龐寅
(1.海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院工程技術(shù)學(xué)院,海南???571127;2.海南大學(xué)信息科學(xué)技術(shù)學(xué)院,海南海口 570228)
基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的設(shè)計(jì)
龐寅
(1.海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院工程技術(shù)學(xué)院,海南???571127;2.海南大學(xué)信息科學(xué)技術(shù)學(xué)院,海南海口 570228)
針對(duì)傳統(tǒng)的遠(yuǎn)程電網(wǎng)線(xiàn)路監(jiān)測(cè)采用人工篩選方法,隨著線(xiàn)路的分布復(fù)雜性增大,尋線(xiàn)效率不高,提出一種基于分布式地理信息系統(tǒng)網(wǎng)絡(luò)(WebGIS)的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)優(yōu)化設(shè)計(jì)方法。首先,進(jìn)行系統(tǒng)的總體設(shè)計(jì),基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)主要由無(wú)線(xiàn)傳感器模塊、線(xiàn)路故障處理器模塊、線(xiàn)路故障數(shù)據(jù)通信模塊和系統(tǒng)的能量供給模塊等組成。其次,設(shè)計(jì)遠(yuǎn)程電網(wǎng)尋線(xiàn)網(wǎng)格WebGIS的分布式定位算法。最后,對(duì)系統(tǒng)的時(shí)鐘電路、發(fā)射匹配電路、系統(tǒng)電源供電硬件模塊進(jìn)行設(shè)計(jì)。在Visual DSP++4.5下進(jìn)行系統(tǒng)的仿真實(shí)驗(yàn),仿真結(jié)果表明,采用該系統(tǒng)能有效準(zhǔn)確地實(shí)現(xiàn)遠(yuǎn)程電網(wǎng)尋線(xiàn)和故障監(jiān)測(cè),故障節(jié)點(diǎn)的定位準(zhǔn)確度高,實(shí)現(xiàn)智能尋線(xiàn)。
網(wǎng)格;分布式地理信息系統(tǒng);遠(yuǎn)程電網(wǎng);系統(tǒng)設(shè)計(jì)
當(dāng)前,中國(guó)的智能電網(wǎng)建設(shè)步伐加快,全國(guó)220 kV及以上輸電線(xiàn)路總長(zhǎng)度達(dá)到43萬(wàn)km,變電容量19.6億kV·A。目前,國(guó)家電網(wǎng)公司分配的是我國(guó)距離最長(zhǎng)、系統(tǒng)集成度最高的網(wǎng)絡(luò)系統(tǒng),其系統(tǒng)組成復(fù)雜,且分布在野外環(huán)境中,導(dǎo)致電網(wǎng)線(xiàn)路故障經(jīng)常發(fā)生。對(duì)電網(wǎng)線(xiàn)路檢修和監(jiān)測(cè),是保障遠(yuǎn)程電網(wǎng)穩(wěn)定可靠運(yùn)行的關(guān)鍵。由于線(xiàn)路交錯(cuò)且野外地理信息環(huán)境復(fù)雜,導(dǎo)致線(xiàn)路故障點(diǎn)難以得到準(zhǔn)確排除,需要進(jìn)行遠(yuǎn)程電網(wǎng)的智能尋線(xiàn)和監(jiān)測(cè),通過(guò)對(duì)遠(yuǎn)程電網(wǎng)線(xiàn)路運(yùn)行狀態(tài)安全監(jiān)測(cè)的智能尋線(xiàn)系統(tǒng)優(yōu)化設(shè)計(jì),提高對(duì)線(xiàn)路的監(jiān)測(cè)能力[1]。
傳統(tǒng)方法中,對(duì)電網(wǎng)線(xiàn)路的監(jiān)測(cè)方法主要有基于計(jì)算機(jī)視覺(jué)的線(xiàn)路監(jiān)測(cè)方法,基于無(wú)線(xiàn)傳感器網(wǎng)的遠(yuǎn)程電網(wǎng)線(xiàn)路監(jiān)測(cè)方法和基于物聯(lián)網(wǎng)的線(xiàn)路監(jiān)測(cè)方法等。然而,傳統(tǒng)方法主要是采用人工篩選方法,尋線(xiàn)效率不高[2]。