張照康, BILLY Kirunda John, 努爾古麗·蘇里坦, 楊利建
(華中師范大學(xué) 物理科學(xué)與技術(shù)學(xué)院, 武漢 430079)
?
microRNA-260在秀麗隱桿線蟲(chóng)衰老進(jìn)程中的作用研究
張照康, BILLY Kirunda John, 努爾古麗·蘇里坦, 楊利建*
(華中師范大學(xué) 物理科學(xué)與技術(shù)學(xué)院, 武漢 430079)
本文以秀麗隱桿線蟲(chóng)(C.elegans)為模式生物,通過(guò)測(cè)定microRNA-260(miR-260)編碼基因敲除后(Deletion)突變株與野生株(N2)線蟲(chóng)壽命、生殖能力、進(jìn)食能力和熱刺激條件下的生存能力,研究miR-260在衰老進(jìn)程中發(fā)揮的作用.利用線蟲(chóng)體內(nèi)衰老相關(guān)關(guān)鍵基因表達(dá)量的分析,探討miR-260干預(yù)衰老的可能分子機(jī)制.實(shí)驗(yàn)結(jié)果顯示:miR-260突變株系相對(duì)于野生型線蟲(chóng)壽命縮短,子代數(shù)目減少,進(jìn)食能力的衰弱速度減慢,熱刺激條件下的生存條件能力降低.結(jié)論:miR-260敲除后總體上加快秀麗隱桿線蟲(chóng)突變體衰老的進(jìn)程.其可能的分子機(jī)理為,miR-260主要通過(guò)影響飲食限制通路和TOR信號(hào)通路中共同關(guān)鍵基因eat-2以及JNK信號(hào)通路中的jnk-1基因等的表達(dá)來(lái)調(diào)控線蟲(chóng)的衰老進(jìn)程.
秀麗隱桿線蟲(chóng); miR-260; 衰老;eat-2;jnk-1
衰老是生物體不可抗拒的自然規(guī)律,是有機(jī)體自我更新和修復(fù)能力減弱,結(jié)構(gòu)和功能退化,并最終走向死亡的過(guò)程,其特征表現(xiàn)在壓力刺激能力減退,平衡狀態(tài)打破和罹患疾病風(fēng)險(xiǎn)增加[1].隨著全球人口老齡化,多種老年退行性疾病的高發(fā)以及隨之產(chǎn)生的巨大的醫(yī)療費(fèi)用已成為越來(lái)越嚴(yán)重的社會(huì)問(wèn)題.因此,探求健康的衰老模式,尋求簡(jiǎn)便易行,經(jīng)濟(jì)有效,安全性高,并適宜推廣的干預(yù)衰老及治療衰老相關(guān)疾病的措施和方法具有重大意義.
秀麗隱桿線蟲(chóng)(以下簡(jiǎn)稱“線蟲(chóng)”)是衰老研究的經(jīng)典模式生物[2-3].它具有實(shí)驗(yàn)操作簡(jiǎn)單、周期短、遺傳背景清晰等優(yōu)點(diǎn),易于進(jìn)行壽命實(shí)驗(yàn)和作用機(jī)制的探索,被廣泛用于神經(jīng)行為學(xué)、衰老、sRNA、藥物篩選、環(huán)境科學(xué)和食品科學(xué)等相關(guān)方面的科學(xué)研究[4].其次,秀麗線蟲(chóng)是獲得全基因組序列的生物,并且這些基因中40%以上的基因與人類(lèi)基因同源,這為人們通過(guò)秀麗線蟲(chóng)研究人類(lèi)衰老的基因機(jī)理奠定了基礎(chǔ).再次,有研究表明線蟲(chóng)信號(hào)通路中的關(guān)鍵基因的突變會(huì)極大的影響線蟲(chóng)衰老的進(jìn)程[2-5]. 例如,首個(gè)在線蟲(chóng)中發(fā)現(xiàn),多物種中保守的調(diào)控衰老的胰島素/IGF-1信號(hào)通路,其關(guān)鍵起始基因daf-2缺失的突變株線蟲(chóng)壽命在20℃條件下延長(zhǎng)達(dá)三倍之多[6-8].目前發(fā)現(xiàn)影響線蟲(chóng)衰老的主要信號(hào)通路還包括雷帕霉素目標(biāo)信號(hào)通路(target of rapamycin, TOR)[9-13]、自噬通路、線粒體呼吸通路和缺氧誘導(dǎo)因子-1(hypoxia-inducible factor 1, HIF-1)通路等,生殖系統(tǒng)[14]和飲食限制[15-17]也會(huì)調(diào)控線蟲(chóng)壽命,這些通路之間既相互聯(lián)系卻又各自在衰老進(jìn)程中發(fā)揮不同的作用.
