• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氧化鐵改性蛭石的制備、表征及吸附氟的特性

    2016-12-15 07:43:10魏世勇王銳牛鵬舉方敦楊小洪但悠夢
    關(guān)鍵詞:王銳含鐵蛭石

    魏世勇 王銳 牛鵬舉 方敦 楊小洪 但悠夢

    氧化鐵改性蛭石的制備、表征及吸附氟的特性

    魏世勇*王銳 牛鵬舉 方敦 楊小洪 但悠夢

    (湖北民族學(xué)院化學(xué)與環(huán)境工程學(xué)院,生物資源保護(hù)與利用湖北省重點(diǎn)實(shí)驗(yàn)室,恩施445000)

    采用共沉淀法制備了3種不同含鐵量的氧化鐵改性蛭石(Verm-Fex,x=5,10,20),研究了純蛭石(Verm)和Verm-Fex的表面性質(zhì)及吸附氟的特性。與樣品Verm比較,3種Verm-Fex中Verm的d(002)層間距略有升高;Verm-Fex的孔體積、表面積、表面分形度均隨含鐵量的增加而升高,其中微孔體積和外表面積的增加幅度更明顯。4種樣品的等電點(diǎn)(IEP)也隨含鐵量的增加而明顯升高;初始pH=5.0時(shí),它們的表面ζ電位分別為-16.4,-6.1,10.5和28.4 mV。4種樣品對氟的等溫吸附數(shù)據(jù)用單吸附位Langmuir模型擬合(R2=0.973~0.995)時(shí),Verm的R2最高;雙吸附位Langmuir模型可很好地描述3種Verm-Fex樣品的等溫吸附過程(R2= 0.991~0.998);Freundlich模型對4種樣品吸附數(shù)據(jù)的擬合度較差(R2=0.835~0.937),但R2隨樣品含鐵量的增加而略微升高。初始pH=5.0時(shí),Verm和Verm-Fex(x=5,10,20)對氟的最大吸附容量(qmax)分別為3.18,6.76,9.27和12.43 mg·g-1??梢姡琕erm-Fex(尤其含鐵量較高的產(chǎn)物)對表生環(huán)境中氟的吸附固定性能明顯高于Verm。

    蛭石;氧化鐵改性蛭石;表面性質(zhì);吸附;氟

    0 Introduction

    Fluorine can be enriched in naturalenvironments by geological processes.Besides,there can also be formidable contributions from industries.An appropriate concentration of fluorine in human body is beneficial for the production and maintenance of healthy bone and teeth,but excessive intake of fluorine can cause fluorosis that is a slow,progressive disorder,known to affect predominantly the skeletal systems,teeth,the structure and function of the skeletal muscle,brain and spinal cord[1-4].Recent studies have shown that the accumulation of fluoride in the hippocampus of the brain may cause the degeneration of neurons and decrease aerobic metabolism[1,5].Fluorosis has been a considerable health problem and is afflicting millions of people in many areas of the world,especially in East Africa,India, and China[3,5-6].The dental and skeletal fluorosis is irreversible and no treatment exists.The only remedy is prevention by keeping fluoride intake within the safe limits.

    Phyllosilicates widely exist in natural environments and are the main constituents of soils and sediments[7-8].Vermiculite,a well-defined 2∶1-type phyllosilicate,is very common in soils,especially in temperate zones[9-10].The main surface sites of vermiculite are aluminol groups(≡Al-OH)situated at the edges and the negative charges on the basal surfaces[8-11].According to literatures[9-12],the adsorption capacity for anions onto vermiculite is relatively low. Iron oxides,hydroxides,and hydroxyl polymers,hereafter collectively referred to as iron oxides,are the important components of reactive soil minerals[7,13]. Most of iron oxides possess a high surface area and a large amountofreactive iron hydroxyls(≡Fe-OH)[13-15]. In addition,the variable charges on the surface ofiron oxides may influence the surface electrochemical behavior and the adsorption properties[15-16].Therefore, iron oxides have an important effect on the migration and bioavailability of nutrients and pollutants in soils and sediments.

    Iron oxides in soils and sediments occur seldom as a pure mineral phase,and they are often attached on the surfaces of phyllosilicates to form iron-oxidemodified phyllosilicates[16-18].Based on literatures[17,19-20], the modification of iron oxides on phyllosilicates is very importantto the physicaland chemical properties of the clays,and the adsorption behavior of ironoxide-modified phyllosilicates is different from that of the discrete iron oxides and phyllosilicates.The adsorption properties for fluoride onto pure phase iron oxides and phyllosilicates have been extensively widely reported in literatures[11,21-23].However,to the best of our knowledge,the adsorption behavior for fluoride by iron-oxide-modified vermiculite is notwelldocumented. In this study,several samples of iron-oxide-modified vermiculite with different Fe contents were prepared and characterized,and the surface properties and adsorption characteristics for fluoride of the samples were investigated.The obtained results may be helpful to understand the geochemical cycle of environmental fluoride and to control the activity of fluoride in soils and sediments.

    1 Experimental

    1.1 Sample preparation

    Raw vermiculite was purchased from Yuanheng Vermiculite Company(Hebei Province,China)and pretreated according to the following procedure.About 20 mL 30%H2O2was added to 20 g raw vermiculite in a 2 L glass flask under manual stirring.Then the mineral particles were classified by the conventional sedimentation method.The particles with size less than 2μm in the suspension were treated with NaCl solution,centrifuged and washed with deionized water untilchloride anions can′t be detected using 0.1 mol· L-1AgNO3solution,and then washed one time with 95%ethanol.The Na-saturated vermiculite(Verm) particles with size less than 2μm were dialyzed against distilled water,freeze-dried,ground to pass a 60-mesh (250μm)sieve,and stored in a drier.

    For the preparation of iron-oxide-modified Verm, at first three suspensions of Verm were prepared as follows.Distilled water(100 mL)was added to 5.00 g Verm in a 1 L polyethylene flask,followed by vigorousstirring for 10 min and ultrasonic dispersion for 30 min.Then to the three Verm suspensions 4.7,9.9 and 22.3 mL of1.0 mol·L-1FeCl3solution was respectively added under vigorous magnetic stirring.These amounts of Verm and FeCl3were selected to prepare the different samples of iron-oxide-modified Verm that contain the theoretical Fe contents of 5%,10%,and 20%(w/w),respectively.The suspension was adjusted to pH 8.0 with a 3.0 mol·L-1NaOH solution.After 4 h the stirring was stopped.The polyethylene flask was sealed and aged at rest for 5 d at room temperature. The precipitate was dialyzed,dried,ground and stored in the same way as the Verm.The as-prepared samples of iron-oxide-modified Verm were designated as Verm-Fex,with the Fe contents of 5%,10%and 20% as Verm-Fe5,Verm-Fe10,and Verm-Fe20,respectively.