對(duì)此,相關(guān)文獻(xiàn)進(jìn)行了系統(tǒng)的改進(jìn)設(shè)計(jì),其中,文獻(xiàn)[3]提出一種基于嵌入式大功率網(wǎng)絡(luò)的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的設(shè)計(jì)方法,該方法采用超聲波檢測(cè)技術(shù)實(shí)現(xiàn)對(duì)電網(wǎng)的智能尋線(xiàn)和故障排查,系統(tǒng)檢測(cè)性能較好,但是該系統(tǒng)設(shè)計(jì)中需要進(jìn)行誤差反饋,隨著線(xiàn)路分布的隨機(jī)性擴(kuò)展,誤差反饋準(zhǔn)確性不好,導(dǎo)致尋線(xiàn)的準(zhǔn)確度受到影響;文獻(xiàn)[4]提出一種基于雙向流動(dòng)補(bǔ)償?shù)倪h(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng),根據(jù)超聲回波進(jìn)行遠(yuǎn)程電網(wǎng)線(xiàn)路尋線(xiàn)檢測(cè),結(jié)合遠(yuǎn)程視頻監(jiān)控技術(shù),實(shí)現(xiàn)遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的多媒體化和信息化,但是該系統(tǒng)在設(shè)計(jì)中通過(guò)視頻法進(jìn)行故障檢測(cè),由于視頻法對(duì)故障的排查過(guò)于簡(jiǎn)單,導(dǎo)致電網(wǎng)線(xiàn)路的故障檢測(cè)性能不好。隨著地理信息系統(tǒng)(geographic information system或geo-information system,GIS)的應(yīng)用和發(fā)展,結(jié)合GIS網(wǎng)格分配和調(diào)度方法進(jìn)行線(xiàn)路分布跟蹤和智能監(jiān)測(cè)具有可能性[5-8]。對(duì)此,本文針對(duì)傳統(tǒng)方法出現(xiàn)的問(wèn)題,提出一種基于分布式地理信息系統(tǒng)網(wǎng)絡(luò)(WebGIS)的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)優(yōu)化設(shè)計(jì)方法。首先,進(jìn)行了系統(tǒng)的總體設(shè)計(jì),設(shè)計(jì)網(wǎng)格WebGIS線(xiàn)路故障檢測(cè)算法。其次,進(jìn)行了系統(tǒng)的硬件設(shè)計(jì)和軟件設(shè)計(jì)。最后,通過(guò)仿真實(shí)驗(yàn)進(jìn)行了性能驗(yàn)證,驗(yàn)證了本文設(shè)計(jì)的系統(tǒng)在提高遠(yuǎn)程電網(wǎng)尋線(xiàn)準(zhǔn)確性方面的優(yōu)越性能。
1.1 系統(tǒng)總體設(shè)計(jì)
在遠(yuǎn)程電網(wǎng)中,電線(xiàn)作為連接電網(wǎng)線(xiàn)路的基本單元,容易出現(xiàn)破損和斷路等問(wèn)題,需要進(jìn)行尋線(xiàn)和故障監(jiān)測(cè)?;赪ebGIS的遠(yuǎn)程電網(wǎng)電線(xiàn)故障定位識(shí)別和檢測(cè)是通過(guò)建立故障節(jié)點(diǎn)的檢測(cè)和定位模型,采用無(wú)線(xiàn)傳感器的網(wǎng)格分布技術(shù),進(jìn)行線(xiàn)路檢測(cè)的?;诰W(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)主要由無(wú)線(xiàn)傳感器WebGIS模塊、線(xiàn)路故障處理器模塊、線(xiàn)路故障數(shù)據(jù)通信模塊和系統(tǒng)的能量供給模塊等組成,基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)總體設(shè)計(jì)框圖如圖1所示。
圖1 基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)總體設(shè)計(jì)框圖Fig.1 Overall design block diagram of remote power line monitoring system based on grid WebGIS
基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)包含3個(gè)單元,電力網(wǎng)的任務(wù)是輸送與分配電能,改變電壓。傳感器模塊負(fù)責(zé)監(jiān)控遠(yuǎn)程電網(wǎng)線(xiàn)路運(yùn)行網(wǎng)絡(luò)系統(tǒng)內(nèi)的原始信息,進(jìn)行故障信息的采集和數(shù)據(jù)融合處理,被監(jiān)控的遠(yuǎn)程電網(wǎng)線(xiàn)路運(yùn)行狀態(tài)信息決定了網(wǎng)格WebGIS的分布類(lèi)型,線(xiàn)路故障數(shù)據(jù)通信模塊負(fù)責(zé)網(wǎng)格WebGIS與線(xiàn)路故障檢測(cè)的傳感器之間的通信數(shù)據(jù)傳輸,并實(shí)現(xiàn)與上位機(jī)的線(xiàn)路故障數(shù)據(jù)融合和信息共享交換??梢?jiàn),遠(yuǎn)程電網(wǎng)的電線(xiàn)故障尋線(xiàn)診斷的第一步是故障數(shù)據(jù)信息的遠(yuǎn)程采集,實(shí)現(xiàn)特征信息提取?;诰W(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)的數(shù)據(jù)信息處理流程如圖2所示。