MicroRNAs(miRNAs)是在真核生物中發(fā)現(xiàn)的一類(lèi)內(nèi)源性的具有調(diào)控功能的非編碼小分子單鏈RNA,其大小長(zhǎng)度約20~25個(gè)核苷酸[18,19].miRNA可以與靶mRNA通過(guò)堿基互補(bǔ)配對(duì)的方式結(jié)合,使得靶mRNA降解或者抑制靶mRNA的翻譯,從而調(diào)控靶mRNA的表達(dá)[18-21]. miRNA在胚胎發(fā)育、脂肪代謝、細(xì)胞增殖、凋亡、分化等一系列生理過(guò)程中都起到重要調(diào)控作用.miR-260作為線蟲(chóng)體內(nèi)miRNA的一種,它對(duì)線蟲(chóng)的衰老、生殖等生命過(guò)程的調(diào)控作用還未清楚.Burgt等[22]用生物信息學(xué)方法預(yù)測(cè)后生動(dòng)物的miRNAs,他們指出miR-260沒(méi)有發(fā)卡結(jié)構(gòu);Liu等[23]在討論山羊皮膚miRNAs保守性時(shí)提到了線蟲(chóng)miR-260;但是,目前對(duì)線蟲(chóng)miR-260功能方面的研究還是十分有限.
本文通過(guò)對(duì)miR-260敲除后突變株線蟲(chóng)表觀特征的研究,探索miR-260在線蟲(chóng)衰老、生殖等生命過(guò)程中的調(diào)控作用.在此基礎(chǔ)上進(jìn)一步探討了miR-260調(diào)控衰老的分子機(jī)制,實(shí)驗(yàn)中選取影響線蟲(chóng)壽命的胰島素/IGF-1信號(hào)通路、生殖信號(hào)通路和TOR信號(hào)通路中直接關(guān)鍵基因daf-16,胰島素/IGF-1信號(hào)通路主要起始基因daf-2,JNK通路中的關(guān)鍵基因jnk-1,飲食限制及TOR信號(hào)通路共同關(guān)鍵基因eat-2等[2,6-17,24-29]共4個(gè)基因,在基因表達(dá)水平了解敲除miR-260對(duì)線蟲(chóng)衰老進(jìn)程的影響.
1.1實(shí)驗(yàn)材料
秀麗線蟲(chóng)蟲(chóng)株:野生株(N2)和miR-260突變株(miR-260),由中國(guó)科學(xué)與技術(shù)大學(xué)生命科學(xué)學(xué)院?jiǎn)胃锢蠋煂?shí)驗(yàn)室惠贈(zèng).(miR-260突變株:秀麗隱桿線蟲(chóng)品系:MT14919;基因型:mir-260(n4601)Ⅱ;刪除斷點(diǎn)(Deletion breakpoints):TTACTAAAAAAAAAGTGCCTAG/GATTGTCTGAA-AATT…CGGCTGAAAAATAT/AAATTTATA ACTGGGCAACAGAAA.摘自Caenorhabditis Genetics Center(CGC)網(wǎng)頁(yè))
菌株:E.coliOP50(大腸桿菌OP50);線蟲(chóng)食物,由華中科技大學(xué)生命科學(xué)與技術(shù)學(xué)院吳政星老師實(shí)驗(yàn)室惠贈(zèng).
1.2主要試劑
M9溶液(1 000 mL):KH2PO4(3 g) ; Na2HPO4(6 g); NaCl(5 g); 高壓滅菌,再加入1M/L MgSO4(1 mL).
S-Buffer溶液(1 000 mL): 0.05 M/L K2HPO4(129 mL);0.05 M/L KH2PO4(871 mL);NaCl(5.85 g)用固體配制,最后定容至1 L,高壓滅菌.
Bleach裂解液:5 M/L NaOH(1 mL);10% NaClO(2 mL);ddH2O(7 mL).
5-Fluoro-2’deoxyuridine (FUdR)配制:濃度為1 M/L,分子量246.2,用ddH2O配制,不滅菌,用無(wú)菌膜過(guò)濾.