    1.2 Sample analysis

    The Fe contents in Verm-Fexwere determined as follows.20 mg sample was dissolved in a 5 mL of 6.0 mol·L-1HCl solution,oscillated for 8 h,and then centrifuged.The concentration of Fe in the supernatant was measured by a Varian Vista-MPX ICP-OES(ICP). The measured contents of Fe in Verm-Fex(x=5,10,20) are 4.87%,10.14%and 19.58%(w/w),respectively. X-ray diffraction(XRD)patterns were measured on a Bruker D8 ADVANCE X-ray diffractometer equipped with a Lynx-Eye detector using Cu Kαradiation(λ= 0.154 06 nm).The diffractometer was operated at 40 kV tube voltage and 40 mA tube current with a scanning rate of 2°·min-1at a step size of 0.02°. Transmission electron microscopy(TEM)analysis was carried out with a Philips-CM12 TEM operated at an accelerating voltage of 100 kV.The samples were gently crushed to powder,and then dispersed in absolute alcoholand sonicated prior to deposition on a holey copper film and dried in air.

    The N2adsorption-desorption experiments were measured at 77 K with Quanta Chrome Autosorb-1S apparatus.0.20 g powder sample was degassed for 16 h at 80℃prior to the adsorption measurement.The total pore volume was calculated from the maximum adsorption capacity at relative pressure close to the saturation pressure.The specific surface area,surface fractal dimension and pore size distribution(PSD)of the samples were calculated according to Brunauer-Emmett-Teller(BET),Frenkel-Halsey-Hill(FHH)and Non-Linear Density Functional Theory(NLDFT) methods,respectively.The micropore volume,micropore surface area,and external surface area were calculated from the N2adsorption isotherms according to t-plot micropore analysis.Theζpotential analyzer (ZetaSizer,Malvern Instruments Corporation)was used to determine the isoelectric point(IEP)andζpotential by theζpotential function of pH value in 0.02 mol· L-1NaCl.

    1.3 Adsorption experiments

    For the preparation of 10.0 g·L-1adsorbent suspension,5.0 g sample and 300 mL distilled water were added into a 500 mL polyethylene flask, followed by ultrasonic dispersion for 30 min,and then the volume of the suspension was adjusted to 500 mL with distilled water.A 400 mg·L-1fluoride stock solution was prepared by dissolving NaF in distilled water.

    Batch adsorption experiments were conducted with a 5.0 g·L-1adsorbent concentration,0.02 mol·L-1NaCl background electrolyte,a set of initial fluoride concentrations(1~200 mg·L-1)and a temperature of 25℃.A 10 mL adsorbent suspension and 0~10 mL of fluoride stock solution were taken into a 50 mL stoppered conical flask,followed by adding 4 mL of 0.1 mol·L-1NaCl to maintain ionic strength.The pH value of the suspension was adjusted to 5.0,and then the volume was adjusted to 20 mL with distilled water.The suspension was mechanically agitated at a speed of 300 r·min-1for 24 h,and then filtered through a 0.45μm membrane filter.The fluoride concentration in the filtrate was measured electrochemically with a fluoride ion-selective electrode.All experiments were performed in triplicate and the average values were reported.The amount of fluoride adsorbed was obtained from the difference between initially added and equilibrium soluble fluoride concentrations.

    2 Results and discussion

    2.1 Characterization of the samples

    The XRD patterns of the samples are shown in Fig.1.The diffraction peaks of Verm match with the PDF cards of vermiculite(PDF No.077-0022)well, indicating that the Verm possesses a good crystallinity and a high purity.In the XRD patterns of Verm-Fex(x=5,10,20),no peaks of iron oxides can be detected and all of the main peaks may be assigned to Verm. This indicates that iron oxides in Verm-Fexare in an amorphous orpoorly crystalline state.The d(002)spacing distance of Verm in Verm-Fexincreases slightly to the value more than 1.460 nm compared to 1.412 nm of pure Verm.This implies that a small amount of the interlayered Na+ions in Verm are replaced by hydroxyiron ions and polymers during the formation process of Verm-Fex[14,19-20].Compared to pure Verm,the diffraction peaks of Verm in Verm-Fexshow a consistent decrease with increasing the Fe contents.According to literatures[18-19],this can be attributed to the factors that:(1)the amorphous or poorly crystalline iron oxides coat some surfaces of Verm,and(2)the contents of Verm in Verm-Fex(x=5,10,20)decrease with increasing the Fe contents.

    Fig.1 XRD patterns of the samples

    Fig.2 TEM micrographs of the samples

    TEM micrographs of the samples are depicted in Fig.2.The pure Verm shows the lamellar shape with a particle size less than 2μm,and the bare surfaces of Verm are emerged.In the TEM image of Verm-Fe5,a small amount of amorphous iron oxide nanoparticles coaton Verm surfaces and no free iron oxide particles can be detected.In Verm-Fe10,some nanoparticles of iron oxides are attached to the surfaces of Verm andonly a few discrete iron oxide particles are observed. In Verm-Fe20,the surfaces of Verm are mostly coated by large amounts of iron oxide nanoparticles and microaggregates,and the bare surfaces of Verm are hardly found.TEM micrographs of the samples show that the surfaces of the Verm in Verm-Fex(x=5,10, 20)are coated by amorphous iron oxides to different degrees,and with increasing the Fe contents the coating of iron oxides onto Verm surfaces enhance significantly.

    Fig.3 Nitrogen adsorption-desorption isotherms of the samples

    Fig.3 presents N2-physisorption isotherms of the samples.The monolayer adsorption capacities for N2by the samples follow the sequence of Verm<Verm-Fe5<Verm-Fe10<Verm-Fe20.The adsorption isotherms of the four samples are similar and consist of three sections in the tested pressure range.With increasing relative pressure the amount of N2increases considerably in the p/p0range of 0~0.1 and slightly at a higher pressure(p/p0=0.1~0.9),and a relatively large uptake is observed at the pressure close to saturation. In addition,a conspicuous hysteresis loop is present when p/p0>0.4.According to literatures[19-20,24],when p/ p0<0.4,the adsorption is due to micropores(<2 nm); at the higher pressure(p/p0>0.4)the adsorption indicates a distribution of mesopores(2~50 nm),and at the pressure close to saturation a very steep rise is due to macropores.Therefore,the investigated samples possess a number of micropores and mesopores,and a smallamount of macropores.