圖2 基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)的數(shù)據(jù)信息處理流程Fig.2 Data information processing of remote power line monitoring system based on grid WebGIS
1.2 遠(yuǎn)程電網(wǎng)尋線(xiàn)網(wǎng)格WebGIS的分布式定位算法
隨著地理信息系統(tǒng)不斷在野外電網(wǎng)信息監(jiān)測(cè)中的應(yīng)用,采用網(wǎng)格WebGIS的分布式定位算法實(shí)現(xiàn)遠(yuǎn)程電網(wǎng)尋線(xiàn)能提高尋線(xiàn)的準(zhǔn)確度。假設(shè)遠(yuǎn)程電網(wǎng)尋的WebGIS由匯聚節(jié)點(diǎn)SN和N個(gè)簇首節(jié)點(diǎn)組成,假設(shè)在網(wǎng)格點(diǎn)Wij的感知半徑內(nèi)對(duì)電網(wǎng)線(xiàn)路的特征數(shù)據(jù)序列進(jìn)行采集:
式中:SL為故障測(cè)度信息。第k個(gè)電網(wǎng)節(jié)點(diǎn)的WebGIS信任度數(shù)學(xué)模型為
式中:Tα為網(wǎng)格點(diǎn)的故障檢測(cè)閾值;Tε為線(xiàn)路故障點(diǎn)的分量幅度調(diào)制信息;Smk為網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)視頻監(jiān)控的第m幀(x,y)處的像素。網(wǎng)格點(diǎn)感知半徑內(nèi)的電線(xiàn)故障信息定義為
式中:Ui為經(jīng)驗(yàn)?zāi)B(tài)分解值;Θ(t)為線(xiàn)路的結(jié)構(gòu)信息,以此來(lái)判斷網(wǎng)格點(diǎn)的聯(lián)合信任度。在節(jié)點(diǎn)選擇階段,網(wǎng)格WebGIS遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)工作節(jié)點(diǎn)廣播Pim消息,得到遠(yuǎn)程電網(wǎng)尋線(xiàn)的WebGIS網(wǎng)格分配,如圖3所示。
圖3 遠(yuǎn)程電網(wǎng)尋線(xiàn)的WebGIS網(wǎng)格分配Fig.3 WebGIS grid distribution of remote power line monitoring
圖3中,以網(wǎng)格點(diǎn)Wij為圓心,遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的GIS配網(wǎng)網(wǎng)絡(luò)的N個(gè)簇首節(jié)點(diǎn)構(gòu)成半徑Rs的圓形區(qū)域C={CHi|1≤i≤N}。對(duì)于,網(wǎng)格點(diǎn)感知區(qū)域內(nèi)傳輸調(diào)度集滿(mǎn)足,選定好工作節(jié)點(diǎn),遠(yuǎn)程電網(wǎng)線(xiàn)路故障調(diào)度數(shù)據(jù)由匯集節(jié)點(diǎn)表示。若則構(gòu)造網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)的配網(wǎng)節(jié)點(diǎn)最大獨(dú)立集為
式中:xk為電線(xiàn)故障節(jié)點(diǎn)序列;Vi為電線(xiàn)故障的正態(tài)分布特征,它反映出電網(wǎng)故障數(shù)據(jù)網(wǎng)格WebGIS特征。網(wǎng)格WebGIS節(jié)點(diǎn)距離的頻域特性為
式中:wi(k)和vi(k)為電線(xiàn)故障部位的巡查狀態(tài)噪聲和觀測(cè)噪聲;Φi(k)和Hi(k)為電線(xiàn)故障的監(jiān)控輸出,服從均值為0、方差為Sj(k)的正態(tài)分布。對(duì)電線(xiàn)故障點(diǎn)的紋理結(jié)構(gòu)信息進(jìn)行平滑處理,得到電網(wǎng)智能監(jiān)測(cè)尋線(xiàn)過(guò)程中故障節(jié)點(diǎn)的歐式距離為