NGM培養(yǎng)基(1 000 mL):瓊脂粉(agar,17 g);蛋白胨(peptone,2.5 g);NaCl(3.0 g);加水定容至1 L.高溫高壓滅菌后冷卻至60℃左右加入:1 M/L CaCl2(1 mL); 1 M/L MgSO4(1 mL);磷酸鉀緩沖液(pH=6,25 mL);5 mg/mL膽固醇(1 mL);制霉菌素(1 mL);超凈臺(tái)內(nèi)快速倒入直徑3 cm或6 cm培養(yǎng)皿中,冷卻晾干,收起待用.
LB培養(yǎng)液(1 000 mL):胰蛋白胨(Tryptone,10 g);酵母提取物(Yeast extract,5 g);NaCl(10 g);定容至1 L,高溫高壓滅菌.
Trizol試劑購(gòu)于 Invitrogen(英杰生命技術(shù),美國(guó))公司.反轉(zhuǎn)錄試劑盒購(gòu)于 Thermo Fisher Scientific(賽默飛世爾科技,美國(guó))公司.KH2PO4、Na2HPO4·12H2O、NaCl、K2HPO4·3H2O、NaOH、NaClO等試劑購(gòu)于國(guó)藥集團(tuán).FUdR、膽固醇、制霉菌素購(gòu)于阿拉丁試劑公司.蛋白胨、胰蛋白胨、酵母提取物等試劑購(gòu)于Thermo Fisher Oxoid(賽默飛世爾科技集團(tuán)Oxoid公司,英國(guó)).
1.3主要儀器
恒溫培養(yǎng)箱,購(gòu)于上海精宏實(shí)驗(yàn)設(shè)備有限公司;超凈工作臺(tái),購(gòu)于蘇州安泰空氣技術(shù)有限公司(AIRTECH);PCR儀,購(gòu)于杭州朗基科學(xué)儀器有限公司;Nanodrop 2000超微量分光光度計(jì),購(gòu)于Thermo Fisher Scientific(賽默飛世爾科技,美國(guó))公司;RT-PCR儀,購(gòu)于BIO-RAD(伯樂(lè)生物科技 美國(guó))公司.
1.4實(shí)驗(yàn)方法
1.4.1線蟲(chóng)的同步化 同步化是線蟲(chóng)壽命、衰老相關(guān)實(shí)驗(yàn)的關(guān)鍵步驟之一,是為了得到基本同時(shí)孵化或同時(shí)開(kāi)始生長(zhǎng)的健康活躍可用于實(shí)驗(yàn)的線蟲(chóng)的常用實(shí)驗(yàn)手段.
同步化方法:將NGM培養(yǎng)基上多數(shù)線蟲(chóng)培養(yǎng)至產(chǎn)卵期,用0.8 mL Bleach裂解液沖洗NGM培養(yǎng)基,將蟲(chóng)子沖洗下來(lái)后,靜置3 min,震蕩,低速離心,盡可能的吸取上清液,再加入S-buffer溶液,震蕩,低速離心,盡可能的吸取上清.重復(fù)2次加入后加入0.8 mL S-buffer溶液放進(jìn)入25℃生化恒溫箱中培養(yǎng)過(guò)夜.第二天離心,盡可能的吸取上清,將剩余部分混勻,均勻的打在NGM培養(yǎng)基上.待NGM培養(yǎng)基中的線蟲(chóng)進(jìn)入產(chǎn)卵期,將正處于產(chǎn)卵期的線蟲(chóng)(母蟲(chóng))挑到NGM培養(yǎng)基上進(jìn)行產(chǎn)卵.2~3 h后將線蟲(chóng)(母蟲(chóng))挑走殺死后,將NGM培養(yǎng)基放進(jìn)25℃的生化培養(yǎng)箱中進(jìn)行培養(yǎng).第二天觀察存活情況,發(fā)育至成蟲(chóng)(L4期)后可用來(lái)進(jìn)行壽命相關(guān)實(shí)驗(yàn).
1.4.2壽命測(cè)定實(shí)驗(yàn) 25℃實(shí)驗(yàn)溫度下,將同步化后發(fā)育至成蟲(chóng)(L4期)的線蟲(chóng),挑至加有FUdR的NGM培養(yǎng)基上進(jìn)行培養(yǎng),每24 h監(jiān)測(cè)一次線蟲(chóng)的存活情況并將死亡線蟲(chóng)挑出直至全部死亡.線蟲(chóng)死亡判定:以用挑線蟲(chóng)的鉑金絲觸碰線蟲(chóng)頭部?jī)纱?,線蟲(chóng)無(wú)刺激反應(yīng)為死亡判定標(biāo)準(zhǔn).