    As for the different samples,with increasing the Fe contents the N2volumes adsorbed by the samples increase significantly at the relative low pressure and slightly at the higher pressure,whereas decrease at the pressure close to saturation.This indicates that the volumes of micropores and mesopores for the samples increase but those of macropores decrease with increasing the contents of Fe.This can be attributed to the factors that:(1)with amorphous and poorly crystalline iron oxides most of the pores belong to micropores and mesopores[13,19];(2)the nanoparticlesof hydroxyiron polymers may fill into the interparticle macropores among the single particles and microaggretes of Verm,thus giving rise to new micropores and mesopores[13,20].

    The pore size distribution(PSD)curves of the samples are represented in Fig.4.The PSD curves of the samples show again that the micropores(<2 nm) and mesopores(2~50 nm)are important for the porosities of the four samples.In the PSD curve of Verm,the peaks corresponding to the pore population was less than 0.5 nm and around 1.2,2.3 and 7.8 nm, respectively.The pores with size less than 0.5 nm can be attributed to the interlayered pores in Verm,and the others to the interparticle pores among the single particles and the microaggregates.Compared to Verm, the pores of around 1.2 and 2.3 nm increase for Verm-Fex(x=5,10,20)with increasing the Fe contents, while the pores of around 7.8 nm decrease significantly.The changes of the PSD between Verm and Verm-Fe20are in agreement with that of the N2volumes adsorbed by the samples,and the reasons for the changes have been mentioned above.

    Fig.4 Pore size distribution curves of the samples

    All the porous parameters of the samples increase in the order of Verm<Verm-Fe5<Verm-Fe10<Verm-Fe20(Table 1).The ratio for the total pore volume of Verm-Fe20to Verm is lower than that for the micropore volume,indicating that the increase of the micropore volume is more significant with increasing the Fe contents.As for the BET,external and internal surface areas of the samples,it can be found that the external surface area increases more significantly with increasing the Fe contents.According to literatures[13,19-20],this can be attributed to the factor that the main surface area of Verm is internal surface area from the interlayers and that of iron oxides is externalsurface area among the interparticles.Surface fractal dimension(SFD)of minerals can be used to quantify the roughness of real surface in terms of a single parameter.A surface fractional exponent that generally assumes SFD values between 2(for regular and smooth surfaces)and 3(for rough surfaces with high heterogenicity)[18-19].The SFD values ofthe samples are lying in the range of 2.17~2.65 and increase in the orderofVerm<Verm-Fe5<Verm-Fe10<Verm-Fe20,indicating that with increasing the Fe contents of the samples the surface roughness and heterogenicity increase gradually.

    Table 1 Surface structural properties of the samples

    Fig.5 shows the pH-ζpotential curves of the samples.The isoelectric point(IEP)of Verm is below 3.0,and increases to 4.1,5.5,and 6.7 for Verm-Fe5, Verm-Fe10,and Verm-Fe20,respectively.This can be ascribed to the factor that the coating of iron oxides on Verm surface decreases the effective negative charge on Verm and increases the IEP of Verm-Fex(x=5,10, 20)to differentdegrees.Theζpotential of the samples increases gradually with increasing the pH value of the mineral suspension.In the pH value range of 3 to 9,the variation in theζpotential of the samples becomes more significant with increasing the Fe contents.This can be attributed to the fact that the surface charge of iron oxides mainly derive from amphiprotic≡Fe-OH and is dependent on the pH value of suspension[13,16].At pH=5.0,theζpotential of Verm,Verm-Fe5,Verm-Fe10,and Verm-Fe20is-16.4, -6.1,10.5,and 28.4 mV,respectively.It is worth noting that the negativeζpotential occurs on the surface of Verm and Verm-Fe5,and the positiveζ potentialon the surface of Verm-Fe10and Verm-Fe20.

    Fig.5 pH-ζpotential curves of the samples

    Fig.6 Adsorption data for fluoride by the samples

    2.2 Fluoride adsorption by the samples

    The isotherm adsorption data for fluoride by the samples are shown in Fig.6,and they are fitted using one-site Langmuir,two-site Langmuir and Freundlich models(Eq.(1)~(3),respectively).

    where qe(mg·g-1)is the amount for fluoride adsorbed and ce(mg·L-1)is the equilibrium concentration of fluoride in solutions.qmax(mg·g-1)and b(L·mg-1)are the constants for one-site Langmuir model,related to the maximum adsorption capacity and affinity coefficient (energy constant),respectively[19-21].In the two-site Langmuir mode,q1and q2(mg·g-1)are the adsorption capacities for high-and low-energy sites on the surface respectively,and the total adsorption capacity (qt,mg·g-1)is quantified as q1+q2.b1and b2(L·mg-1) are the corresponding affinity coefficients for the highand low-energy sites[19-20,25].k(mg1-(1/n)·L1/n·g-1)and n (dimensionless)are the Freundlich constants,related to the adsorption capacity at the fluoride equilibrium concentration of 1 mol·L-1and adsorption intensity,respectively[20-21,24].

    The results of fitting the adsorption data to the adsorption models are summarized in Table 2.The one-site Langmuir model confirms that the fluoride adsorption onto the surface of the samples is due to one energy site with monolayer adsorption and is suitable to describe the adsorption characteristics for a homogeneous surface[20-21].The one-site Langmuir adsorption capacities(qmax)forfluoride onto the samples follow the order of Verm-Fe20>Verm-Fe10>Verm-Fe5>Verm,indicating thatthe modification ofiron oxides on Verm enhances the fluoride adsorption capacity of the samples.The apparent affinity coefficients(b)of the samples follow the same sequence as the qmax. According to literatures[8-9,15,25-26],the main functional group for adsorption fluoride anion on iron oxides is≡Fe-OH,and on phyllosilicates is≡Al-OH.This means that the adsorption affinity for fluoride by≡Al-OH on Verm is lower than that of≡Fe-OH on iron oxides.

    The determination coefficients(R2)ofthe samples obtained from one-site Langmuir are relatively high (R2=0.973~0.995),indicating that one-site model is suitable to describe the adsorption for fluoride onto the samples.Noticeably,the R2of the Verm is extremely high(R2=0.995).This can be explained by the surface properties of Verm.The main reactive site of Verm is the≡Al-OH located exclusively at the edges of the crystal structure[14,19-20],and the SFD value of Verm is relatively low(Table 1).This indicates that the Verm possesses a homogeneous surface with one site for fluoride adsorption.Therefore,the adsorption data for fluoride by Verm can be described using onesite Langmuir modelwell.

