呂小慧,陳白楊,朱小山(.哈爾濱工業(yè)大學(xué)深圳研究生院土木與環(huán)境工程學(xué)院,廣東 深圳 58055;2.清華大學(xué)深圳研究生院,廣東 深圳 58055)
氧化石墨烯的水環(huán)境行為及其生物毒性
呂小慧1,2,陳白楊1,朱小山2*(1.哈爾濱工業(yè)大學(xué)深圳研究生院土木與環(huán)境工程學(xué)院,廣東 深圳 518055;2.清華大學(xué)深圳研究生院,廣東 深圳 518055)
氧化石墨烯是一類石墨烯衍生物,性質(zhì)獨特,應(yīng)用廣泛,生產(chǎn)量急劇增加,其環(huán)境風(fēng)險日益引起關(guān)注.氧化石墨烯具有高親水性和表面活性,在水中易分散,易隨水流發(fā)生遷移轉(zhuǎn)化,可能對水環(huán)境和水生生物造成不利影響.因此,明確氧化石墨烯的水環(huán)境行為及其生態(tài)效應(yīng),對于正確理解和評估其環(huán)境風(fēng)險,合理規(guī)劃其使用和回收具有重要意義.目前,該領(lǐng)域的研究涵蓋了氧化石墨烯在水環(huán)境中的分散/團(tuán)聚、吸附、還原、降解、沉積等行為,及對微生物、浮游動物、藻類和魚類等水生生物的毒性表現(xiàn).本文綜述了相關(guān)研究成果,分析了當(dāng)前研究面臨的挑戰(zhàn)并展望其研究前景.
氧化石墨烯;水環(huán)境;環(huán)境行為;生物毒性
氧化石墨烯是指含氧基團(tuán)官能化的石墨烯基碳納米材料,具有高親水性及高表面活性.在眾多石墨烯基材料中,氧化石墨烯利用率最高,是宏量低成本制備石墨烯及其他石墨烯基材料的關(guān)鍵原料;應(yīng)用廣泛,在吸附、催化、能儲、過濾、傳感等眾多領(lǐng)域具有廣闊的應(yīng)用前景[1].目前,氧化石墨烯的生產(chǎn)量持續(xù)快速增長,在生產(chǎn)、貯存、運輸、使用、處置及回收這整個周期中,氧化石墨烯會不可避免地泄露到環(huán)境中,其環(huán)境風(fēng)險日益引起關(guān)注.氧化石墨烯的環(huán)境行為和毒性效應(yīng)均已成為國內(nèi)外化學(xué)、材料學(xué)和環(huán)境學(xué)領(lǐng)域的交叉研究熱點之一[2,3].
氧化石墨烯可以被認(rèn)為是石墨烯的官能化衍生物,在大量實驗分析基礎(chǔ)上,人們普遍認(rèn)定其結(jié)構(gòu)包含sp2雜化碳原子網(wǎng)絡(luò)及sp3雜化碳原子的含氧官能團(tuán)(環(huán)氧基、羥基、羧基等) (圖1).含氧官能團(tuán)的存在不僅影響到氧化石墨烯的物理特性(造成其導(dǎo)電率的下降),而且賦予了氧化石
墨烯獨特的化學(xué)性質(zhì):含氧官能團(tuán)的高親水性為氧化石墨烯片層帶來了高潤濕性;在水中離子化后使得氧化石墨烯片層帶負(fù)電,進(jìn)而發(fā)生靜電排斥作用.以上性質(zhì)使得氧化石墨烯在純水中可以單分散形成穩(wěn)定的懸浮液[4].此外,sp2雜化碳原子網(wǎng)絡(luò)結(jié)構(gòu)賦予了氧化石墨烯在極性溶劑,包括乙二醇、DMF、NMP、THF等中的分散能力.這些結(jié)構(gòu)綜合使氧化石墨烯表現(xiàn)出典型的水油雙親性[5].豐富的官能團(tuán)同時使得原本惰性的碳層變得異?;顫?為各種反應(yīng)的發(fā)生提供了大量表面活性位點,有利于提升氧化石墨烯在吸附、催化等化學(xué)反應(yīng)中的活性并為進(jìn)一步合成各類復(fù)合材料提供便利[6].由于其獨特結(jié)構(gòu)及優(yōu)異性質(zhì),氧化石墨烯在吸附、催化、能儲、過濾、傳感、脫鹽等眾多領(lǐng)域得到廣泛應(yīng)用,其產(chǎn)量逐年上升[1,7-8].此外,氧化石墨烯在DNA檢測及藥物負(fù)載等方面亦具備應(yīng)用潛力[9-10].然而,正因為氧化石墨烯的獨特結(jié)構(gòu)與性質(zhì)及其廣泛應(yīng)用,使得人們擔(dān)心其環(huán)境暴露可能帶來難以預(yù)料的生物、生態(tài)效應(yīng).
圖1 氧化石墨烯的Dékán結(jié)構(gòu)模型[11]Fig.1 Dékán model of graphene oxide[11]
氧化石墨烯在純水中可以單分散形成穩(wěn)定的懸浮液[4].但是,在自然水環(huán)境中,受復(fù)雜的水環(huán)境條件,如pH值、光照、離子強(qiáng)度/種類、溶解性有機(jī)質(zhì)(DOM)、懸浮顆粒、水生生物等影響,氧化石墨烯可以發(fā)生分散/團(tuán)聚、吸附、還原、降解等環(huán)境行為,其具體行為如表1所示.
2.1 分散/團(tuán)聚
水溶液 pH值改變時,氧化石墨烯片層上含氧基團(tuán)的電離程度改變,片層間的靜電斥力隨之變化,進(jìn)而影響其片層分散性[12].氧化石墨烯的等電點在3以下,當(dāng)溶液pH值在等電點(=3)附近時,片層不帶電荷,靜電斥力接近于零,易團(tuán)聚;pH值小于等電點(<3)時,基團(tuán)質(zhì)子化,片層顯正電性;pH值大于等電點時(>3),基團(tuán)離子化,片層顯負(fù)電性;且 pH值對等電點的偏離會導(dǎo)致片層表面的電荷增強(qiáng),增強(qiáng)其分散性.自然水體的常見pH在4~10之間,在此范圍內(nèi),pH對氧化石墨烯的分散液穩(wěn)定性影響很小[13-15].
此外,水溶液中存在離子時,氧化石墨烯的團(tuán)聚傾向增強(qiáng),團(tuán)聚程度與溶液的離子強(qiáng)度成正比.這可能是電解液壓縮氧化石墨烯片層間的雙電層,屏蔽其所帶電荷,導(dǎo)致層間斥力降低所致[13,15-18].也有研究表明,水溶液中的二價或多價離子會與氧化石墨烯片層發(fā)生交聯(lián)作用,使得片層發(fā)生快速的團(tuán)聚[13,15-18].自然水環(huán)境中二價陽離子(如Mg2+和Ca2+等)的常見濃度(1mmol/L)與氧化石墨烯在鹽溶液中的臨界團(tuán)聚濃度(CCC) (MgCl21.3mmol/L、CaCl20.9mmol/L)接近,表明氧化石墨烯在自然水環(huán)境中的團(tuán)聚行為與二價離子的含量高度相關(guān)[13,15-18].