式中:xi、yi分別為WebGIS監(jiān)測(cè)水平半徑和垂半徑,它對(duì)K個(gè)WebGIS網(wǎng)格分割區(qū)域進(jìn)行循環(huán)搜索,以實(shí)現(xiàn)遠(yuǎn)程電網(wǎng)尋線(xiàn)網(wǎng)格WebGIS的分布式定位。遠(yuǎn)程電網(wǎng)尋線(xiàn)網(wǎng)格WebGIS的分布式定位模型如圖4所示。
在第1節(jié)進(jìn)行系統(tǒng)總體設(shè)計(jì)和網(wǎng)格WebGIS分布式定位算法設(shè)計(jì)的基礎(chǔ)上,進(jìn)行系統(tǒng)的硬件模塊和軟件模塊設(shè)計(jì)。設(shè)定電線(xiàn)故障信息傳輸通道數(shù)為8通道,有1路、2路、4路、8路輸入。本文設(shè)計(jì)的遠(yuǎn)程電網(wǎng)線(xiàn)路安全運(yùn)行狀態(tài)監(jiān)測(cè)模塊的主要技術(shù)指標(biāo):FIR帶通濾波動(dòng)態(tài)范圍為-30~+40 dB;采樣率≥200 kHz,線(xiàn)路的D/A分辨率為12位。設(shè)計(jì)時(shí)鐘電路進(jìn)行原始信息的采集,基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的時(shí)鐘電路如圖5所示。
圖4 遠(yuǎn)程電網(wǎng)尋線(xiàn)網(wǎng)格WebGIS的分布式定位模型Fig.4 Distributed location model of the grid WebGIS
圖5 基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的時(shí)鐘電路Fig.5 Clock circuit of remote power line monitoring system based on the grid WebGIS
該應(yīng)用中對(duì)遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的時(shí)序比較敏感,要求時(shí)鐘精度較高,選擇晶振頻率最高為600 MHz,I/O電壓為3.3 V,電線(xiàn)分布的故障數(shù)據(jù)分為n個(gè)時(shí)隙,假設(shè)每個(gè)時(shí)隙的持續(xù)時(shí)間為T(mén),在晶振的電源入口處放一個(gè)10~100 μF的鉭電容,設(shè)計(jì)線(xiàn)路的遠(yuǎn)程監(jiān)控系統(tǒng)的發(fā)射匹配電路,如圖6所示。
圖6 系統(tǒng)的發(fā)射匹配電路Fig.6 Emission matching circuit of system
基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)硬件模塊設(shè)計(jì)的另一主要部分是系統(tǒng)電源設(shè)計(jì)。動(dòng)態(tài)環(huán)境下線(xiàn)路故障捕獲系統(tǒng)的系統(tǒng)電源設(shè)計(jì)中,要求輸出電壓和輸入電壓一致,均處于±10 V范圍,設(shè)計(jì)的一款電源芯片TPS767D301,單獨(dú)輸出+3.3 V和+1.6 V,電流最大輸出為1 A,能有效滿(mǎn)足動(dòng)態(tài)環(huán)境下遠(yuǎn)程電網(wǎng)線(xiàn)路故障的自動(dòng)捕獲系統(tǒng)設(shè)計(jì)要求[9-12]。采用MUX101程控開(kāi)關(guān)控制數(shù)字電源+5 V和模擬電源+5 V供電,實(shí)現(xiàn)系統(tǒng)的硬件設(shè)計(jì)。系統(tǒng)電源設(shè)計(jì)如圖7所示。
系統(tǒng)由線(xiàn)路故障處理器模塊、線(xiàn)路故障數(shù)據(jù)通信模塊和系統(tǒng)的能量供給模塊等組成[13-14]。運(yùn)算放大器輸出驅(qū)動(dòng)模數(shù)轉(zhuǎn)換器為(ADC),線(xiàn)路檢測(cè)的工作電壓±1.5 V,工作電流3 mA,在晶振的每一個(gè)電源引腳處也都要放一個(gè)0.1 μF的電容,實(shí)現(xiàn)對(duì)系統(tǒng)的集成設(shè)計(jì),得到設(shè)計(jì)的系統(tǒng)電路如圖8所示。
嵌入遠(yuǎn)程電網(wǎng)尋線(xiàn)網(wǎng)格WebGIS的分布式定位算法,進(jìn)行尋線(xiàn)系統(tǒng)軟件開(kāi)發(fā),軟件開(kāi)發(fā)流程如圖9所示。綜上,完成了系統(tǒng)的硬件和軟件設(shè)計(jì)。
圖7 系統(tǒng)電源設(shè)計(jì)框圖Fig.7 Block diagram of system power supply
圖8 系統(tǒng)集成電路設(shè)計(jì)Fig.8 System integrated circuit design