    The two-site Langmuir model confirms that the adsorption for fluoride is due to different energy sites on the surface of the samples[19-20].The total adsorption capacities(qt)of Verm-Fexderived by two-site model are slightly larger than the corresponding qmaxobtained by one-site model.As for Verm,the two affinity coefficients for high and low energy sites are nearly equal(b1/b2=0.98),and the determination coefficient obtained from two-site Langmuir model(R2=0.994)is near to that from the one-site model(R2=0.995). Probably,the two adsorption sites in the two-site model is really one site for the fluoride adsorption onto pure Verm.For Verm-Fe5,Verm-Fe10and Verm-Fe20,the ratios of b1to b2increase successively from 7.74 to 10.31,and to 12.95,and the adsorption capacities ratio(q1/q2)from 0.83 to 1.75,and to 3.81, respectively.This indicates that:(1)as for Verm-Fex(x=5,10,20),the affinity coefficients for high-energy site(b1)are much higherthan those for low-energy site (b2);(2)the high-energy adsorption site for fluoride is the≡Fe-OH on iron oxides and the low-energy site is the≡Al-OH on Verm;and(3)the adsorption affinity for fluoride by≡Al-OH is lowerthan thatof≡Fe-OH. The last two have been suggested in the parameters fitted by one-site model.The determination coefficients of Verm-Fex(x=5,10,20)obtained from two-site Langmuir model(R2=0.991~0.998)is higher than that from one-site model(R2=0.976~0.984),indicating that two-site model fits the adsorption data of Verm-Fexmuch better than the one-site model.For Verm-Fex, the main surface sites include both the≡Fe-OH groups that originate from iron oxides and≡Al-OH groups from Verm.Therefore,the two-site model is better suitable to represent the fluoride adsorption onto Verm-Fexthan the one-site model.

    Table 2 Model parameters of fitting fluoride adsorption onto the samples

    The Freundlich adsorption model,the multilayeradsorption,is commonly used to describe adsorption characteristics for heterogeneous surface[21,24].The Freundlich adsorption constants(k)of the samples show the same sequence as the Langmuir adsorption capacities.The adsorption intensity parameters(n)of the samples decrease from 4.17 of Verm to 2.03 of Verm-Fe20.The sequence of the n value for the four samples is opposite to that of the Langmuir adsorption apparent affinity(b),indicating that with increasing the Fe contents of the samples the adsorption affinity for fluoride increases while the adsorption intensity decreases.Although the Freundlich determination coefficients of the four samples are relatively low(R2= 0.835~0.937),they increase slightly with increasing the Fe contents.This can be attributed to the factors that:(1)both≡Al-OH and≡Fe-OH are the main fluoride adsorption sites on the surfaces of Verm-Fex; and(2)the SFD values and surface positive charge of the samples increase with increasing the Fe contents. This indicates that with increasing the Fe contents Verm-Fexpossesses a more heterogeneous surface with various adsorption sites.

    As shown in Table 2,the Langmuir adsorption capacities(qmaxand qt)and Freundlich adsorption constants(k)for fluoride by the samples show the order of Verm<Verm-Fe5<Verm-Fe10<Verm-Fe20, indicating that the modification of iron oxides onto Verm enhances the fluoride adsorption of the samples. This can be understood by the following reasons. Firstly,the pore volumes and surface areas of Verm-Fex(x=5,10,20)are larger than those of Verm(Table 1).In particular,the external surface area of the samples increases significantly with increasing the Fe contents.According to literatures[9,27-28],the difference in the surface areas of the samples may cause the greater physical adsorption for fluoride onto Verm-Fexthan onto Verm.Secondly,compared with Verm both the IEP and theζpotential at pH=5.0 are higher for Verm-Fex(x=5,10,20).Therefore,with increasing the Fe contents of the samples the electrostatic repulsion between fluoride anions and the surface of Verm-Fexdecreases while the electrostatic attraction increases. Thirdly,the density of reactive hydroxyl sites on iron oxides is greater than that on Verm,indicating that the fluoride anions adsorption through ligand exchange onto Verm-Fexis higher than thatonto Verm[9,20,29-31].

    The SFD values of the samples and the results of fitting adsorption models to the experimental data are also helpful to understand the adsorption capacity of the samples.The SFD of Verm is low(2.17)and the adsorption data for fluoride can be described using one-site Langmuirmodel(R2=0.995)well.These results indicate that:(1)Verm possesses a homogeneous surface with a finite number of reactive sites,and(2) the mono-layer adsorption is an important model for fluoride adsorption onto Verm.Therefore,the adsorption capacity for fluoride by Verm is relatively low.As for Verm-Fex(x=5,10,20),the SFD and the determination coefficients(R2)fitted by two-site Langmuir and Freundlich models increase with increasing the Fe contents.This indicates that:(1)the surface heterogenicity of Verm-Fexincrease;and(2)fluoride can be adsorbed onto Verm-Fexsurface through various adsorption sites and a multilayer adsorption model.

    3 Conclusions

    The surface of Verm is coated by the amorphous or poorly crystalline iron oxides to different degrees to obtain Verm-Fex(x=5,10,20).The surface properties of Verm are significantly influenced by the coating, and the magnitude of the effect for the samples shows a positive correlation with the content of Fe in Verm-Fex.One-site Langmuir model is suitable to describe the fluoride adsorption onto the samples,and the adsorption data of Verm-Fex(x=5,10,20)may be better fitted by two-site Langmuir model than one-site model.The determination coefficients of Freundlich model are lower,and they increase consistently with increasing the contents of Fe.The samples of Verm-Fexwith a high content of Fe have a high adsorption capacity for fluoride as they possess the heterogeneous surface with different types of reactive sites.These present results lead to a better understanding of the fluoride adsorption onto clay minerals,and also show that the modification of iron oxides on phyllosilicates is important to the migration and bioavailability offluoride in soils,sediments and waters.