自然水環(huán)境中的 DOM,包括腐殖酸、氨基酸、蛋白質(zhì)等,與氧化石墨烯通過ππ作用力、氫鍵和 Lewis酸堿作用力等機(jī)制發(fā)生吸附行為[13],被吸附的小分子 DOM通過空間位阻效應(yīng)促進(jìn)氧化石墨烯片層的分散[13,15,17-20];大分子 DOM如腐殖酸等也可以通過橋聯(lián)、纏繞等作用促進(jìn)氧化石墨烯團(tuán)聚[21-22].其他水化學(xué)條件如 pH及離子強(qiáng)度等都可以影響有機(jī)質(zhì)與碳層的相互作用[23],導(dǎo)致其對氧化石墨烯分散/團(tuán)聚狀態(tài)的影響復(fù)雜化.
水環(huán)境中帶有表面電荷的懸浮顆粒(針鐵礦、Al2O3等)可以通過多種機(jī)制結(jié)合在氧化石墨烯表面,增加其團(tuán)聚傾向,且結(jié)合機(jī)制和團(tuán)聚效率與分散液的pH值高度相關(guān).Zhao等[16]研究發(fā)現(xiàn),在4.0~8.5的pH范圍內(nèi),正電性的針鐵礦可以通過靜電吸引作用吸附在氧化石墨烯片層邊緣,使得片層折疊,發(fā)生非均相團(tuán)聚.負(fù)電性的高嶺土、蒙脫土顆粒則無此作用.Ren等[24]發(fā)現(xiàn) Al2O3顆粒存在時氧化石墨烯分散性降低,且降低程度受pH值影響.pH較低(1.6~4.5)時,傾向團(tuán)聚;pH升高
(4.5~8.7)時,分散性回升;pH高于 8.7(8.7~11)時, Al2O3正電性下降,然而形成的 Al(OH)4?通過Lewis酸堿作用力與氧化石墨烯相結(jié)合,反而促進(jìn)了團(tuán)聚率的上升.
表1 不同水化學(xué)條件對氧化石墨烯水環(huán)境行為的影響Table 1 Effects of various water chemistries on the behaviors of graphene oxide in aquatic environments
可見,水環(huán)境中氧化石墨烯的分散/團(tuán)聚傾向主要與兩方面因素相關(guān):① 氧化石墨烯的原生性質(zhì),包括片層尺寸、氧化程度、表面電荷等;②水環(huán)境化學(xué)條件,包括pH值、離子強(qiáng)度及種類、DOM、懸浮顆粒等.以上因素共同影響氧化石墨烯的分散/團(tuán)聚狀態(tài),極大增加了氧化石墨烯在自然水環(huán)境中行為的復(fù)雜性[2,25-26].
2.2 吸附
如前所述,氧化石墨烯可以吸附 DOM.此外,氧化石墨烯對重金屬離子、有機(jī)物等水體污染物也具備高吸附能力,這不僅可以改變污染物的遷移、歸趨等環(huán)境行為,而且能夠影響其生態(tài)效應(yīng),具有重要研究意義.
研究表明,重金屬離子主要通過靜電吸引作用、離子交換作用及絡(luò)合作用,結(jié)合在氧化石墨烯表面的含氧基團(tuán)活性位點上[27];有機(jī)污染物則主要通過π-π共軛作用、氫鍵和范德華力等作用被氧化石墨烯吸附[2].一定條件下,氧化石墨烯對重金屬例如Cu(II)、Zn(II)、Cd(II)、Pb(II)和U(VI)以及大部分有機(jī)污染物具有高吸附容量和高吸附平衡速率,甚至高于碳納米管等其他納米材料[28-29].
氧化石墨烯對水體污染物的吸附與眾多環(huán)境條件,包括pH值、溫度、離子強(qiáng)度、DOM等高度相關(guān).pH值對吸附行為的影響一方面源于對氧化石墨烯表面電性的改變;pH值升高時,氧化石墨烯表面負(fù)電性增加,與正電性的金屬離子或離子型有機(jī)物間的靜電吸引作用變強(qiáng)[30];另一方面源于對金屬離子或離子化有機(jī)物液相存在形態(tài)的影響,溶液pH值高于一定數(shù)值時Cd(II)、Hg(II)等會發(fā)生沉淀,主導(dǎo)性吸附機(jī)制由離子交換及絡(luò)合作用轉(zhuǎn)變?yōu)楸砻娉恋碜饔?吸附量下降
[30,31].溫度在一定范圍內(nèi)升高時,重金屬離子在氧化石墨烯表面的吸附量增加[30],這一方面應(yīng)歸因于吸附行為的吸熱性;另一方面,溫度升高降低了溶液的粘性,增加了金屬離子的擴(kuò)散速率,使得金屬離子與氧化石墨烯的接觸概率更高.離子強(qiáng)度對靜電引力作用主導(dǎo)的吸附行為有顯著影響,離子強(qiáng)度增加時,金屬離子及四環(huán)素等正電性有機(jī)物的吸附量下降[32].DOM 如腐殖酸等會與污染物競爭氧化石墨烯表面的吸附位點,從而抑制氧化石墨烯對很多水體污染物的吸附[33].
目前氧化石墨烯對污染物的吸附研究多在純水/配制溶液中進(jìn)行,在自然水體中的研究較少.有研究表明,海水中氧化石墨烯對于 As(V)和As(Ⅲ)的最大吸附量分別為 142mg/g和139mg/g[34];自來水中氧化石墨烯對 Cd2+的吸附量保持在 59.69mg/g,是在純水中吸附量的65.39%[32];與碳納米管相比,自然有機(jī)質(zhì)對石墨烯吸附菲和聯(lián)苯的影響更小.這些結(jié)果說明自然水體中氧化石墨烯對污染物仍然具有高效的吸附作用,但其影響因素和發(fā)生機(jī)制更為復(fù)雜,仍需要進(jìn)一步研究支持.
2.3 還原
水環(huán)境中的還原劑(含硫化合物[20,35]、維生素C[36]、氨基酸[37]、糖類[38]、蛋白質(zhì)[39]等),細(xì)菌(希瓦氏菌[40-42],大腸桿菌[43],酵母菌[44]等),植物(野生胡蘿卜根系[45]等),動物(蚌類[46]等),污染物(水合肼[47]等)及光照條件均可以對氧化石墨烯起到一定還原作用.含硫化合物如N aHSO3,Na2S等均可以還原氧化石墨烯表面的含氧官能團(tuán),其中NaHSO3還原性最強(qiáng)[35].Na2S濃度低至0.5mM時即可起到還原作用,且分散液 pH值和腐殖酸的存在對還原程度有很大影響[20].自然光照下,氧化石墨烯會發(fā)生一定程度的還原,且環(huán)氧基和羥基首先被還原[48].富氧水環(huán)境中,11h光照后,氧化石墨烯的O/C由58%下降至48%[18].Salas等[40]發(fā)現(xiàn)希瓦氏菌在呼吸作用中產(chǎn)生的電子可以通過膜色素蛋白傳遞給胞外的氧化石墨烯,從而對其起到還原作用,此外大腸桿菌也可以通過糖酵解過程還原氧化石墨烯[43].