圖9 代碼開(kāi)發(fā)流程Fig.9 Code development process
為了測(cè)試本文算法在實(shí)現(xiàn)基于分布式地理信息系統(tǒng)網(wǎng)絡(luò)(WebGIS)的遠(yuǎn)程電網(wǎng)尋線(xiàn)中的性能,進(jìn)行仿真測(cè)試與實(shí)驗(yàn)。實(shí)驗(yàn)中,系統(tǒng)軟件的開(kāi)發(fā)平臺(tái)是Visual DSP++4.5。VisualDSP++通過(guò)圖形窗口的方式與用戶(hù)進(jìn)行信息交換,調(diào)試器集成了軟件仿真器(simulator)、硬件仿真器(emulator)和開(kāi)發(fā)板監(jiān)控,得到基于分布式地理信息系統(tǒng)網(wǎng)絡(luò)(WebGIS)的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的開(kāi)發(fā)界面,如圖10所示。
在Visual DSP++4.5下進(jìn)行基于網(wǎng)格WebGIS的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)設(shè)計(jì)與仿真。仿真中,倍頻數(shù)為10倍,由25 MHz的晶振頻率知DSP默認(rèn)工作頻率為250 MHz,DSP內(nèi)核電壓必須大于1.2 V,采樣的12位二進(jìn)制數(shù)中總有2位是同時(shí)變化的,要么都為1,要么都為0。通過(guò)調(diào)試,硬件功能基本正常,在進(jìn)行電網(wǎng)尋尋線(xiàn)和故障監(jiān)測(cè)時(shí),得到遠(yuǎn)程電網(wǎng)尋線(xiàn)的監(jiān)測(cè)結(jié)果如圖11所示。
圖10 遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)的開(kāi)發(fā)界面Fig.10 Development interface of remote power line monitoring system
圖11 遠(yuǎn)程電網(wǎng)尋線(xiàn)的監(jiān)測(cè)結(jié)果Fig.11 Monitoring results of remote network routing
由圖11可知,采用本文方法能準(zhǔn)確有效地實(shí)現(xiàn)對(duì)4個(gè)通道的遠(yuǎn)程電網(wǎng)尋線(xiàn)和故障監(jiān)測(cè),對(duì)故障節(jié)點(diǎn)定位的準(zhǔn)確度高,展示了本文設(shè)計(jì)系統(tǒng)的優(yōu)越性能。
電網(wǎng)在進(jìn)行遠(yuǎn)程供電傳輸過(guò)程中,由于線(xiàn)路交錯(cuò)且野外地理信息環(huán)境復(fù)雜,導(dǎo)致線(xiàn)路故障點(diǎn)難以得到準(zhǔn)確排除,需要進(jìn)行遠(yuǎn)程電網(wǎng)的智能尋線(xiàn)和監(jiān)測(cè),通過(guò)對(duì)遠(yuǎn)程電網(wǎng)線(xiàn)路運(yùn)行狀態(tài)安全監(jiān)測(cè)的智能尋線(xiàn)系統(tǒng)優(yōu)化設(shè)計(jì),提高對(duì)線(xiàn)路的監(jiān)測(cè)能力。本文提出一種基于分布式地理信息系統(tǒng)網(wǎng)絡(luò)(WebGIS)的遠(yuǎn)程電網(wǎng)尋線(xiàn)系統(tǒng)優(yōu)化設(shè)計(jì)方法。首先,進(jìn)行了系統(tǒng)的總體設(shè)計(jì),設(shè)計(jì)網(wǎng)格WebGIS線(xiàn)路故障檢測(cè)算法;其次,進(jìn)行了系統(tǒng)的硬件設(shè)計(jì)和軟件設(shè)計(jì);最后,在Visual DSP++4.5下進(jìn)行系統(tǒng)的仿真實(shí)驗(yàn)和性能驗(yàn)證。仿真結(jié)果表明,采用該系統(tǒng)能有效準(zhǔn)確地實(shí)現(xiàn)遠(yuǎn)程電網(wǎng)尋線(xiàn)和故障監(jiān)測(cè),故障節(jié)點(diǎn)的定位準(zhǔn)確度高,性能優(yōu)越。
[1]甄建軍,張毅.基于螺旋平面線(xiàn)圈的感應(yīng)電能傳輸技術(shù)研究[J].電氣自動(dòng)化,2014,36(2):78-80.ZHEN Jianjun,ZHANG Yi.Research on inductive power transmission technology based on spiral planar coil[J].Electrical Automation,2014(2):78-80(in Chinese).