    [1]Ghosh A,Mukherjee K,Ghosh S K,et al.Res.Chem. Intermed.,2013,39(7):2881-2915

    [2]Ayoob S,Gupta A K.Environ.Sci.Technol.,2006,36(6):433 -487

    [3]Zhang B,Hong M,Zhao Y,et al.Environ.Geochem.Health, 2003,25:421-431

    [4]Jha S K,Nayak A K,Sharma Y K.Chemosphere,2009,76 (3):353-356

    [5]Ozsvath D L.Rev.Environ.Sci.Biotechnol.,2009,8(1):59-80

    [6]Patel S C,Khalkho R,Patel S K,et al.Environ.Earth Sci., 2014,72(6):2033-2049

    [7]Tor A,Danaoglu N,Arslan G.J.Hazard.Mater.,2009,164 (1):271-278

    [8]Sujana M G,Pradhan H K,Anand S.J.Hazard.Mater., 2009,161(1):120-125

    [9]Abollino O,Giacomino A,Malandrino M,et al.Water Air Soil Pollut.,2007,181:149-160

    [10]Wang J,Wang W,Zheng Y,et al.J.Polym.Res.,2011,18: 401-408

    [11]Kau P M H,Smith D W,Binning P.Geoderma,1998,84(1/ 2/3):89-108

    [12]Velazquez-Pe?a G C,Solache-Ríos M,Martínez-Miranda V. Water Air Soil Pollut.,2015,226:2236-2241

    [13]Cornell R M,Schwertmann U.The Iron Oxides:Structure, Properties,Reactions,Occurences,Uses.Weinheim:Wiley-VCH,2003:102-109

    [14]De León M A,Sergio M,Bussi J,et al.Environ.Sci.Pollut. Res.,2015,22:864-869

    [15]Jayarathna L,Bandara A,Ng W J,et al.J.Environ.Health Sci.Eng.,2015,13:54-54

    [16]Hou T,Xu R K,Zhao A Z.Colloids Surf.,A,2007,297(1): 91-94

    [17]Zhuang J,Yu G R.Chemosphere,2002,49(6):619-628

    [18]Wei S Y,Tan W F,Zhao W,et al.Soil Sci.Soc.Am.J., 2012,76(2):389-398

    [19]YANG Xiao-Hong(楊小洪),WEI Shi-Yong(魏世勇),FANG Dun(方敦),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2014,30(12):2863-2871

    [20]Yan L,Xu Y,Yu H,et al.J.Hazard.Mater.,2010,179:244-250

    [21]Kebede B,Beyene A,Fufa F,et al.Appl.Water Sci.,2016,6 (1):57-65

    [22]Nur T,Loganathan P,Nguyen T C,et al.Chem.Eng.J., 2014,247:93-102

    [23]Chen L,He B Y,He S,et al.Powder Technol.,2012,227:3-8

    [24]Ararem A,Bouzidi A,Mohamedi B,et al.J.Radioanal. Nucl.Chem.,2014,301:881-887

    [25]Wu X,Zhang Y,Dou X,et al.Chem.Eng.J.,2013,223:364 -370

    [26]Kemer B,Ozdes D,Gundogdu A,et al.J.Hazard.Mater., 2009,168(2):888-894

    [27]Liu R,Gong W,Lan H,et al.Sep.Purif.Technol.,2012,92: 100-105

    [28]Tang Y L,Guan X H,Wang J M,et al.J.Hazard.Mater., 2009,171(1):774-779

    [29]Sun Y,Fang Q,Dong J,et al.Desalination,2011,277:121-127

    [30]Hiemstra T,van Riemsdijk W H.J.Colloid Interface Sci., 2000,225(1):94-104

    [31]Qiao J,Cui Z,Sun Y,et al.Front.Environ.Sci.Eng.,2014, 8(2):169-179

    Preparation,Characterization and Fluoride Adsorption Characteristics of Iron-Oxide-Modified Vermiculite

    WEI Shi-Yong*WANG Rui NIU Peng-Ju FANG Dun YANG Xiao-Hong DAN You-Meng
    (Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province,Department of Chemistry and Environmental Engineering,Hubei University for Nationalities,Enshi,Hubei 445000,China)

    Iron-oxide-modified vermiculite(Verm-Fex,x=5,10,20)was prepared by a co-precipitation procedure. The surface properties and fluoride adsorption of pure vermiculite(Verm)and Verm-Fexwere investigated. Compared to Verm,the d(002)spacing of Verm in Verm-Fexincreases slightly,and the pore volumes,different surface areas and surface fractal dimension of Verm-Fexincrease with increasing the Fe contents.The increased magnitude of the micropore volume and external surface area of Verm-Fexis more significant.The isoelectric point(IEP)of the samples increases in the order of Verm<Verm-Fe5<Verm-Fe10<Verm-Fe20,and theζ potentialatpH 5.0 ofthe four samples is-16.4,-6.1,10.5,and 28.4 mV,respectively.One-site Langmuir model was used to describe the fluoride adsorption by the samples(R2=0.973~0.995),and the determination coefficient (R2)for Verm is the highest.The R2fitted from two-site model for Verm-Fex(x=5,10,20)is higher than thatfrom one-site model,indicating that the adsorption data of Verm-Fexcan be fitted by two-site model well.The R2fitted from Freundlich model of the samples is lying in the range of 0.835~0.937 and follows the sequence of Verm<Verm-Fe5<Verm-Fe10<Verm-Fe20.This indicates thatVerm-Fexpossesses the heterogeneous surfaces with different reactive sites.When pH=5.0,the adsorption capacities(qmax)of Verm,Verm-Fe5,Verm-Fe10and Verm-Fe20are 3.18, 6.76,9.27 and 12.43 mg·g-1,respectively.Compared to Verm,Verm-Fexwith a high Fe content has a higher adsorption capacity for fluoride in solutions.

    vermiculite;iron-oxide-modified vermiculite;surface properties;adsorption;fluoride

    O614.81;S153.6;P578.4

    A

    1001-4861(2016)09-1619-10

    10.11862/CJIC.2016.200

    2016-04-20。收修改稿日期:2016-07-08。

    國家自然科學(xué)基金(No.41261060,41561053)和生物資源保護(hù)與利用湖北省重點(diǎn)實(shí)驗(yàn)室開放基金(No.PKLHB1315)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:xiangju12345@126.com