2.4 降解
光照和某些生物體的攝入會使得氧化石墨烯發(fā)生降解.Hou等[48]研究發(fā)現(xiàn),氧化石墨烯在水溶液中接受陽光照射后被還原并發(fā)生降解,生成結(jié)構(gòu)無序化的小分子還原氧化石墨烯并同時產(chǎn)生二氧化碳,此反應(yīng)過程與溶液氧含量相關(guān),氧含量高時長程產(chǎn)生二氧化碳的量更多,然而長期的陽光照射并不能完全降解氧化石墨烯(圖 2). Chowdhury等[18]研究得到,氧化石墨烯在富氧/厭氧水中光照后,其片層平均尺寸由200nm分別下降至 120nm/130nm.Hu等發(fā)現(xiàn),在光照和水合反應(yīng)的聯(lián)合作用下,氧化石墨烯片層變薄并帶狀化[51].此外,Kotchey等指出山葵過氧化物酶可以分解氧化石墨烯片層表面的部分碳原子,形成缺陷和孔洞[55].被小鼠攝入 8d后,羧基化的氧化石墨烯片層邊緣開始缺陷化,3個月后轉(zhuǎn)化成無定型碳[56].
圖2 氧化石墨烯在陽光下發(fā)生逐步降解[48]Fig.2 The stepwise degradation of graphene oxide by sunlight[48]
氧化石墨烯的獨特結(jié)構(gòu)使其在水中具有高度分散性,容易隨水流發(fā)生遷移、轉(zhuǎn)化;且其化學(xué)性質(zhì)活潑,極有可能對水生生物和水環(huán)境生態(tài)造成不利影響.但是,目前有關(guān)石墨烯基材料的水生生物毒性研究較為貧乏,僅有氧化石墨烯對細(xì)菌、魚類、浮游動物及藻類影響的少數(shù)報道,且不同的研究,結(jié)果差異較大.有研究表明氧化石墨烯無明顯生物毒性效應(yīng),但也有報道顯示氧化石墨烯可以對多種水生生物造成顯著毒性.
3.1 氧化石墨烯對細(xì)菌的毒性效應(yīng)
某些研究表明,氧化石墨烯對細(xì)菌無顯著毒性效應(yīng),甚至可促進(jìn)細(xì)菌生長和增殖.例如,盡管氧
化石墨烯與希瓦氏菌、大腸桿菌等存在相互作用,可導(dǎo)致氧化石墨烯的理化性質(zhì)或是細(xì)菌的生長狀態(tài)發(fā)生改變,但實驗中并未觀測到氧化石墨烯的抗菌/抑菌性[40,43].Ruiz等[59]發(fā)現(xiàn)25μg/mL氧化石墨烯的培養(yǎng)液中,大腸桿菌生長速度更快,更易形成生物膜;在覆蓋25μg或75μg氧化石墨烯的濾膜上,細(xì)菌的生長速度分別是對照的2或3倍.
相反,Liu等[60]發(fā)現(xiàn)大腸桿菌在含有 40μg/ mL氧化石墨烯的培養(yǎng)液中培養(yǎng)2h后,滅活率達(dá)到 69.3%,且其毒性表現(xiàn)為時間、濃度依賴性.這可能和氧化石墨烯對細(xì)胞膜造成直接物理損傷,破壞細(xì)胞完整性有關(guān).Liu等[60]通過微觀形貌表征,發(fā)現(xiàn)與氧化石墨烯作用之后,大腸桿菌的細(xì)胞形態(tài)失去規(guī)整性,發(fā)生不可恢復(fù)性的損傷. Karmali等[61]在實驗中發(fā)現(xiàn)類似現(xiàn)象.Akhavan等[62]通過檢測 RNA的釋放量,同樣證明氧化石墨烯對細(xì)胞完整性的破壞是其對大腸桿菌和金黃色葡萄球菌高細(xì)胞毒性的主要機(jī)制.氧化石墨烯的片狀結(jié)構(gòu)、低片層厚度使其具有較為鋒利的邊緣;此外,氧化石墨烯的負(fù)電性基團(tuán)與細(xì)胞膜的正電性脂質(zhì)可以發(fā)生相互作用[61],以上原因都可能對細(xì)胞膜造成傷害,破壞細(xì)胞的完整性.細(xì)胞膜完整性破壞的另一個后果可能是納米材料的細(xì)胞內(nèi)在化(internalization).研究顯示,氧化石墨烯的細(xì)胞膜損傷作用使其可以進(jìn)入動、植物細(xì)胞內(nèi)部[63-65].但氧化石墨烯對細(xì)胞膜造成的直接物理損傷是否是其進(jìn)入細(xì)胞的主要機(jī)制目前仍待進(jìn)一步確認(rèn).由于氧化石墨烯結(jié)構(gòu)為片狀,其進(jìn)入細(xì)胞的機(jī)制或異于其他納米顆粒,已有研究顯示,細(xì)胞傾向于通過內(nèi)吞等無能耗的方式攝入石墨烯基納米材料[66].此外,氧化石墨烯的片層尺寸對其進(jìn)入細(xì)胞的能力及進(jìn)入機(jī)制也有密切關(guān)系[64-65].
活性氧及氧化壓力的產(chǎn)生可能是氧化石墨烯細(xì)胞毒性的另一原因.Gurunathan等[67]發(fā)現(xiàn)氧化石墨烯存在時,綠膿桿菌內(nèi)的活性氧含量較之對照組高出了 3.8倍,其生長受到了顯著抑制.Ahmed等[68]的研究結(jié)果顯示50~300mg/L氧化石墨烯對污水中微生物菌落的代謝活性、存活率、對營養(yǎng)物質(zhì)(氮、磷、有機(jī)物等)的攝取等均有明顯抑制作用,而活性氧的產(chǎn)生與此具有密切聯(lián)系.除活性氧的產(chǎn)生之外,氧化壓力還可以通過其他機(jī)制,如對細(xì)胞結(jié)構(gòu)的破壞或是對胞內(nèi)組分的直接氧化引發(fā).Liu等[60]發(fā)現(xiàn)大腸桿菌在含有40μg/mL氧化石墨烯的培養(yǎng)液中培養(yǎng)2h后,細(xì)胞內(nèi)并無超氧離子產(chǎn)生,而氧化石墨烯對谷胱甘肽(GSH,細(xì)菌細(xì)胞內(nèi)的一種抗氧化劑,可以防止細(xì)胞受到氧化壓力損傷)卻表現(xiàn)出強(qiáng)氧化性. Castrillon等[69]同樣證實了氧化石墨烯對GSH的氧化作用.上述研究結(jié)果表明,氧化石墨烯可以通過非活性氧機(jī)制誘發(fā)氧化壓力.
