• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于5-(4-羥基吡啶基甲基)間苯二甲酸配體的兩種Zn(Ⅱ)的配位聚合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    2016-12-15 07:43:20李付安徐伏楊維春李松田
    無機(jī)化學(xué)學(xué)報 2016年9期
    關(guān)鍵詞:間苯二甲酸吡啶基平頂山

    李付安 徐伏 楊維春 李松田

    基于5-(4-羥基吡啶基甲基)間苯二甲酸配體的兩種Zn(Ⅱ)的配位聚合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    李付安 徐伏 楊維春*李松田

    (平頂山學(xué)院化學(xué)與環(huán)境工程學(xué)院,平頂山467000)

    采用水熱合成的方法,在以5-(4-羥基吡啶基甲基)間苯二甲酸(H2L)作主配體、4,4′-聯(lián)吡啶(4,4′-bpy)和1,2-二(4-吡啶基)乙烯(bpe)作輔配體的條件下,得到2種新穎的Zn(Ⅱ)配位聚合物{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)和{[Zn(L)(bpe)0.5]·2H2O}n(2)。配合物通過單晶X射線衍射的方法進(jìn)行了結(jié)構(gòu)分析,并進(jìn)一步通過紅外光譜(IR)、元素分析、PXRD和熱重分析(TG)的方法進(jìn)行了表征。結(jié)構(gòu)分析表明配合物1展現(xiàn)出的是一種三維三重互穿網(wǎng)絡(luò);聚合物2為二維雙層結(jié)構(gòu),并進(jìn)一步組合成了三重平行互穿的2D→3D的空間網(wǎng)絡(luò)。此外,研究了配合物的熒光性質(zhì)。

    5-(4-羥基吡啶基甲基)間苯二甲酸;聚合物;鋅;互穿網(wǎng)絡(luò)

    In the past decades,the construction of novel coordination polymers has attracted the interest of chemist communities in the field of supramolecular chemistry and crystal engineering due to their novel architectures as well as potential applications[1-11].The self-assembly processes of coordination polymers can be directed by several factors:the coordination geometry of metal ions,the structural characteristics of ligands,the solvent system,and so on[12-16],among which the rational design and reasonable use of the characteristic ligand are very important in the construction ofthe desired coordination polymers[17-20].

    It is well-known that organic aromatic polycarboxylate ligands are important multidentate O-donor ligands which have been concerned much in recent years because of their pluridentated and excellent coordinated ability.Up to now,coordination polymers with unusual structures and distinctive properties have been extensively assembled by combining organic aromatic polycarboxylate ligands and metalions[21-23].Recently,Sun etal.have introduced a versatile ligand,3-(4-hydroxypyridinium-1-yl) phthalic acid,and its corresponding coordination polymers with helical subunits[24-25].We chose 5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid(H2L)as a building block for the following reasons:(1)H2L possesses a flexible-CH2-spacer between the phenyl ring and pyridine ring,which makes the pyridine ring rotate freely to meet the requirements for coordination; (2)the pyridine ring and phenyl ring are twisted around the-CH2-spacer,and the skew coordination orientation of the carboxyl groups provide the potential of helices formation;(3)the functional hydroxyl groups of this ligand can actnotonly as coordination sites,butalso as side arms of interdigital architecture in incoordination mode.

    To the bestof our knowledge,the architectures of coordination polymers constructed from H2L have not been investigated.In this work,by using ligand H2Land N-donor ancillary ligands,two coordination polymers, {[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1),and{[Zn(L)(bpe)0.5]· 2H2O}n(2),were prepared by hydrothermal methods. Theirstructures have been determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra(IR),elementalanalyses,powder X-ray diffraction(PXRD),and thermogravimetric(TG) analyses.Their crystal structures and the systematic investigation of the effects of H2L ligand and N-donor ancillary co-ligands on the ultimate frameworks are discussed in detail.Furthermore,their fluorescence properties have also been investigated in detail.

    Scheme 1 Coordination mode of the ligand H2L found in compounds 1 and 2

    1 Experimental

    1.1 Materials and physical measurement

    All reagents and solvents employed in the presentwork were of analytical grade as obtained from commercial sources without further purification.H2L was synthesized according to the literature[26]. Elemental analysis for C,H,and N was performed on a Perkin-Elmer 240 elemental analyzer.The FTIR spectra were recorded from KBr pellets in the range from 4 000 to 400 cm-1on a Nicolet NEXUS 470-FTIR spectrometer.Thermal analysis was performed on a SDT 2960 thermal analyzer from room temperature to 800℃with a heating rate of10℃·min-1under nitrogen flow.Powder X-ray diffraction(PXRD) for compounds 1~2 were measured at293 K on a Rigaku D/max-3B diffractometer equipped with Cu Kα(λ= 0.154 06 nm)radiation(45 kV,200 mA).The crushed single crystalline powder samples were prepared by crushing the crystals and the 2θscanning angle range wasfrom 5°to 50°with a step of0.1°·s-1.Luminescence spectra forthe solid samples were recorded on a Hitachi 850 fluorescence spectrophotometer.