[2]高志春,陳冠瑋.傾斜因子K均值優(yōu)化數(shù)據(jù)聚類(lèi)及故障診斷研究[J].計(jì)算機(jī)與數(shù)字工程,2014,42(1):14-18.GAO Zhichun,CHEN Guanwei.Fault diagnosis and optimal data clustering based on k-means with slope factor[J].Computer and Digital Engineering,2014,42(1):14-18(in Chinese).
[3]楊俊,周丙寅,張毅,等.基于遞歸圖分析的壓縮機(jī)故障診斷方法研究[J].計(jì)算機(jī)與數(shù)字工程,2013,41(6):984-986.YANG Jun,ZHOU Bingyin,ZHANG Yi,et al.Compressor fault diagnosis based on recurrence plot analysis[J].Computer and Digital Engineering,2013,41(6):984-986(in Chinese).
[4]李寰宇,畢篤彥,楊源,等.基于深度特征表達(dá)與學(xué)習(xí)的視覺(jué)跟蹤算法研究[J].電子與信息學(xué)報(bào),2015,37(9): 2033-2039.LI Huanyu,BI Duyan,YANG Yuan,et al.Research on visual tracking algorithm based on deep feature expression and learning[J].Journal of Electronics& Information Technology,2015,37(9):2033-2039(in Chinese).
[5]陳曉,張貴峰,張巍,等.基于風(fēng)險(xiǎn)矩陣的輸電線(xiàn)路直升機(jī)巡檢作業(yè)安全風(fēng)險(xiǎn)評(píng)估方法[J].南方電網(wǎng)技術(shù),2015,9(11):58-64.CHEN Xiao,ZHANG Guifeng,ZHANG Wei,et al.Risk matrix based safety risk assessment of overhead line helicopter patrol inspections[J].Southern Power System Technology,2015,9(11):58-64(in Chinese).
[6]張福民,王富東,楊俊.ZN85A-40.5真空斷路器觸頭傳動(dòng)結(jié)構(gòu)的動(dòng)力學(xué)仿真[J].高壓電器,2010,46(2):20-26.ZHANG Fumin,WANG Fudong,YANG Jun.Dynamic simulation of ZN85A-40.5 vacuum circuit breaker contact transmission structure[J].High Voltage Apparatus,2010,46(2):20-26(in Chinese).
[7]何樂(lè)彰,張忠會(huì),張琪琪.采用模糊綜合評(píng)判法的輸電線(xiàn)路狀態(tài)評(píng)估[J].電力與能源,2014(3):349-352.HE Lezhang,ZHANG Zhonghui,ZHANG Qiqi.State evaluation of power transmission line using fuzzy comprehensive judgment[J].Power&Energy,2014(3):349-352(in Chinese).
[8]鄭中勝,鄧慰,李兵,等.基于光電場(chǎng)傳感器的劣化絕緣子檢測(cè)系統(tǒng)[J].電瓷避雷器,2014(6):38-44.ZHENG Zhongsheng,DENG Wei,LI Bing,et al.Detection system of deterioration insulators based on optical transducer[J].Insulators and Surge Arresters,2014(6): 38-44(in Chinese).
[9]易榮,岳偉,張海濤,等.多端柔性直流輸電系統(tǒng)中混合運(yùn)行方式分析[J].電網(wǎng)與清潔能源,2014(12):21-26.YI Rong,YUE Wei,ZHANG Haitao,et al.Analysis on mixture operation mode of VSC-MTDC Transmission system[J].2014(12):21-26(in Chinese).