氧化石墨烯與DNA分子結(jié)合[70],引起RNA表達(dá)失調(diào)[71],可能是其細(xì)胞毒性的重要機(jī)制.Li等[71]采用固態(tài)測序技術(shù)發(fā)現(xiàn),氧化石墨烯可以使得GLC-82細(xì)胞中多種miRNA表達(dá)上調(diào)或下調(diào),從而可能影響線粒體功能并激活受體死亡信號通路.Gurunathan等[67]發(fā)現(xiàn)氧化石墨烯對綠膿桿菌的生長抑制過程中,除活性氧產(chǎn)生之外,還觀察到細(xì)菌 DNA的斷裂,這一現(xiàn)象同樣出現(xiàn)在氧化石墨烯對人HUVEC細(xì)胞的毒性表現(xiàn)[72],以及其他石墨烯基材料的生物效應(yīng)研究中[73].
3.2 氧化石墨烯對藻類的毒性效應(yīng)
氧化石墨烯對藻類的毒性研究較少.有研究顯示氧化石墨烯對小球藻(Chlorella vulgaris)不具備顯著的毒性效應(yīng)[74].氧化石墨烯對眼蟲藻(Euglena gracilis)的作用則相反[75],藻類的生長、光合色素、抗氧化酶含量等均受到顯著影響.當(dāng)暴露時間為96h,濃度<1mg/L時,過氧化氫酶及超氧化物歧化酶活性顯著增加;<2.5mg/L時,生長繁殖抑制明顯、丙二醛含量顯著增加;<5mg/L時,葉綠素 a含量下降明顯.氧化石墨烯對藻類[76-78]的毒性作用可能與氧化石墨烯暴露下藻細(xì)胞內(nèi)活性氧含量的增加有關(guān).此外,納米材料對水生植物的遮蔽效應(yīng)不容忽視(圖 3).Hu等[79]將裝有眼蟲藻的試管置于氧化石墨烯培養(yǎng)液中,并對這一體系采用單向光源照射,研究遮蔽與氧化石墨烯毒性的關(guān)系,結(jié)果發(fā)現(xiàn)氧化石墨烯會導(dǎo)致藻細(xì)胞的光利用率下降.此外,將氧化石墨烯加入眼蟲藻的培養(yǎng)液后發(fā)現(xiàn),其片層可以均勻覆蓋在藻細(xì)胞表面.納米材料團(tuán)簇在藻細(xì)胞周圍可能會阻礙其
從外部環(huán)境攝取營養(yǎng),引起細(xì)胞內(nèi)營養(yǎng)消耗[80].可見,氧化石墨烯對藻細(xì)胞的遮蔽效應(yīng)及其對細(xì)胞代謝的影響值得進(jìn)一步深入研究.
3.3 氧化石墨烯對魚類的毒性效應(yīng)
目前關(guān)于氧化石墨烯對魚類的毒性研究主要采用斑馬魚(zebrafish)作為受試生物.Li等[81]發(fā)現(xiàn)高濃度(50mg/L)的氧化石墨烯對斑馬魚胚胎具備一定的細(xì)胞生長抑制效應(yīng)(~20%)且導(dǎo)致其孵化速度略微下降,但并未存在細(xì)胞凋亡.Liu等[82]測試了1~100mg/L氧化石墨烯對斑馬魚胚胎的作用,結(jié)果顯示24h暴露時間后,氧化石墨烯可以團(tuán)聚并富集在胚胎絨毛膜表面,5mg/L以上的氧化石墨烯濃度下,受精時間為96h(96hpf) 的胚胎心率受到了顯著抑制(P<0.05).但即使在100mg/L的高暴露濃度下也未發(fā)現(xiàn)胚胎畸形、孵化延遲、存活率下降或長度變化等毒性表現(xiàn).此外.一些研究顯示功能化的氧化石墨烯對斑馬魚胚胎無明顯毒性或低毒性.L-半胱氨酸修飾的氧化石墨烯(1~10mg/L)作用于斑馬魚胚胎時不會明顯導(dǎo)致胚胎畸形、死亡或發(fā)育延遲[83].聚乙烯亞胺功能化的小尺寸氧化石墨烯對斑馬魚胚胎具備低毒性效應(yīng),其胚胎致死率為10%左右[84].
圖3 氧化石墨烯對藻細(xì)胞的遮蔽效應(yīng)[75]Fig.3 Shielding effect of graphene oxide on algae cell[75]
相反,Mu等[83]發(fā)現(xiàn)氧化石墨烯對斑馬魚胚胎具有致畸、致死及孵化延遲等毒性效應(yīng).0.01~10mg/L的氧化石墨烯暴露濃度下,斑馬魚的胚胎畸形(心囊水腫,尾巴彎曲和眼睛畸形)比例為5%~9%,72hpf 時孵化比例為 10%~30%,顯著低于空白對照組的 75%.96hpf 時暴露在氧化石墨烯分散液中的斑馬魚胚胎死亡率為 5%~8%.表征結(jié)果顯示氧化石墨烯可以進(jìn)入胚胎的眼細(xì)胞內(nèi)部并抑制細(xì)胞核分裂,同時導(dǎo)致胞內(nèi)活性氧含量上升,鈉、鉀-三磷酸腺苷酶活性下降及線粒體去極化現(xiàn)象.毒性測試時所使用氧化石墨烯的不同理化性質(zhì)及測試環(huán)境的不同或是以上研究結(jié)果相異的主要原因之一.
3.4 氧化石墨烯對其它水生生物的毒性效應(yīng)
Mesaric等[85]發(fā)現(xiàn)氧化石墨烯可抑制豐年蝦(Artemia salina)的游泳活動 (EC50=0.16mg/mL) ,甚至導(dǎo)致死亡 (LC50=0.65mg/mL).0.01mg/mL氧化石墨烯暴露48h后,豐年蝦體內(nèi)膽堿酯酶活性上升,谷氨酰胺轉(zhuǎn)移酶活性下降.氧化石墨烯與生物酶的相互作用或是其生物毒性的內(nèi)在原因之一.事實上,氧化石墨烯片層上的羥基、羧基等基團(tuán)具備高化學(xué)活性,容易結(jié)合生物酶等多種功能性蛋白質(zhì),影響酶的活性并可能引發(fā)長期毒性[86].研究顯示氧化石墨烯可以抑制 α-糜蛋白酶的活性[87],且酶與氧化石墨烯的相互作用是不可逆過程[88].氧化石墨烯與生物酶的相互作用值得關(guān)注.
3.5 影響因素
當(dāng)前研究表明氧化石墨烯對水生物的毒性效應(yīng)千差萬別,不同的受試生物以及不同的實驗,得出不同的甚至相反的結(jié)果.除了不同的受試生物由于生理生態(tài)特性的不同所導(dǎo)致的毒性或敏感性差異外,氧化石墨烯本身的尺寸、層數(shù)、團(tuán)聚狀態(tài)、比表面積、表面化學(xué)等物理化學(xué)性質(zhì)同樣是氧化石墨烯毒性的重要影響因素.