    1.2 Syntheses of the complexes

    1.2.1 Synthesis of{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)

    Complex 1 was synthesized hydrothermally in a 30 mL Teflon-lined autoclave by heating a mixture of 4,4′-bpy(0.007 8 g,0.05 mmol),Zn(OAc)2·2H2O (0.022 g,0.1 mmol),H2L(0.016 8 g,0.05 mmol),and LiOH(0.004 2 g,0.1 mmol)at 160℃in 6 mL H2O for three days.Colorless block-wise crystals of 1 were obtained in 80%yield based on Zn(OAc)2·2H2O. Anal.Calcd.for C19H17N2O7Zn(%):C 50.63,H 3.80, N 6.22;Found(%):C 50.71,H 3.79,N 6.17;IR(KBr, cm-1):3 501(s,br),3 421(s),1 636(s),1 614(s),1 583 (m),1 521(s),1 432(m),1 356(s),1 229(w),1 154(s), 1 066(m),1 029(w),845(w),769(w),723(w).

    1.2.2 Synthesis of{[Zn(L)(bpe)0.5]·2H2O}n(2)

    The procedure issimilarto the synthesisof1 except thatbpe wasused instead of4,4′-bpy.Colorless crystals of 2 were obtained in 57%yield based on Zn(OAc)2· 2H2O.Anal.Calcd.for C20H17N2O6.5Zn(%):C 52.83,H 3.77,N 6.16;Found(%):C 52.85,H 3.72,N,6.19;IR (KBr,cm-1):3 410(s,br),3 053(m),1 637(s),1 614(s), 1 581(m),1 533(s),1 431(w),1 355(s),1 239(w),1 178 (m),1 060(w),1 029(w),850(m),770(w),732(w).

    1.3 Crystallographic data collection and structure determination

    Single-crystal X-ray diffraction data of complexes 1~2 were collected on a Bruker SMART APEX CCD diffractometer[27]equipped with graphite monochromatized Mo Kαradiation(λ=0.071 073 nm)at room temperature using theφ-ωscan technique.Empirical absorption corrections were applied to the intensities using the SADABS program[28].The structures were solved with directmethods using the program SHELXS-97[29]and refined anisotropically with the program SHELXL-97[30]using full matrix least-squares procedures.All nonhydrogen atoms were refined anisotropically.The hydrogen atoms of the coordination water molecules,and ligands were included in the structure factor calculation at idealized positions by using a riding model and refined isotropically.The hydrogen atoms ofthe solventwater molecules were located from the difference Fourier maps,then restrained at fixed positions and refined isotropically.Analytical expressions of neutral atom scattering factors were employed,and anomalous dispersion corrections were incorporated.The crystallographic data for 1 and 2 are summarized in Table 1.Selected bond lengths and angles are given in Table 2.

    CCDC:908520,1;908521,2.

    Table 1 Crystallographic data and structure refinement for compounds 1 and 2

    Table 2 Selected bond lengths(nm)and bond angles(°)for compounds 1 and 2

    Continued Table 1

    Fig.1(a)Metal coordination and atom labeling in compound 1;(b)Two types of helical chains in compound 1;(c)Two types of 2D helical layers(left and right)and 3D framework of 1 with helical layers pillared by 4,4′-bpy ligands in ABBA queues(middle);(d)Single 3D topology framework;(e)Schematic representation of the 3-fold interpenetrated topology nets for 1

    2 Results and discussion

    2.1 Crystal structure of{[Zn(L)(4,4′-bpy)0.5]· 2H2O}n(1)

    A single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in monoclinic,space group P21/c,and has a 3-fold interpenetrating 3D framework.The asymmetric unit contains one Zn(Ⅱ)ion,one L2-ligand,half 4,4′-bpy,and two free water molecules(Fig.1a).The Zn(Ⅱ)center is located in a distorted tetrahedral geometry,which is shaped by two oxygen atoms from carboxyl group of two different L2-anions,one hydroxyl oxygen atom from another L2-anion,and one nitrogen atom from 4,4′-bpy.As for L2-anion,L2-employs a twisted conformation,and the dihedral angle between pyridine ring and the phenyl ring is 89.6°.Two carboxylate groups have a dihedral angle of 14.1°and 16.6°towards the plane of the corresponding linking phenyl rings,respectively.The L2-anion links three Zn(Ⅱ)ions in theμ3-bridging mode with both carboxylate groups inμ2-η1:η1coordination modes and the hydroxyl group adopting monodentate coordination mode(Scheme 1).

