 天堂√8在线中文| 性欧美人与动物交配| 成人亚洲欧美一区二区av| 少妇的逼好多水| 国产单亲对白刺激| 国产视频一区二区在线看| 麻豆国产97在线/欧美| 成熟少妇高潮喷水视频| 亚洲一区二区三区色噜噜| 日韩欧美免费精品| 国产综合懂色| 91午夜精品亚洲一区二区三区| 少妇丰满av| 欧美激情在线99| 一级毛片aaaaaa免费看小| 美女xxoo啪啪120秒动态图| 成人亚洲精品av一区二区| 欧美最新免费一区二区三区| 少妇的逼好多水| 精品日产1卡2卡| 99久久久亚洲精品蜜臀av| 欧美在线一区亚洲| 啦啦啦观看免费观看视频高清| 一级a爱片免费观看的视频| 在现免费观看毛片| 亚洲欧美日韩东京热| 亚洲精品粉嫩美女一区| 亚洲久久久久久中文字幕| 天天躁夜夜躁狠狠久久av| 嫩草影院入口| 在线国产一区二区在线| 一进一出好大好爽视频| 麻豆av噜噜一区二区三区| 大香蕉久久网| 中文字幕熟女人妻在线| 国产精品永久免费网站| 波多野结衣高清无吗| 18禁裸乳无遮挡免费网站照片| 欧美激情国产日韩精品一区| 成人特级av手机在线观看| 亚洲精品乱码久久久v下载方式| 午夜福利高清视频| 亚洲五月天丁香| 亚洲国产日韩欧美精品在线观看| 国产精品国产三级国产av玫瑰| 成年女人毛片免费观看观看9| 成人av一区二区三区在线看| 夜夜爽天天搞| 亚洲成av人片在线播放无| 美女黄网站色视频| 亚洲欧美精品综合久久99| 久久精品人妻少妇| 久久久久九九精品影院| 搞女人的毛片| 有码 亚洲区| 久久精品国产鲁丝片午夜精品| 最好的美女福利视频网| 亚洲国产精品成人久久小说 | 国产在线男女| 国产精品久久久久久精品电影| 久久99热6这里只有精品| 不卡一级毛片| 欧美成人a在线观看| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 欧美国产日韩亚洲一区| 最好的美女福利视频网| 在线免费十八禁| 国产视频一区二区在线看| 观看美女的网站| 真人做人爱边吃奶动态| 99久久中文字幕三级久久日本| 色视频www国产| 悠悠久久av| 久久韩国三级中文字幕| 久久亚洲国产成人精品v| 国产精品一区二区三区四区久久| 成熟少妇高潮喷水视频| 波多野结衣高清无吗| 久久午夜亚洲精品久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲最大成人av| 国产色婷婷99| 精品国产三级普通话版| 国产视频内射| 国内少妇人妻偷人精品xxx网站| 欧美成人一区二区免费高清观看| 人妻制服诱惑在线中文字幕| or卡值多少钱| 午夜精品一区二区三区免费看| 国产伦精品一区二区三区视频9| 女人被狂操c到高潮| 国产精品久久久久久亚洲av鲁大| 99久久精品国产国产毛片| 亚洲,欧美,日韩| a级毛片免费高清观看在线播放| 久久久a久久爽久久v久久| 一a级毛片在线观看| 一级av片app| 波多野结衣高清无吗| 午夜爱爱视频在线播放| 亚洲中文字幕日韩| 日日摸夜夜添夜夜爱| 国产精品99久久久久久久久| 18禁在线播放成人免费| 少妇的逼水好多| 国产一区二区在线av高清观看| av在线老鸭窝| www.色视频.com| 亚洲久久久久久中文字幕| 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| 日产精品乱码卡一卡2卡三| 简卡轻食公司| 亚洲中文字幕一区二区三区有码在线看| 国模一区二区三区四区视频| 黄色配什么色好看| 国产黄色小视频在线观看| 日韩在线高清观看一区二区三区| 波多野结衣高清作品| 又黄又爽又刺激的免费视频.| 一进一出好大好爽视频| 又爽又黄a免费视频| 日本 av在线| 亚洲不卡免费看| 成人国产麻豆网| 精品99又大又爽又粗少妇毛片| 一级a爱片免费观看的视频| 成年免费大片在线观看| 无遮挡黄片免费观看| 麻豆av噜噜一区二区三区| 国产三级中文精品| 国产精品一区www在线观看| 成人av一区二区三区在线看| 禁无遮挡网站| 欧美三级亚洲精品| 一级毛片我不卡| 中文亚洲av片在线观看爽| 亚洲高清免费不卡视频| 看十八女毛片水多多多| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| 美女xxoo啪啪120秒动态图| 色5月婷婷丁香| 69人妻影院| 国产精品乱码一区二三区的特点| 综合色丁香网| 亚洲欧美日韩东京热| 成人午夜高清在线视频| 白带黄色成豆腐渣| 最后的刺客免费高清国语| 国产亚洲精品久久久久久毛片| videossex国产| 欧美区成人在线视频| 国产亚洲av嫩草精品影院| 插逼视频在线观看| 美女内射精品一级片tv| 亚洲中文字幕日韩| 日本一二三区视频观看| 国内精品美女久久久久久| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 一个人观看的视频www高清免费观看| h日本视频在线播放| 性色avwww在线观看| 日本黄大片高清| 熟女人妻精品中文字幕| 久久久午夜欧美精品| 麻豆av噜噜一区二区三区| 精品久久久久久久久亚洲| 精品日产1卡2卡| 国产精品久久久久久精品电影| 久久人妻av系列| 九色成人免费人妻av| 少妇的逼水好多| 精品免费久久久久久久清纯| 精品福利观看|