3.5.1 尺寸/層數(shù) 尺寸可以影響石墨烯基材料的官能團(tuán)密度、表面電荷、導(dǎo)電率和分散性等理化性質(zhì)[89],并從很多方面影響氧化石墨烯與細(xì)胞間的相互作用,例如對細(xì)胞的包覆/附著、細(xì)胞攝入方式及富集部位等,從而對其毒性效應(yīng)造成影響.
包覆效應(yīng)是層狀石墨烯基材料對細(xì)胞的毒性機(jī)制之一:單層石墨烯對多種分子無滲透性,可以妨礙細(xì)胞對營養(yǎng)物質(zhì)的吸收及其增殖;氧化石墨烯滲透性較高,但其對無機(jī)離子和有機(jī)物分子具有高吸附能力,會對營養(yǎng)物質(zhì)起到攔截作用.不同尺寸的氧化石墨烯對細(xì)胞的包覆程度不同,勢
必對其毒性造成影響.Liu等[91]考察了不同尺寸(0.753~0.010μm)氧化石墨烯的細(xì)菌毒性,發(fā)現(xiàn)大尺寸氧化石墨烯可以完全覆蓋細(xì)胞,毒性更高;而小尺寸氧化石墨烯僅能附著在細(xì)胞表面但不會起到覆蓋作用,毒性較小.Perreault等[90]同樣發(fā)現(xiàn)大比表面積的氧化石墨烯片層(0.65μm2) 更容易包覆細(xì)菌致其失活,但這一行為具有可逆性;而小尺寸片層(0.01μm2)缺陷密度更高,更易吸附氧并激發(fā)氧化壓力,其抗菌性顯著高于大尺寸片層(圖4).
氧化石墨烯的尺寸還可以密切影響其細(xì)胞內(nèi)化行為及內(nèi)化機(jī)制.Yue等[64]對兩種不同尺寸(350nm和2μm)氧化石墨烯片層與六種細(xì)胞的相互作用進(jìn)行了研究,結(jié)果顯示細(xì)胞對不同尺寸氧化石墨烯的攝入機(jī)制不同,小尺寸片層被巨噬細(xì)胞的絲狀偽足纏繞進(jìn)入,而大尺寸片層以近乎垂直的方式進(jìn)入細(xì)胞.Mu等[65]以小鼠的C2C12細(xì)胞為研究對象,發(fā)現(xiàn)尺寸為500nm和1μm的氧化石墨烯片層分別通過內(nèi)吞作用和噬菌作用進(jìn)入細(xì)胞,但兩種材料在低于 100μg/mL的暴露濃度下對細(xì)胞增殖均無抑制作用.
圖4 氧化石墨烯的片層尺寸與其對大腸桿菌的毒性成反比[90]Fig.4 The inverse relation between size of graphene oxide and its toxicity to Escherichia coli[90]
氧化石墨烯的片層尺寸與其生物富集部位同樣存在一定聯(lián)系.尺寸為1~5μm和110~500nm的氧化石墨烯在小鼠體內(nèi)的主要富集部位分別是肺部和肝部,但當(dāng)體內(nèi)劑量由 1mg/kg增加到10mg/kg時,小尺寸氧化石墨烯的富集部位會轉(zhuǎn)移到肺部[92].而氧化石墨烯的尺寸與層數(shù)是否會對其水環(huán)境毒性造成影響,目前尚未有報道,相關(guān)的研究亟需展開.
3.5.2 團(tuán)聚狀態(tài) 氧化石墨烯的毒性水平與其團(tuán)聚狀態(tài)關(guān)系密切:生理鹽水中,團(tuán)聚的氧化石墨烯尤其是大片層氧化石墨烯的細(xì)菌毒性明顯下降[91];腐殖酸存在時,團(tuán)聚的氧化石墨烯對斑馬魚胚胎的絨毛膜傷害、卵黃細(xì)胞及深層細(xì)胞累積及線粒體損傷、氧化壓力等毒性表現(xiàn)均受到抑制[93].這些研究結(jié)果表明氧化石墨烯在一定環(huán)境下的生物毒性與其團(tuán)聚程度成反比.Liu等[60]指出氧化石墨烯及還原氧化石墨烯在溶液中的團(tuán)聚程度不同,導(dǎo)致細(xì)菌與其作用方式不同,分別表現(xiàn)為被片層包覆/嵌入團(tuán)聚體內(nèi)部,這或是兩種材料毒性差別的原因之一.以上研究結(jié)論與富勒烯、碳納米管的相關(guān)毒性研究一致[94-97].富勒烯在水溶液中的團(tuán)聚可以減少其與生物體作用過程中產(chǎn)生的活性氧量[97],降低毒性;多壁碳納米管在污水中及富勒烯在自然水體中表現(xiàn)出更低的細(xì)菌毒性[96],也與它們在水中的團(tuán)聚相關(guān).這些研究結(jié)果表明,在納米毒理學(xué)研究中,明確環(huán)境條件及一定條件下材料的團(tuán)聚狀態(tài)十分必要.
3.5.3 表面化學(xué)與雜質(zhì)殘留 氧化石墨烯的表面化學(xué)狀態(tài)可以影響其表面電荷、親/疏水性、導(dǎo)電性及吸附能力等理化性質(zhì),進(jìn)而改變其與細(xì)胞的作用方式.此外,重金屬/有機(jī)雜質(zhì)的殘留同樣會對氧化石墨烯的生物毒性造成影響.
Das等[72]發(fā)現(xiàn)不同還原程度的氧化石墨烯表現(xiàn)出不同水平的細(xì)胞毒性,且毒性與表面殘留的含氧官能團(tuán)密度成正比.Gurunathan等[67]發(fā)現(xiàn)氧化石墨烯對綠膿桿菌的生長抑制率高于還原氧化石墨烯(還原劑:BME),且會導(dǎo)致更高的活性氧產(chǎn)量及DNA斷裂現(xiàn)象.Yue等[64]指出氧化石墨烯中殘留的錳可以引發(fā)高細(xì)胞死亡率,這與碳納米管的一些毒性研究結(jié)果相一致.對此,在氧化石墨烯的制備過程中可采用長時間清洗、超聲等辦法排除雜質(zhì)對其毒性效應(yīng)的影響[59,98].
表面化學(xué)不同引起的表面電荷/導(dǎo)電性差異同樣會影響材料的生物效應(yīng).Wang等[73]表征了兩種不同功能化氧化石墨烯(PEG-GO、LA-
PEG-GO)的細(xì)胞毒性及基因毒性,表面正電性的LA-PEG-GO具有顯著更低的基因毒性,且通過zeta電位測試發(fā)現(xiàn),其表面電荷越少毒性越低.