    猜你喜歡
    王銳含鐵蛭石
    氫化物發(fā)生-原子熒光光譜法測定含鐵塵泥中的As、Sb
    山東冶金(2022年4期)2022-09-14 08:59:08
    Core structure and Peierls stress of the 90?dislocation and the 60?dislocation in aluminum investigated by the fully discrete Peierls model
    蛭石功能化應(yīng)用研究新進(jìn)展
    高含鐵大比重土質(zhì)對泥漿配比的影響
    基于NAIRS和PCA-SVM算法快速鑒別4種含鐵礦物藥
    中成藥(2018年2期)2018-05-09 07:19:55
    Equivalence—based Translation theories
    菠菜含鐵
    CaCl2改性蛭石對Pb2+的吸附性能研究
    廣州化工(2016年24期)2017-01-17 07:39:41
    朝鮮朔州堿性雜巖體蛭石-磷礦床
    Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion*
    午夜福利在线免费观看网站| 成人18禁高潮啪啪吃奶动态图| av国产精品久久久久影院| netflix在线观看网站| 国产日韩欧美视频二区| 在线永久观看黄色视频| 这个男人来自地球电影免费观看| 久久久久国产一级毛片高清牌| 在线观看免费高清a一片| 久久人人爽人人片av| 国产真人三级小视频在线观看| 午夜福利在线免费观看网站| 一本—道久久a久久精品蜜桃钙片| 精品国产乱子伦一区二区三区 | 国产精品久久久久久人妻精品电影 | 久久久久久久大尺度免费视频| 欧美在线黄色| 日本a在线网址| 色婷婷av一区二区三区视频| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 国产精品一区二区在线观看99| 两性夫妻黄色片| av一本久久久久| 成年人午夜在线观看视频| 国产深夜福利视频在线观看| videosex国产| 一区二区av电影网| 搡老熟女国产l中国老女人| 三上悠亚av全集在线观看| 高清视频免费观看一区二区| 69精品国产乱码久久久| 啦啦啦在线免费观看视频4| 妹子高潮喷水视频| 在线天堂中文资源库| 中文欧美无线码| 国产高清国产精品国产三级| 亚洲精品在线美女| 成年人免费黄色播放视频| 桃红色精品国产亚洲av| 日本av手机在线免费观看| 亚洲中文字幕日韩| 日本黄色日本黄色录像| 午夜老司机福利片| 国产在视频线精品| 亚洲欧美色中文字幕在线| 最近中文字幕2019免费版| 三级毛片av免费| 一级毛片精品| 老熟女久久久| 国产成人精品在线电影| 一本—道久久a久久精品蜜桃钙片| 99九九在线精品视频| 黑人巨大精品欧美一区二区蜜桃| 大香蕉久久网| 免费观看a级毛片全部| 91老司机精品| 三上悠亚av全集在线观看| 19禁男女啪啪无遮挡网站| 欧美日韩视频精品一区| 午夜福利视频精品| 波多野结衣av一区二区av| 叶爱在线成人免费视频播放| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 欧美老熟妇乱子伦牲交| 欧美人与性动交α欧美精品济南到| 亚洲av电影在线观看一区二区三区| 狂野欧美激情性bbbbbb| 亚洲国产精品999| a在线观看视频网站| 国产高清videossex| 一级a爱视频在线免费观看| 午夜福利乱码中文字幕| 亚洲美女黄色视频免费看| 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| 精品国产乱码久久久久久小说| 国产国语露脸激情在线看| 一级毛片女人18水好多| 一边摸一边抽搐一进一出视频| 乱人伦中国视频| 天天添夜夜摸| 高清av免费在线| 国产精品久久久久久精品电影小说| 国产真人三级小视频在线观看| 男女免费视频国产| 制服人妻中文乱码| 国产欧美日韩一区二区三区在线| 精品久久久久久久毛片微露脸 | 亚洲五月色婷婷综合| 精品视频人人做人人爽| 日韩人妻精品一区2区三区| 黑人猛操日本美女一级片| 欧美国产精品va在线观看不卡| 天天影视国产精品| 最新的欧美精品一区二区| 久久影院123| 夜夜骑夜夜射夜夜干| 丁香六月天网| 男女边摸边吃奶| 正在播放国产对白刺激| 国产高清视频在线播放一区 | 无限看片的www在线观看| tube8黄色片| 国产免费福利视频在线观看| av天堂久久9| 国产精品一二三区在线看| 深夜精品福利| 色婷婷av一区二区三区视频| 我要看黄色一级片免费的| 午夜影院在线不卡| 成人手机av| 一级毛片女人18水好多| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 777米奇影视久久| 脱女人内裤的视频| 18禁裸乳无遮挡动漫免费视频| 少妇的丰满在线观看| 久久久久久久精品精品| 老司机深夜福利视频在线观看 | 欧美精品一区二区免费开放| 国产免费视频播放在线视频| 精品一区二区三卡| 久久性视频一级片| 女人爽到高潮嗷嗷叫在线视频| 午夜免费成人在线视频| 亚洲精品日韩在线中文字幕| 亚洲 欧美一区二区三区| 嫩草影视91久久| 91av网站免费观看| 制服人妻中文乱码| av在线app专区| 狠狠狠狠99中文字幕| √禁漫天堂资源中文www| 秋霞在线观看毛片| 成在线人永久免费视频| 男女高潮啪啪啪动态图| 女人被躁到高潮嗷嗷叫费观| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 啦啦啦 在线观看视频| 精品久久久久久电影网| 欧美人与性动交α欧美精品济南到| 男女国产视频网站| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费| 精品第一国产精品| 精品亚洲成a人片在线观看| 满18在线观看网站| 黄片播放在线免费| 亚洲欧美色中文字幕在线| 日韩大码丰满熟妇| 欧美人与性动交α欧美软件| 国产又色又爽无遮挡免| 成人黄色视频免费在线看| 午夜日韩欧美国产| 国产91精品成人一区二区三区 | 日韩大片免费观看网站| 黄网站色视频无遮挡免费观看| 高清视频免费观看一区二区| 老司机福利观看| 国产视频一区二区在线看| 成年人免费黄色播放视频| 日韩大片免费观看网站| 黄色视频在线播放观看不卡| 久久久国产精品麻豆| 性少妇av在线| 97人妻天天添夜夜摸| 他把我摸到了高潮在线观看 | 欧美大码av| 丝袜在线中文字幕| cao死你这个sao货| 99国产精品99久久久久| 他把我摸到了高潮在线观看 | 男男h啪啪无遮挡| 国产精品久久久av美女十八| 久9热在线精品视频| av电影中文网址| 国产不卡av网站在线观看| 操出白浆在线播放| 国产精品免费视频内射| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看 | 美女午夜性视频免费| 亚洲人成电影观看| 欧美人与性动交α欧美软件| 亚洲精品国产精品久久久不卡| 日韩大片免费观看网站| 老熟妇仑乱视频hdxx| 国产有黄有色有爽视频| 久久久久精品国产欧美久久久 | 这个男人来自地球电影免费观看| 国产在视频线精品| 大香蕉久久网| 久久国产精品人妻蜜桃| 国产精品影院久久| 国产精品.