1.4.3線蟲(chóng)后代數(shù)目測(cè)定實(shí)驗(yàn) 25℃實(shí)驗(yàn)溫度下,將同步化后發(fā)育至L3階段的一條線蟲(chóng)(產(chǎn)卵之前),挑至NGM培養(yǎng)基.每隔24 h觀察一次,若已有孵化子代線蟲(chóng)則需將母蟲(chóng)轉(zhuǎn)移至新的NGM培養(yǎng)基上,在子代線蟲(chóng)生長(zhǎng)至成蟲(chóng)前挑出殺死并進(jìn)行計(jì)數(shù),直至沒(méi)有子代幼蟲(chóng)產(chǎn)生.
1.4.4線蟲(chóng)的熱刺激條件下生存能力的測(cè)定實(shí)驗(yàn) 25℃實(shí)驗(yàn)溫度下,將同步化后發(fā)育至成蟲(chóng)(L4期)的線蟲(chóng),挑至加有FUdR的NGM培養(yǎng)基上進(jìn)行培養(yǎng)5~10 d,去除死亡蟲(chóng)子將培養(yǎng)基放入37℃生化培養(yǎng)箱中培養(yǎng),每2~3 h監(jiān)測(cè)一次線蟲(chóng)的生存情況,直至全部死亡.
1.4.5線蟲(chóng)進(jìn)食能力的測(cè)定實(shí)驗(yàn) 25℃實(shí)驗(yàn)溫度下,將同步化后發(fā)育至成蟲(chóng)(L4期)的線蟲(chóng),挑至滴有食物的NGM培養(yǎng)基上進(jìn)行培養(yǎng),一條蟲(chóng)子一個(gè)板.5 d后開(kāi)始每隔24 h監(jiān)測(cè)一次蟲(chóng)子的咽部跳動(dòng)次數(shù)(以記錄的第一天為起始第一天),用秒表記錄十秒內(nèi)的咽部跳動(dòng)次數(shù),記錄3次以上,去除異常值后取平均,直至跳動(dòng)次數(shù)低于150次/分,即認(rèn)為進(jìn)入了慢速吞咽期.
1.5miR-260分子機(jī)制的研究
1.5.1線蟲(chóng)總RNA的提取及cDNA的合成 25℃實(shí)驗(yàn)溫度下,將同步化后發(fā)育至成蟲(chóng)(L4期)的線蟲(chóng)培養(yǎng)4 d,用M9緩沖液將線蟲(chóng)洗下來(lái),離心,盡去上清,加入Trizol試劑提取總RNA.按照Trizol提取RNA的步驟分別提取N2株系和miR-260株系的總RNA.將提取的總RNA進(jìn)行凝膠電泳鑒定,并對(duì)總RNA濃度,純度進(jìn)行測(cè)定,未發(fā)生降解的總RNA方可進(jìn)行下一步實(shí)驗(yàn).按照Thermo Scientific反轉(zhuǎn)錄試劑盒的說(shuō)明進(jìn)行cDNA的合成.
1.5.2qPCR鑒定關(guān)鍵基因表達(dá)量 分別以N2株系和miR-260株系線蟲(chóng)合成的cDNA為模板,act-1為內(nèi)參基因,進(jìn)行qPCR測(cè)定兩株系各個(gè)關(guān)鍵基因之間相對(duì)表達(dá)量的差異.尋找miR-260突變株在基因表達(dá)層次與野生型N2的差異,以便從基因表達(dá)水平了解miR-260是通過(guò)哪些信號(hào)通路來(lái)影響衰老進(jìn)程的.
1.6數(shù)據(jù)分析與處理
使用軟件Origin,Excel實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析處理,采用平均值假設(shè)檢驗(yàn)分析,其中*代表P<0.05為顯著性差異,**代表P<0.01為極顯著性差異.
2.1線蟲(chóng)衰老特征實(shí)驗(yàn)結(jié)果
2.1.1敲除miR-260對(duì)線蟲(chóng)壽命的影響 壽命長(zhǎng)度是衡量衰老的重要指標(biāo)之一.實(shí)驗(yàn)結(jié)果(表1和圖1)表明,miR-260突變株(miR-260)組線蟲(chóng)平均壽命顯著低于對(duì)照組野生株(N2)組線蟲(chóng)(P<0.05).其中對(duì)照組野生株(N2) 組線蟲(chóng)平均壽命為14.51±0.94 d,最長(zhǎng)壽命為19.67±0.47 d;miR-260突變株組線蟲(chóng)平均壽命為12.62±0.94 d,最長(zhǎng)壽命為19.33±1.25 d,分別縮短了13.04%和1.69%.