利用氧化石墨烯的表面化學(xué)對其毒性的影響,可以通過表面功能化降低甚至消除氧化石墨烯的生物毒性.目前已經(jīng)發(fā)現(xiàn)可以采用聚氧乙烯山梨醇月桂酸酯、核酸適體、聚乙二醇、葡萄糖、L-半胱氨酸等對氧化石墨烯進(jìn)行修飾[83,99-102].實驗證明修飾后的氧化石墨烯更難與細(xì)菌[99]或生物大分子[103]發(fā)生非特異性連接.Mu等[83]發(fā)現(xiàn),L-半胱氨酸修飾的氧化石墨烯具有顯著更低的電子自旋密度且不會導(dǎo)致環(huán)境缺氧,作用于斑馬魚胚胎時不會明顯導(dǎo)致胚胎畸形、死亡或發(fā)育延遲.
與其他碳納米材料如石墨烯、富勒烯、碳納米管等不同,氧化石墨烯的獨特結(jié)構(gòu)使其在水中具有高分散性、高吸附性以及高化學(xué)活性.氧化石墨烯的環(huán)境暴露,極有可能對水環(huán)境生態(tài)和水生生物造成不利影響.已有研究表明,氧化石墨烯在自然水環(huán)境中可發(fā)生團(tuán)聚、吸附、還原、降解、沉積等復(fù)雜的環(huán)境行為[2-3];此外,一些研究表明氧化石墨烯可以在生物體內(nèi)富集[60,62,104],并導(dǎo)致毒性效應(yīng)[60],其主要的毒性表現(xiàn)包括生長抑制、代謝抑制、致畸或致死,毒性機(jī)制則包括物理損傷、氧化損傷、基因毒性、遮蔽效應(yīng)等.然而截止目前,氧化石墨烯的水生生物毒性研究仍存在諸多問題:①全面性差.已報道的受試生物種類較少,且研究手段有限,體內(nèi)/體外毒性實驗均有待補(bǔ)充;②準(zhǔn)確性低.定性/定量實驗均較為缺乏.不同研究者的實驗結(jié)論存在較大分歧;③可對比性差.不同報道所采用氧化石墨烯的制備方法、理化性質(zhì)、分散手段、檢測方法等方面均存在較大差異; ④聯(lián)合毒性研究不足.氧化石墨烯對水污染物具備高吸附能力,然而仍無氧化石墨烯對污染物生物累積/食物鏈傳遞行為影響的研究報道.綜上所述,仍需開展大量的研究工作,深入了解氧化石墨烯進(jìn)入天然水環(huán)境后的環(huán)境行為,明確其生物毒性,尤其是其吸附環(huán)境中現(xiàn)存污染物后對自身以及吸附態(tài)污染物環(huán)境行為與毒性的影響,及其在生態(tài)系統(tǒng)食物鏈不同營養(yǎng)級生物中的富集與傳遞等,以便有效評估氧化石墨烯的水環(huán)境效應(yīng)、規(guī)避其生態(tài)風(fēng)險.
[1] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide:synthesis, properties, and applications [J]. Advanced Materials, 2010,22(35):3906-3924.
[2] Zhao J, Wang Z, White J C, et al. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation [J]. Environmental Science & Technology, 2014,48(17):9995-10009.
[3] 任文杰,騰 應(yīng).石墨烯的環(huán)境行為及其對環(huán)境中污染物遷移歸趨的影響 [J]. 應(yīng)用生態(tài)學(xué)報, 2014,9(25):2723-2732.
[4] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J]. Chemical Society Reviews, 2010,39(1):228-240.
[5] Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al. Graphene oxide dispersions in organic solvents [J]. Langmuir, 2008,24(19):10560-10564.
[6] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials [J]. Small, 2010,6(6):711-723.
[7] Hegab H M, Zou L D. Graphene oxide-assisted membranes:Fabrication and potential applications in desalination and water purification [J]. Journal of Membrane Science, 2015,484:95-106.
[8] Ren W, Mura S, Irudayaraj J M K. Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water [J]. Talanta, 2015,143:234-239.
[9] Balapanuru J, Yang J-X, Xiao S, et al. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties [J]. Angewandte Chemie-International Edition, 2010,49(37):6549-6553.
[10] Zhang L M, Xia J G, Zhao Q H, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs [J]. Small, 2010,6(4):537-544.
[11] Szabo T, Berkesi O, Forgo P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides [J]. Chemistry of Materials, 2006,18(11):2740-2749.
[12] Cote L J, Kim J, Tung V C, et al. Graphene oxide as surfactant sheets [J]. Pure and Applied Chemistry, 2011,83(1):95-110.
[13] Chowdhury I, Duch M C, Mansukhani N D, et al. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment [J]. Environmental Science & Technology, 2013,47(12):6288-6296.
[14] Lanphere J D, Luth C J, Walker S L. Effects of solution chemistry on the transport of graphene oxide in saturated porous media [J]. Environmental Science & Technology, 2013, 47(9):4255-4261.
[15] Hua Z, Tang Z, Bai X, et al. Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments [J]. Environmental Pollution (Barking, Essex: 1987), 2015,205:161-169.
[16] Zhao J, Liu F, Wang Z, et al. Heteroaggregation of graphene oxide with minerals in aqueous phase [J]. Environmental Science & Technology, 2015,49(5):2849-2857.
[17] Lanphere J D, Rogers B, Luth C, et al. Stability and transport of graphene oxide nanoparticles in groundwater and surface water [J]. Environmental Engineering Science, 2014,31(7):350-359.
[18] Chowdhury I, Hou W C, Goodwin D, et al. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment [J]. Water Research, 2015,78:37-46.
[19] Qi Z, Zhang L, Wang F, et al. Factors controling transport of graphene oxide nanoparticles in saturated sand columns [J]. Environmental Toxicology and Chemistry, 2014,33(5):998-1004.
[20] Fu H, Qu X, Chen W, et al. Transformation and destabilzation of graphene oxide in reducing aqueous solutions containning sulfide [J]. Environmental Toxicology and Chemistry, 2014,33(12):2647-2653.
[21] Yang Z, Yan H, Yang H, et al. Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water [J]. Water Research, 2013,47:3037-3046.
[22] Tang L, Wang Y, Liu Y, et al. DNA-Directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay [J]. Acs Nano, 2011,5(5):3817-3822.
[23] Gorham J M, Wnuk J D, Shin M, et al. Adsorption of natural organic matter onto carbonaceous surfaces: Atomic force microscopy study [J]. Environmental Science & Technology, 2007,41(4):1238-1244.
[24] Ren X, Li J, Tan X, et al. Impact of Al2O3on the aggregation and deposition of graphene oxide [J]. Environmental Science & Technology, 2014,48(10):5493-5500.
[25] Luo J, Cote L J, Tung V C, et al. Graphene oxide nanocolloids [J]. Journal of the American Chemical Society, 2010,132(50):17667-17669.
[26] Yoon K Y, An S J, Chen Y, et al. Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions [J]. Journal of Colloid and Interface Science, 2013, 403:1-6.
[27] Wu W Q, Yang Y, Zhou H H, et al. Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide [J]. Water, Air, & Soil Pollution, 2013,224(1):1372-1372.
[28] Sitko R, Turek E, Zawisza B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide [J]. Dalton Transactions, 2013,42(16):5682-5689.