久久久| 亚洲激情五月婷婷啪啪| 极品人妻少妇av视频| xxxhd国产人妻xxx| 亚洲专区国产一区二区| 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 2018国产大陆天天弄谢| 欧美性长视频在线观看| 亚洲国产毛片av蜜桃av| 亚洲中文av在线| 国产精品一区二区在线观看99| 成年人黄色毛片网站| 国产成人av教育| 人人澡人人妻人| 999久久久精品免费观看国产| 国产欧美日韩一区二区三 | 欧美日韩精品网址| 午夜福利免费观看在线| 久久久久久久久免费视频了| videos熟女内射| a在线观看视频网站| 午夜福利影视在线免费观看| 十八禁网站网址无遮挡| 国产激情久久老熟女| 纯流量卡能插随身wifi吗| 亚洲一码二码三码区别大吗| 一区二区三区四区激情视频| 亚洲视频免费观看视频| 777米奇影视久久| 老熟妇仑乱视频hdxx| 电影成人av| 91精品伊人久久大香线蕉| 一区二区日韩欧美中文字幕| 精品国产一区二区久久| 不卡一级毛片| 亚洲精品日韩在线中文字幕| 亚洲午夜精品一区,二区,三区| 久久久久精品人妻al黑| 成人18禁高潮啪啪吃奶动态图| 亚洲成人免费av在线播放| 国产欧美日韩一区二区精品| 亚洲欧美日韩另类电影网站| 亚洲av日韩在线播放| av在线播放精品| 久久精品国产亚洲av香蕉五月 | 亚洲美女黄色视频免费看| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| 国产片内射在线| 日本91视频免费播放| 亚洲天堂av无毛| 色老头精品视频在线观看| 国产免费现黄频在线看| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区| 免费不卡黄色视频| 高潮久久久久久久久久久不卡| 国产xxxxx性猛交| 人人妻人人澡人人看| 97精品久久久久久久久久精品| 国产一区二区激情短视频 | 99国产精品免费福利视频| 美女扒开内裤让男人捅视频| 国产精品久久久av美女十八| 国产区一区二久久| 婷婷成人精品国产| 亚洲精品久久久久久婷婷小说| 搡老熟女国产l中国老女人| 一二三四社区在线视频社区8| 中文精品一卡2卡3卡4更新| 在线亚洲精品国产二区图片欧美| 嫁个100分男人电影在线观看| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 真人做人爱边吃奶动态| 19禁男女啪啪无遮挡网站| 久久ye,这里只有精品| av在线老鸭窝| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 久久性视频一级片| 一二三四在线观看免费中文在| 中文字幕另类日韩欧美亚洲嫩草| 精品高清国产在线一区| 捣出白浆h1v1| 人人澡人人妻人| 两个人免费观看高清视频| 亚洲精品乱久久久久久| 在线观看人妻少妇| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区激情视频| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品电影小说| kizo精华| 亚洲美女黄色视频免费看| 亚洲精品av麻豆狂野| 自线自在国产av| 少妇裸体淫交视频免费看高清 | 亚洲中文av在线| 国产97色在线日韩免费| 欧美日韩av久久| 亚洲av美国av| 国产极品粉嫩免费观看在线| 一本综合久久免费| avwww免费| 香蕉国产在线看| 国产免费一区二区三区四区乱码| 在线观看一区二区三区激情| 国产精品 国内视频| 91精品国产国语对白视频| 99精品欧美一区二区三区四区| 夫妻午夜视频| 欧美变态另类bdsm刘玥| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| 亚洲天堂av无毛| 亚洲三区欧美一区| 在线观看免费日韩欧美大片| 久久久精品区二区三区| 最近最新免费中文字幕在线| 老司机影院成人| 俄罗斯特黄特色一大片| 一本综合久久免费| 天堂中文最新版在线下载| 咕卡用的链子| 国产免费现黄频在线看| 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 久久久久久久久免费视频了| 99re6热这里在线精品视频| 亚洲欧洲精品一区二区精品久久久| 美女中出高潮动态图| 国产97色在线日韩免费| 国产一区有黄有色的免费视频| 热99re8久久精品国产| 久久久久久久大尺度免费视频| 国产精品偷伦视频观看了| 国产精品一区二区精品视频观看| 一级,二级,三级黄色视频| 欧美精品啪啪一区二区三区 | 一级毛片女人18水好多| 日本黄色日本黄色录像| 一级毛片精品| 一个人免费在线观看的高清视频 | 亚洲第一青青草原| 制服人妻中文乱码| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看 | 亚洲人成77777在线视频| 日日夜夜操网爽| 日韩,欧美,国产一区二区三区| 丰满迷人的少妇在线观看| 考比视频在线观看| 91大片在线观看| 国产av一区二区精品久久| 国产成人啪精品午夜网站| 免费少妇av软件| 成人国产av品久久久| 精品乱码久久久久久99久播| 淫妇啪啪啪对白视频 | 日本猛色少妇xxxxx猛交久久| www.自偷自拍.com| 亚洲欧美成人综合另类久久久| 999精品在线视频| 国产精品成人在线| 999精品在线视频| 一区在线观看完整版| 在线观看www视频免费| 日韩大码丰满熟妇| 老汉色∧v一级毛片| a在线观看视频网站| 国产精品一二三区在线看| 在线观看免费日韩欧美大片| 欧美亚洲日本最大视频资源| 别揉我奶头~嗯~啊~动态视频 | 亚洲成国产人片在线观看| 一个人免费看片子| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 青春草亚洲视频在线观看| 午夜福利,免费看| 国产成人av激情在线播放| 十八禁网站免费在线| 久久午夜综合久久蜜桃| 欧美日韩亚洲高清精品| 国产免费福利视频在线观看| 欧美大码av| 韩国精品一区二区三区| 最近最新免费中文字幕在线| 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 满18在线观看网站| 91精品国产国语对白视频| 国产欧美日韩一区二区三 | 我要看黄色一级片免费的| 欧美日本中文国产一区发布| www.