表1 野生型(N2)與miR-260突變株的平均壽命
注:*為P<0.05.
圖1 N2與miR-260突變株線蟲(chóng)的壽命對(duì)比Fig.1 Lifespan of N2 and miR-260
2.1.2敲除miR-260對(duì)線蟲(chóng)生殖能力的影響 產(chǎn)卵量是生殖能力的直接體現(xiàn),線蟲(chóng)在性成熟后第2 d和第3 d進(jìn)入生殖高峰期,本實(shí)驗(yàn)測(cè)得miR-260突變株組線蟲(chóng)平均子代數(shù)目明顯低于對(duì)照組野生株(N2)組線蟲(chóng),如圖2所示.其中對(duì)照組野生株(N2)組線蟲(chóng)平均子代數(shù)目為118.37±17.21,而miR-260突變株組平均子代數(shù)目為89.95±24.46, 減少了24.01%.miR-260突變株的生殖能力顯著下降.
2.1.3敲除miR-260對(duì)線蟲(chóng)的熱刺激條件下生存能力的影響 對(duì)環(huán)境的適應(yīng)能力是反應(yīng)衰老進(jìn)程的指標(biāo)之一.實(shí)驗(yàn)結(jié)果(圖3)表明,miR-260突變株組線蟲(chóng)的熱刺激條件下的適應(yīng)能力的各項(xiàng)指標(biāo)都低于對(duì)照組野生株(N2)組線蟲(chóng).其中第5 d熱刺激條件下對(duì)照組野生株(N2)組線蟲(chóng)平均存活時(shí)間為10.58±0.39 h,最長(zhǎng)存活時(shí)間為18.00 h; miR-260突變株線蟲(chóng)平均存活時(shí)間為8.85±0.73 h,最長(zhǎng)存活時(shí)間為16±2 h,分別縮短了18.90%和11.11%, miR-260突變株平均存活時(shí)間明顯低于野生株(N2)組.第10 d熱刺激條件下對(duì)照組野生株(N2)組線蟲(chóng)平均存活時(shí)間為8.31±0.75 h,最長(zhǎng)存活時(shí)間為14.40±1.44 h;miR-260突變組線蟲(chóng)平均存活時(shí)間為7.99±0.53 h,最長(zhǎng)存活時(shí)間為13.80±2.16 h,分別縮短了3.85%和4.17%.
圖2 N2與miR-260突變株線蟲(chóng)的子代數(shù)目Fig.2 Brood size of N2 and miR-260
圖3 N2與miR-260突變株線蟲(chóng)的熱刺激條件下生存能力測(cè)試Fig.3 The survival of the N2 and miR-260 in the heat stress
2.1.4敲除miR-260對(duì)線蟲(chóng)進(jìn)食能力的影響 隨著線蟲(chóng)的不斷衰老,其進(jìn)食能力下降,吞咽速度減慢.因此,線蟲(chóng)吞咽速率也是其衰老標(biāo)志之一,我們對(duì)比了兩組線蟲(chóng)進(jìn)入慢速吞咽期的時(shí)間.實(shí)驗(yàn)結(jié)果(圖4)表明,miR-260突變株組線蟲(chóng)進(jìn)入慢速吞咽期的時(shí)間略晚于野生株(N2)組線蟲(chóng).其中對(duì)照組野生株(N2)組線蟲(chóng)進(jìn)入慢速吞咽期的時(shí)間為6.00±0.20 d,而miR-260突變株組線蟲(chóng)進(jìn)入慢速吞咽期的時(shí)間為6.70±0.81 d,延長(zhǎng)了11.67%.miR-260突變株秀麗線蟲(chóng)的進(jìn)食能力顯著增強(qiáng).
圖4 N2與miR-260突變株的進(jìn)入慢速吞咽期平均時(shí)間Fig.4 Average time for the occurrence of slow pharyngeal pumping rate of N2 and miR-260 C. elegans
2.2分子機(jī)制的探究結(jié)果
2.2.1引物序列 實(shí)驗(yàn)以act-1為內(nèi)參基因,選擇衰老相關(guān)關(guān)鍵基因daf-2、daf-16、jnk-1、eat-2為代表基因,在mRNA表達(dá)水平探究敲除miR-260對(duì)線蟲(chóng)衰老進(jìn)程的影響,其引物序列如表2.