[29] Zhao G, Wen T, Yang X, et al. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions [J]. Dalton Transactions, 2012,41(20):6182-6188.
[30] Zhao G, Li J, Ren X, et al. Few-Layered Graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management [J]. Environmental Science & Technology, 2011, 45(24):10454-10462.
[31] Cui L, Wang Y, Gao L, et al. Removal of Hg(II) from aqueous solution by resin loaded magnetic beta-cyclodextrin bead and graphene oxide sheet: Synthesis, adsorption mechanism and separation properties [J]. Journal of Colloid and Interface Science, 2015,456:42-49.
[32] Jiu-Hua D, Xiu-Rong Z, Guang-Ming Z, et al. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent [J]. Chemical Engineering Journal, 2013,226:189-200.
[33] Li X, Tang X, Fang Y. Using graphene oxide as a superior adsorbent for the highly efficient immobilization of Cu(II) from aqueous solution [J]. Journal of Molecular Liquids, 2014,199:237-243.
[34] Mishra A K, Ramaprabhu S. Functionalized graphene sheets for arsenic removal and desalination of sea water [J]. Desalination, 2011,282:39-45.
[35] Chen W, Yan L, Bangal P R. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds [J]. Journal of Physical Chemistry C, 2010,114(47):19885-19890.
[36] Gao J, Liu F, Liu Y, et al. Environment-friendly method to produce graphene that employs vitamin C and amino acid [J]. Chemistry of Materials, 2010,22(7):2213-2218.
[37] Bose S, Kuila T, Mishra A K, et al. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method [J]. Journal of Materials Chemistry, 2012,22(19):9696-9703.
[38] Zhu C, Guo S, Fang Y, et al. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets [J]. Acs Nano, 2010,4(4):2429-2437.
[39] Liu J, Fu S, Yuan B, et al. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide [J]. Journal of the American Chemical Society, 2010,132(21):7279-7281.
[40] Salas E C, Sun Z, Luttge A, et al. Reduction of graphene oxide via bacterial respiration [J]. Acs Nano, 2010,4(8):4852-4856.
[41] Wang G, Qian F, Saltikov C W, et al. Microbial reduction of
graphene oxide by Shewanella [J]. Nano Research, 2011,4(6):563-570.
[42] Jiao Y, Qian F, Li Y, et al. Deciphering the electron transport pathway for graphene oxide reduction by shewanella oneidensis MR-1 [J]. Journal of Bacteriology, 2011,193(14): 3662-3665.
[43] Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J]. Carbon, 2012,50(5):1853-1860.
[44] Khanra P, Kuila T, Kim NH, et al. Simultaneous biofunctionalization and reduction of graphene oxide by baker's yeast [J]. Chemical Engineering Journal, 2012,183:526-533.
[45] Kuila T, Bose S, Khanra P, et al. A green approach for the reduction of graphene oxide by wild carrot root [J]. Carbon, 2012,50:914-921.
[46] Li W, Tang X Z, Zhang H B, et al. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites [J]. Carbon, 2011,49(14):4724-4730.
[47] Lv W, Tao Y, Ni W, et al. One-pot self-assembly of threedimensional graphene macroassemblies with porous core and layered shell [J]. Journal of Materials Chemistry, 2011,21(33):12352-12357.
[48] Hou W C, Chowdhury I, Goodwin D G, Jr. , et al. Photochemical transformation of graphene oxide in sunlight [J]. Environmental Science & Technology, 2015,49(6):3435-3443.
[49] Li Z J, Chen F, Yuan L Y, et al. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions [J]. Chemical Engineering Journal, 2012,210:539-546.
[50] Gao Y, Li Y, Zhang L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide [J]. Journal of Colloid and Interface Science, 2012,368:540-546.
[51] Hu X, Zhou M, Zhou Q. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity [J]. Environmental Science & Technology, 2015,49(6):3410-3418.
[52] Zhang Y H, Tang Y l, Li S Y, et al. Sorption and removal of tetrabromobisphenol A from solution by graphene oxide [J]. Chemical Engineering Journal, 2013,222:94-100.
[53] Apul O G, Wang Q, Zhou Y, et al. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon [J]. Water Research, 2013,47(4):1648-1654.
[54] Pavagadhi S, Tang A L L, Sathishkumar M, et al. Removal of microcystin-LR and microcystin-RR by graphene oxide:Adsorption and kinetic experiments [J]. Water Research, 2013, 47(13):4621-4629.
[55] Kotchey G P, Allen B L, Vedala H, et al. The enzymatic oxidation of graphene oxide [J]. Acs Nano, 2011,5(3):2098-2108.
[56] Girish C M, Sasidharan A, Gowd G S, et al. Confocal raman imaging study showing macrophage mediated biodegradation of graphene in vivo [J]. Advanced Healthcare Materials, 2013,2(11):1489-1500.
[57] 吳春來,樊 靜.石墨烯材料在重金屬廢水吸附凈化中的應(yīng)用[J]. 化工進(jìn)展, 2013,32(11):2668-2694.
[58] Kyzas G Z, Deliyanni E A, Matis K A. Graphene oxide and its application as an adsorbent for wastewater treatment [J]. Journal of Chemical Technology and Biotechnology, 2014,89(2):196-205.
[59] Ruiz O N, Fernando KaS, Wang B, et al. Graphene oxide: A nonspecific enhancer of cellular growth [J]. Acs Nano, 2011, 5(10):8100-8107.
[60] Liu S, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress [J]. Acs Nano, 2011,5(9):6971-6980.
[61] Karmali P P, Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems [J]. Expert Opinion on Drug Delivery, 2011, 8(3):343-357.
[62] Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria [J]. Acs Nano, 2010,4(10):5731-5736.
[63] Tang Y, Tian J, Li S, et al. Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa [J]. The Science of the total environment, 2015,532:154-161.
[64] Yue H, Wei W, Yue Z, et al. The role of the lateral dimension of graphene oxide in the regulation of cellular responses [J]. Biomaterials, 2012,33(16):4013-4021.
[65] Mu Q, Su G, Li L, et al. Size-Dependent cell uptake of protein-coated graphene oxide nanosheets [J]. ACS Applied Materials & Interfaces, 2012,4(4):2259-2266.
[66] Peng C, Hu W, Zhou Y, et al. Intracellular imaging with a graphene-based fluorescent probe [J]. Small, 2010,6(15):1686-1692.
[67] Gurunathan S, Han J W, Dayem A A, et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa [J]. International Journal of Nanomedicine, 2012,7:5901-5914.
[68] Ahmed F, Rodrigues D F. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study [J]. Journal of Hazardous Materials, 2013,256:33-39.
[69] Castrillon S R V, Perreault F, De Faria A F, et al. Interaction of graphene oxide with bacterial cell membranes: insights from force spectroscopy [J]. Environmental Science & Technology Letters,
2015,2(4):112-117.
[70] Lei H, Mi L, Zhou X, et al. Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion [J]. Nanoscale, 2011,3(9):3888-3892.