[10]肖兒良,莫康,陳朱杰.輸入不平衡時(shí)雙級(jí)矩陣變換器的比例諧振控制[J].電力科學(xué)與工程,2014,30(12): 39-45.XIAO Erliang,MO Kang,CHEN Zhujie.Proportional resonant control for two stage matrix converter under unbalanced supply condition[J].Electric Power Science and Engineering,2014,30(12):39-45(in Chinese).
[11]趙建利,馮衛(wèi)強(qiáng),李宣義,等.智能變電站通信網(wǎng)絡(luò)端到端信息的統(tǒng)計(jì)時(shí)延分布[J].華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,41(6):27-33.ZHAO Jianli,F(xiàn)ENG Weiqiang,LI Xuanyi,et al.Endto-end statistical time delay distribution of communication network in smart substation[J].Journal of North China Electric Power University(Natural Science Edition),2014,41(6):27-33(in Chinese).
[12]唐建清.一種快速估算運(yùn)行狀態(tài)母線(xiàn)短路容量的方法[J].江蘇電機(jī)工程,2014,33(6):26-29.TANG Jianqing.A method for fast calculation of operating bus short-circuit capacity[J].Jiangsu Electrical Engineering,2014,33(6):26-29(in Chinese).
[13]馬兆興,李洪美,萬(wàn)秋蘭,等.基于動(dòng)態(tài)量測(cè)量的電壓失穩(wěn)性判據(jù)研究[J].電力系統(tǒng)保護(hù)與控制,2014(24): 30-35.MA Zhaoxing,LI Hongmei,WAN Qiulan,et al.Study on voltage instability criterion based on dynamic measurement[J].Power System Protection and Control,2014(24): 30-35(in Chinese).
[14]牛睿,梁軍,張峰,等.基于可變行波辨識(shí)時(shí)窗的單端故障定位方法[J].電力系統(tǒng)保護(hù)與控制,2014(24):56-64.NIU Rui,LIANG Jun,ZHANG Feng,et al.Single-ended fault location method based on variable time windows for traveling wave identification[J].Power System Protection and Control,2014(24):56-64(in Chinese).
[15]劉新根,譚耀燊,徐靜華.特高壓交流變電站用磁控式動(dòng)態(tài)無(wú)功補(bǔ)償技術(shù)方案[J].電力電容器與無(wú)功補(bǔ)償,2014,35(6):14-18.LIU Xingen,TAN Yaoshen,XU Jinghua.Technical solution on magnetically controlled dynamic reactive power compensation for uhv ac substation[J].Power Capacitor& Reactive Power Compensation,2014,35(6):14-18(in Chinese).
(編輯 董小兵)
Design of the Remote Power Line Monitoring System Based on Grid WebGIS
PANG Yin
(1.College of Engineering Technology,Hainan College of Economics and Business,Haikou 571127,Hainan,China;2.College of Information Science&Technology,Hainan University,Haikou 570228,Hainan,China)
The traditional remote grid line monitoring is mainly based on human screening method,and with increase of the complexity of line distributions,the monitoring efficiency remains low.This paper proposes an optimized design method for the monitoring system of the remote power grid based on the distributed geographic information system network(WebGIS).First of all,the overall design of the system is given and the system mainly consists of the wireless sensor WebGIS module,line fault processor module,line fault data communication module and system energy supply module.Secondly,the distributed localization algorithm for the WebGIS of the remote power grid is designed.Finally,the system’s clock circuit,the transmission matching circuit,the system power supply hardware module are designed.Simulations are carried out in the DSP Visual++4.5,and the simulation results show that the system can effectively and accurately realize the remote monitoring and fault detection with high accuracy of fault locations and intelligent line monitoring achieved.
grid;distributed geographic information system;remote network;system design
海南省社會(huì)科學(xué)聯(lián)合會(huì)課題(HNSK(JD)15-19)。
Project Supported by Social Science Association of Hainan Province(HNSK(JD)15-19).
1674-3814(2016)08-0029-06
TM755;TP271
A
2016-01-06。
龐 寅(1982—),男,碩士,講師,研究方向?yàn)橛?jì)算機(jī)網(wǎng)絡(luò)。