表2 qPCR引物序列
2.2.2敲除miR-260對(duì)線蟲(chóng)衰老進(jìn)程中關(guān)鍵基因表達(dá)的影響 利用實(shí)時(shí)熒光定量PCR對(duì)衰老相關(guān)關(guān)鍵基因daf-2、daf-16、jnk-1、eat-2相對(duì)表達(dá)量進(jìn)行監(jiān)測(cè),以野生株N2表達(dá)量為control,act-1為內(nèi)參基因.實(shí)驗(yàn)結(jié)果表明(圖5):miR-260突變株線蟲(chóng)組的daf-2、daf-16、jnk-1、eat-2的表達(dá)量分別是野生株N2線蟲(chóng)組的1.199±0.117,0.770±0.018,0.638±0.031和3.097±0.264倍.可見(jiàn),敲除miR-260基因?qū)λダ详P(guān)鍵基因的表達(dá)產(chǎn)生不同程度的影響,daf-2和eat-2表達(dá)量增加,其中eat-2表達(dá)量上調(diào)至三倍之多,有極顯著性差異;daf-16和jnk-1表達(dá)量減少,其中jnk-1表達(dá)量的降低具有顯著性差異.
圖5 miR-260突變株線蟲(chóng)的關(guān)鍵基因相對(duì)野生型N2表達(dá)水平Fig.5 The expression level of key genes in miR-260 deleted C.elegans compared with N2 C.elegans
本文探索了miR-260突變株線蟲(chóng)壽命、衰老的相關(guān)特征及其影響衰老的相關(guān)分子機(jī)制.實(shí)驗(yàn)結(jié)果表明:與野生株(N2)線蟲(chóng)相比,平均壽命明顯縮短,生殖能力、熱刺激條件下的適應(yīng)能力都顯著下降,但進(jìn)食能力卻有一定的提高.其可能的分子機(jī)理是mir-260的敲除通過(guò)影響基因jnk-1、eat-2進(jìn)而調(diào)控線蟲(chóng)的衰老進(jìn)程.jnk-1為JNK通路中的關(guān)鍵基因,而JNK為線蟲(chóng)體內(nèi)唯一的編碼絲氨酸/絲氨酸激酶的刺激活化蛋白激酶,其主要在運(yùn)動(dòng)能力、成蟲(chóng)壽命、熱刺激及氧化刺激等方面發(fā)揮重要作用.jnk-1表達(dá)量的提高能延長(zhǎng)線蟲(chóng)壽命,提高熱刺激和氧化刺激抵抗能力[24-25].eat-2作為飲食限制及TOR信號(hào)通路共同關(guān)鍵起始基因,在線蟲(chóng)進(jìn)食能力和壽命調(diào)控中發(fā)揮著不可或缺的作用,eat-2的表達(dá)水平降低,會(huì)降低其進(jìn)食能力并延長(zhǎng)線蟲(chóng)壽命[26].mir-260的敲除造成eat-2表達(dá)量增加(**極顯著性差異),jnk-1表達(dá)量減少(*顯著性差異),線蟲(chóng)壽命縮短,繁殖能力下降,刺激能力降低,進(jìn)食能力增強(qiáng),基因表達(dá)方面結(jié)果與表觀結(jié)果較為符合.即可認(rèn)為miR-260通過(guò)影響基因jnk-1、eat-2進(jìn)而調(diào)控線蟲(chóng)的衰老進(jìn)程.
另外,daf-2、daf-16表達(dá)量也具有一定變化,且與表觀結(jié)果一致.其中daf-2為胰島素/IGF-1信號(hào)通路主要起始基因,降低daf-2的表達(dá)水平能夠延長(zhǎng)線蟲(chóng)壽命3倍之多.daf-2基因的突變還使得線蟲(chóng)健康生活的時(shí)間增加,極大地延緩線蟲(chóng)衰老進(jìn)程[7,27].daf-16為胰島素/IGF-1信號(hào)通路、生殖信號(hào)通路和TOR信號(hào)通路中最終直接影響壽命的關(guān)鍵基因,daf-16表達(dá)的增加能延緩線蟲(chóng)的衰老進(jìn)程,增加線蟲(chóng)壽命和生殖能力[17,28-29].