[71] Li Y P, Wu Q L, Zhao Y L, et al. Response of microRNAs to in vitro treatment with graphene oxide [J]. Acs Nano, 2014,8(3):2100-2110.
[72] Das S, Singh S, Singh V, et al. Oxygenated functional group density on graphene oxide: Its effect on cell toxicity [J]. Particle & Particle Systems Characterization, 2013,30(2):148-157.
[73] Wang A, Pu K, Dong B, et al. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells [J]. Journal of Applied Toxicology, 2013,33(10):1156-1164.
[74] Wahid M H, Eroglu E, Chen X J, et al. Entrapment of chlorella vulgaris cells within graphene oxide layers [J]. Rsc Advances, 2013,3(22):8180-8183.
[75] Hu C W, Wang Q, Zhao H T, et al. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis [J]. Chemosphere, 2015,128:184-190.
[76] Nogueira P F M, Nakabayashi D, Zucolotto V. The effects of graphene oxide on green algae Raphidocelis subcapitata [J]. Aquatic toxicology (Amsterdam, Netherlands), 2015,166:29-35.
[77] Hu X, Lu K, Mu L, et al. Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders [J]. Carbon, 2014,80:665-676.
[78] Ouyang S H, Hu X G, Zhou Q X. Envelopment-Internalization synergistic effects and metabolic mechanisms of graphene oxide on single-cell chlorella vulgaris are dependent on the nanomaterial particle size [J]. ACS Applied Materials & Interfaces, 2015,7(32):18104-18112.
[79] Hu C, Wang Q, Zhao H, et al. Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis [J]. Chemosphere, 2015,128:184-190.
[80] Van Hoecke K, Quik J T K, Mankiewicz-Boczek J, et al. Fate and effects of CeO2nanoparticles in aquatic ecotoxicity tests [J]. Environmental Science & Technology, 2009,43(12):4537-4546.
[81] Chen L, Hu P, Zhang L, et al. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish [J]. Science China-Chemistry, 2012,55(10):2209-2216.
[82] Liu X T, Mu X Y, Wu X L, et al. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos [J]. Biomedical and Environmental Sciences, 2014,27(9):676-683.
[83] Mu L, Gao Y, Hu X G. L-Cysteine: A biocompatible, breathable and beneficial coating for graphene oxide [J]. Biomaterials, 2015, 52:301-311.
[84] Zhou X, Laroche F, Lamers G E M, et al. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos [J]. Nano Research, 2012,5(10):703-709.
[85] Mesaric T, Gambardella C, Milivojevic T, et al. High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae [J]. Aquatic Toxicology, 2015, 163:121-129.
[86] Feng L, Liu Z. Graphene in biomedicine: opportunities and challenges [J]. Nanomedicine, 2011,6(2):317-324.
[87] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007,6(3):183-191.
[88] Dan M, Wu P, Grulke E A, et al. Ceria-engineered nanomaterial distribution in, and clearance from, blood: size matters [J]. Nanomedicine, 2012,7(1):95-110.
[89] Erickson K, Erni R, Lee Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide [J]. Advanced Materials, 2010,22(40):4467-4472.
[90] Perreault F, De Faria A F, Nejati S, et al. Antimicrobial properties of graphene oxide nanosheets: Why size matters [J]. Acs Nano, 2015,9(7):7226-7236.
[91] Liu S, Hu M, Zeng T H, et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets [J]. Langmuir, 2012,28(33):12364-12372.
[92] Liu J H, Yang S T, Wang H, et al. Effect of size and dose on the biodistribution of graphene oxide in mice [J]. Nanomedicine, 2012,7(12):1801-1812.
[93] Chen Y M, Ren C X, Ouyang S H, et al. Mitigation in multiple effects of graphene oxide toxicity in zebrafish embryogenesis driven by humic acid [J]. Environmental Science & Technology, 2015,49(16):10147-10154.
[94] Arias L R, Yang L. Inactivation of bacterial pathogens by carbon nanotubes in suspensions [J]. Langmuir, 2009,25(5):3003-3012.
[95] Lyon D Y, Adams L K, Falkner J C, et al. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size [J]. Environmental Science & Technology, 2006, 40(14):4360-4366.
[96] Kang S, Mauter M S, Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials: Implications for river water and wastewater effluent [J]. Environmental Science & Technology, 2009,43(7):2648-2653.
[97] Hotze E M, Labille J, Alvarez P, et al. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water [J]. Environmental Science & Technology, 2008,42(11):4175-4180.
[98] Ali-Boucetta H, Bitounis D, Raveendran-Nair R, et al. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity [J]. Advanced Healthcare Materials, 2013,2(3):433-441.
[99] Park S, Mohanty N, Suk J W, et al. Biocompatible, robust freestanding paper composed of a TWEEN/Graphene composite [J]. Advanced Materials, 2010,22(15):1736-+.
[100] Liu Z, Robinson J T, Sun X M, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J]. Journal of the American Chemical Society, 2008,130(33):10876-+.
[101] Yang K, Zhang S, Zhang G, et al. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy [J]. Nano Letters, 2010,10(9):3318-3323.
[102] Zhang S, Yang K, Feng L Z, et al. In vitro and in vivo behaviors of dextran functionalized graphene [J]. Carbon, 2011, 49(12):4040-4049.
[103] Hu X G, Mu L, Wen J P, et al. Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses [J]. Carbon, 2012,50(8):2772-2781.
[104] Duch M C, Budinger G R S, Liang Y T, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung [J]. Nano Letters, 2011, 11(12):5201-5207.
Fate and toxicity of graphene oxide in aquatic environment.
Lü Xiao-hui1,2, CHEN Bai-yang1, ZHU Xiao-shan2*(1.Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China;2.Shenzhen Key Laboratory for Coastal Ocean Dynamic and Environment, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China). China Environmental Science, 2016,36(11):3348~3359
As a special graphene derivative, graphene oxide features unique properties and broad applicability in a wide range of industrial areas. However, due to its high hydrophilicity and surface reactivity, its fate and environmental risks to aquatic organisms in the environment have drawn considerable attention worldwide recently. Therefore, more knowledge regarding the aquatic behaviors and ecological effects of graphene oxide is of great importance to guide its future application and recovery. In this context, this review summarized a list of literature concerning the fate of graphene oxide in the environment, including dispersion/aggregation, adsorption, and reduction of graphene oxide, as well as its toxicity to a variety of aquatic organisms, such as zooplanktons and fishes.Accordingly, this paper discussed some challenges and prospects of its use on future studies.
graphene oxide; water environment; aquatic behaviors; biotoxicity
X703.5
A
1000-6923(2016)11-3348-12
呂小慧(1990-),女,山東聊城人,哈爾濱工業(yè)大學(xué)深圳研究生院博士研究生,主要從事納米材料的環(huán)境效應(yīng)研究.
2016-03-25
國家自然科學(xué)基金(41373089,41573094);深圳市科技計劃基礎(chǔ)研究項目(JCYJ20150331151536446,JCYJ20150529164918736)
* 責(zé)任作者, 副教授,:zhu.xiaoshan@sz.tsinghua.edu.cn