精华液| 老熟女久久久| 中文欧美无线码| 他把我摸到了高潮在线观看 | 性少妇av在线| 久久人人爽人人片av| 视频在线观看一区二区三区| 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| av线在线观看网站| 两人在一起打扑克的视频| av在线老鸭窝| 免费久久久久久久精品成人欧美视频| 男女无遮挡免费网站观看| 国产精品欧美亚洲77777| 国产不卡av网站在线观看| 久久久久久久久免费视频了| 女性生殖器流出的白浆| 一区二区三区乱码不卡18| 91av网站免费观看| 国产亚洲精品一区二区www | 亚洲av电影在线进入| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| 后天国语完整版免费观看| 老熟妇仑乱视频hdxx| 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| 色综合欧美亚洲国产小说| 午夜福利一区二区在线看| 国产一区二区 视频在线| 久久久久精品人妻al黑| 亚洲中文日韩欧美视频| 亚洲av日韩在线播放| 一级a爱视频在线免费观看| 最新的欧美精品一区二区| 婷婷色av中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 日本91视频免费播放| 欧美日韩亚洲国产一区二区在线观看 | 俄罗斯特黄特色一大片| xxxhd国产人妻xxx| 亚洲av美国av| 精品一区在线观看国产| 国产亚洲av片在线观看秒播厂| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品中文字幕一二三四区 | 男人爽女人下面视频在线观看| www.av在线官网国产| 两个人看的免费小视频| 国产精品香港三级国产av潘金莲| 欧美黄色淫秽网站| 涩涩av久久男人的天堂| 操美女的视频在线观看| 十八禁高潮呻吟视频| 日本一区二区免费在线视频| 另类精品久久| 欧美精品一区二区免费开放| 99热全是精品| 欧美日韩成人在线一区二区| 一级a爱视频在线免费观看| 亚洲七黄色美女视频| 欧美性长视频在线观看| 精品免费久久久久久久清纯 | 欧美亚洲 丝袜 人妻 在线| 免费在线观看视频国产中文字幕亚洲 | 亚洲久久久国产精品| 青春草亚洲视频在线观看| 国产主播在线观看一区二区| 欧美另类亚洲清纯唯美| 巨乳人妻的诱惑在线观看| 最新在线观看一区二区三区| 国产欧美日韩一区二区三区在线| a在线观看视频网站| 久久国产精品影院| 美女大奶头黄色视频| 国产精品熟女久久久久浪| 99国产综合亚洲精品| 大片免费播放器 马上看| 国产成人精品在线电影| 免费一级毛片在线播放高清视频 | 国产高清视频在线播放一区 | 少妇 在线观看| 交换朋友夫妻互换小说| 搡老熟女国产l中国老女人| 免费观看人在逋| 欧美日韩av久久| 国产精品 国内视频| 狂野欧美激情性bbbbbb| 侵犯人妻中文字幕一二三四区| 亚洲av日韩在线播放| 老司机亚洲免费影院| 午夜福利在线免费观看网站| 色播在线永久视频| av天堂在线播放| 老司机福利观看| 欧美黑人精品巨大| av一本久久久久| 黄片小视频在线播放| 一级毛片电影观看| 黄片小视频在线播放| 青青草视频在线视频观看| www.999成人在线观看| 看免费av毛片| 国产精品.久久久| 91精品伊人久久大香线蕉| 亚洲av电影在线进入| 亚洲va日本ⅴa欧美va伊人久久 | 成人黄色视频免费在线看| 秋霞在线观看毛片| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 黄片大片在线免费观看| 午夜视频精品福利| 国产麻豆69| 欧美av亚洲av综合av国产av| 大片电影免费在线观看免费| 久久狼人影院| 日韩一卡2卡3卡4卡2021年| 亚洲少妇的诱惑av| 性少妇av在线| 久久国产精品男人的天堂亚洲| 99久久精品国产亚洲精品| 国产精品影院久久| 欧美一级毛片孕妇| av欧美777| 免费av中文字幕在线| 日本精品一区二区三区蜜桃| 中文字幕av电影在线播放| 久久久国产欧美日韩av| 爱豆传媒免费全集在线观看| 精品亚洲乱码少妇综合久久| 精品一区二区三区四区五区乱码| 精品人妻一区二区三区麻豆| 久久久久视频综合| 午夜福利一区二区在线看| 正在播放国产对白刺激| 在线精品无人区一区二区三| √禁漫天堂资源中文www| 99国产精品免费福利视频| 热re99久久国产66热| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 成在线人永久免费视频| 热re99久久国产66热| 中文字幕另类日韩欧美亚洲嫩草| 黑人操中国人逼视频| 久久人妻熟女aⅴ| 国产精品免费视频内射| 国产黄频视频在线观看| 妹子高潮喷水视频| 日本wwww免费看| 男人添女人高潮全过程视频| 两个人看的免费小视频| 成年动漫av网址| 自拍欧美九色日韩亚洲蝌蚪91| 男女无遮挡免费网站观看| e午夜精品久久久久久久| 99国产极品粉嫩在线观看| 99香蕉大伊视频| 丝瓜视频免费看黄片| 熟女少妇亚洲综合色aaa.| 久久中文看片网| 一区二区三区四区激情视频| 91av网站免费观看| 国产精品免费视频内射| 日本av免费视频播放| 精品人妻1区二区| 性少妇av在线| 极品少妇高潮喷水抽搐| 熟女少妇亚洲综合色aaa.| 人妻一区二区av| 在线观看免费高清a一片| 男女之事视频高清在线观看| 侵犯人妻中文字幕一二三四区| 国产av又大| 精品人妻一区二区三区麻豆| 法律面前人人平等表现在哪些方面 | 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看 | 成年动漫av网址| xxxhd国产人妻xxx| 91成年电影在线观看| 在线十欧美十亚洲十日本专区| 国产成人影院久久av| 老司机靠b影院| 免费在线观看日本一区| 欧美日韩中文字幕国产精品一区二区三区 | 一本久久精品| 日韩人妻精品一区2区三区| 日韩一区二区三区影片| 三级毛片av免费| 日韩 欧美 亚洲 中文字幕| 制服人妻中文乱码| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区免费| 国产成人精品久久二区二区91| 超碰成人久久| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 夜夜夜夜夜久久久久| 在线观看人妻少妇| 欧美中文综合在线视频| 99国产精品免费福利视频| 天天躁日日躁夜夜躁夜夜| 日韩人妻精品一区2区三区| 成人av一区二区三区在线看 | 欧美成人午夜精品| 亚洲五月婷婷丁香| 男女午夜视频在线观看| 欧美少妇被猛烈插入视频| 国产在线免费精品| 一区二区三区乱码不卡18| 1024视频免费在线观看| 成年av动漫网址|