目前已發(fā)現(xiàn)影響線蟲(chóng)壽命的miRNAs并不是很多,lin-4, miR-34,miR-80,miR-228,miR-239功能的缺失會(huì)增加線蟲(chóng)壽命,而let-7,miR-71和miR-84/miR-241的突變會(huì)使線蟲(chóng)壽命縮短.這些miRNAs是通過(guò)與靶 mRNA堿基互補(bǔ)配對(duì)方式結(jié)合,使得靶mRNA降解或者抑制靶mRNA的翻譯,從而調(diào)控靶mRNA的表達(dá)并影響壽命.例如,lin-4的靶基因是lin-14,lin-14通過(guò)影響胰島素信號(hào)通路的daf-16和hsf-1的表達(dá)來(lái)調(diào)控線蟲(chóng)壽命. miR-260作為細(xì)胞內(nèi)具有調(diào)控作用miRNAs中的一員,它的敲除極大的影響了線蟲(chóng)的壽命,改變了衰老進(jìn)程中的關(guān)鍵基因的表達(dá),但其具體的作用機(jī)制以及相關(guān)的靶基因尚待進(jìn)一步探究.
致謝 該工作得到國(guó)家自然科學(xué)基金面上項(xiàng)目、華中師范大學(xué)中央高校基本科研業(yè)務(wù)費(fèi)和創(chuàng)業(yè)創(chuàng)新項(xiàng)目基金支持,感謝這些基金的支持.該工作是在課題組賈亞老師和楊利建老師的指導(dǎo)下完成的,感謝兩位老師的悉心指導(dǎo)及課題組成員所提供的幫助.
感謝中國(guó)科學(xué)與技術(shù)大學(xué)生命科學(xué)學(xué)院?jiǎn)胃锢蠋煂?shí)驗(yàn)室贈(zèng)予線蟲(chóng)蟲(chóng)株,感謝華中科技大學(xué)生命科學(xué)與技術(shù)學(xué)院吳政星老師實(shí)驗(yàn)室贈(zèng)予E.coli OP50,感謝武漢輕工大學(xué)宮智勇老師實(shí)驗(yàn)室及華中師范大學(xué)生命科學(xué)學(xué)院公共實(shí)驗(yàn)平臺(tái)提供的RT-PCR儀.
[1] FLAAT T. A new definition of aging?[J].Frontiers in Genetics, 2012, 3(3):148.
[2] KENYON C J. The genetics of ageing[J].Nature, 2010, 464(7288):504-512.
[3] TISSENBAUM H A. Special issue on genetics and aging: genetics, life span, health span, and the aging process in caenorhabditis elegans[J].Journals of Gerontology, 2012, 67(5):503-510.
[4] KLAPPER M, EHMKE M, PLGUNOW D, et al. Fluorescence based fixative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and flow cytometry approaches[J].Journal of Lipid Research, 2011, 52(6):1281-1293.
[5] TURNHEIM K. When drug therapy gets old:Pharmacokinetics and pharmacodynamics in the elderly[J].Experimental Gerontology, 2003, 38(8):843-853.
[6] KENYON C. The plasticity of aging: insights from long-lived mutants[J].Cell, 2005, 120(4):449-460.
[7] HERNDON L A, SCHMEISSNER P J, DUDARONEK J M, et al. Stochastic and genetic factors influence tissue specific decline in ageing C. elegans[J].Nature,2002, 419(6909):808-814.
[8] TULLET J M A, HERTWECK M, AN J H, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans[J].Cell, 2008, 132(6):1025-1038.
[9] KAEBERLEIN M, WILSON POWERS R, STEFFEN K K, et al Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients[J].Science, 2005, 310(5751):1193-1196.
[10] KAPAHI P, ZID B M, HARPER T, et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway[J].Current Biology, 2004, 14(10):885-890.
[11] JIA K, CHEN D, RIDDLE D L. The TOR pathway interacts with the insulin signaling pathway to regulateC.eleganslarval development, metabolism and life span[J]. Development, 2004, 131(16):3897-3906.
[12] VELLAI T, TAKACS-VELLAI K, ZHANG Y. Genetics: influence of TOR kinase on lifespan inC.elegans[J].Nature, 2003, 426(6967):620.
[13] HARRISON D E, STRONG R, SHARPET Z D, et al. Rapamycin fed late in life extends lifespan in genetically Heterogeneous mice[J]. Nature, 2009, 460(7253):392-395.
[14] LAPIERRE L R, HANSEN M. Lessons fromC.elegans: signaling pathways for longevity Endocrinology and Metabolism[J].Trends in Endocrinology & Metabolism, 2012, 23(12):637-644.
[15] LIBERT S, ZWIENER J, CHU X, et al. Regulation of Drosophila life span by olfaction and food-derived odors[J].Science, 2007, 315(5815):1133-1137.
[16] APFELD J, O’CONNOR G, MCDONAGH T, et al. The AMP-activated protein kinase AAK-2 links energy levels and insulin like signals to lifespan inC.elegans[J]. Genes & Development, 2004, 18(24):3004-3009.
[17] LAKOWSKI B, HEKIMI S. The genetics of caloric restriction in Caenorhabditis elegans[J].Proceedings of the National Academy of Sciences, 1998, 95(22):13091-13096.
[18] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J].Cell, 2004,116(2):281-297.
[19] AMBROS V,BARTEL B,BARTEK D P, et al. A uniform system for microRNA annotation[J].RNA, 2003, 9(3):277-279.
[20] HUMPHREYS D T, WESTMAN B J, MARTIN D I, et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly[J]. Proceedings of the National Academy of Sciences, 2005, 102(47):16961-16966.
[21] JING Q, HUANG S, GUTH S, et al. Involvement of microRNA in AU-rich element-mediated mRNA instability[J].Cell, 2005, 120(5):623-634.
[22] BURGT A V D, FIERS M W, NAP J P, et al. In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity[J].BMC Genomics, 2009, 10(1):1-24.
[23] LIU Z, XIAO H, LI H, et al. Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing[J/OL].PLoS ONE, 2012, 7(12),e50001[2012-12-07].http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050001&type=printable. doi:10.1371/journal.pone.0050001.
[24] SEUNG WOOK O, ARNAB M, NENAD S, et al. JNK regulates lifespan inCaenorhabditiselegansby modulating nuclear translocation of fork head transcription factor/DAF-16[J]. Proceedings of the National Academy of Sciences, 2005, 102(12):4494-4499.
[25] KAWASAKI M, HISAMOTO N, IINO Y, et al. A Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons[J].EMBO Journal, 1999, 18(13):3604-3615.
[26] ARANTES-OLIVEIR N, BERMAN J R, KRNYON C, et al. Healthy animals with extreme longevity[J].Science, 2003, 302(5645):611.
[27] GARIGN D, HSU A L, FRASER A G, et al. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat shock factor and bacterial proliferation[J].Genetics, 2002, 161(3):1101-1112.
[28] GREER E L, DOWLATSHAHI D, BANKO M R, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C.elegans[J].Current Biology, 2007, 17(19):1646-1656.
[29] HONJOH S,YAMAMOTO T,UNO M, et al. Signalling through HEB-1 mediates intermittent fasting-induced longevity inC.elegans[J].Nature, 2009, 457(7230):726-730.
The role of miR-260 in the ageing process ofC.elegansand its molecular mechanism
ZHANG Zhaokang, BILLY Kirunda John, NURGUL Sultan, YANG Lijian
(College of Physical Science and Technology, Central China Normal University, Wuhan 430079)
By usingCaenorhabditiselegans(C.elegans) as a model animal, the effect of deletion of miR-260 coding gene inC.eleganswas studied on lifespan, fertility, ability to eat and the ability to survive under the heat stress. In order to have better understanding on the mechanisms of how miR-260 regulate lifespan, the expression level of key genes in main aging pathways were investigated. The results showed that: miR-260 deletion strains have a shortened lifespan, reduced brood size, increased time attaining the low feed rate and decreased ability to survive under the heat stress, which speeding up the aging process. Its possible molecular mechanism is that deletion of miR-260 influenced the expression ofeat-2 andjnk-1, and regulated the aging process through dietary restriction pathway, TOR signaling pathway and JNK signaling pathway.
Caenorhabditiselegans; miR-260; aging;eat-2;jnk-1
2016-09-02.
國(guó)家自然科學(xué)基金項(xiàng)目(11175068,11474117);中央高?;究蒲袠I(yè)務(wù)費(fèi)項(xiàng)目(CCNU2015A05045);華中師范大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目.
1000-1190(2016)06-0897-07
Q291
A
*通訊聯(lián)系人. E-mail: lijian_yang@phy.ccnu.edu.cn.