    In 1,two type of helical chains have been observed.The screw axes of these helices are all parallel to the b axis,and the pitch is 1.447 8 nm. Helical chains with opposite rotation are connected to form chiral helical layers A and B(Fig.1c,left and right).Along the c axis,the chirality of each type of helical chain in one layer(A or B)is opposite to that of the nearest ones of the same type in another layer (B or A)(Fig.2a).Thus,the helical layers are pillared by 4,4′-bpy in ABBA queues to give rise to a 3D racemic framework(Fig.1c,middle).

    Fig.2(a)Interesting arrangement of two types of helical chains in polymer 1;(b)Hydrogen bonding interactions in polymer 1

    In order to better understand the final architecture,Zn(Ⅱ)centers can to be viewed as 4-connected nodes,L2-anions can be viewed as 3-connected nodes,and 4,4′-bpy can be considered as linkers,so the overall structure can be described as a 3D(3,4)-connected framework with a Schl?fli symbol of{63}{65.8}(Fig.1d).Moreover,there are large rectangular windows(1.076 nm×1.121 nm)in 1.Thus, in order to minimize the big void cavities and stabilize the framework,the potential voids cavities are filled by the other two identical networks,resulting in a 3-fold interpenetrating network(Fig.1e).The large void space in a single net is mainly occupied by interpenetration,leaving small and irregular channels along the b-axis direction,in which solvent water molecules are enclosed.Thus,the lattice water molecules embed themselves in the void space by forming hydrogen bonding interactions together with the coordinated water molecule,carboxylate groups and uncoordinated hydroxyl groups to give the additionalstability(Table 3,Fig.2b).

    2.2 CrystalStructureof{[Zn(L)(bpe)0.5]·2H2O}n(2)

    Compound 2 exhibits a 3-fold parallel interpenetrated 2D→3D network motif.As shown in Fig.3a,the asymmetric unit of 2 contains one Zn(Ⅱ)center,half bpe,one L2-anion,and two free water molecules.The Zn(Ⅱ)center displays a distorted tetrahedralgeometry:three O atoms from three different L2-anions and one N atom from bpe.The Zn1-O bond lengths range from 0.197 5(2)to 0.199 4(2)nm,and the Zn1-N bond distance is 0.204 2(2)nm.The L2-anion employsa twisted conformation,and the dihedralanglebetween pyridine ring and the phenyl ring is 83.2°, two carboxylate groups have a dihedral angle of 3.1° and 14.0°towards the plane of the corresponding linking phenylrings,respectively.

    Table 3 Geometrical parameters of hydrogen bonds in compounds 1~2

    Fig.3(a)Metal coordination and atom labeling in compound 2;(b)2D monolayer in compound 2;(c)Double layer in compound 2; (d)2D→3D interpenetration in compound 2

    In 2,each L2-acts asμ3-bridge connecting three Zn atoms via both carboxylate groups inμ2-η1:η1coordinated modes and the hydroxyl group in monodentate mode(Scheme 1)to form an undulate monolayer(Zn-L1)nparallel to the bc plane.The bpe ligands link adjacent monolayers(Zn-L1)nto result in an interesting 2D double-layered sheet with the distance of 1.345 5 nm between two layers(Fig.3c). The open space within each double-layered sheet leads to the formation of catenation between adjacent sheets,and thus,each double-layered sheet is bicatenated by two other sheets(one from upper and the other from lower layer)in a parallel fashion to minimize the large void cavities and stabilize thenetwork to produce a 2D→3D entanglement(Fig.3d). In addition,hydrogen bonding interactions are also observed in 2(Table 3).Thus,the interpenetrating pieces are stabilized by hydrogen bonding interactions (Fig.4).

    Fig.4 3D supramolecular structure of polymer 2

    2.3 Thermal analyses and PXRD patterns

    To characterize the compounds in terms of thermal stability,thermal gravimetric analysis(TGA) of compounds 1~2 were carried out in nitrogen atmosphere(Fig.5).For compound 1,a gradual weight loss between 30 and 379℃is attributed to the release of two lattice water molecules(Obsd.7.39%; Calcd.7.99%).Then the host framework started to decompose.The TG curve of compound 2 displays the first weight loss of 7.96%(Calcd.7.92%)from 30 to 384℃,corresponding to the loss of two lattice water molecules per formula unit.The further weight losses represented the decomposition of the compound 2.

    X-ray powder diffraction(PXRD)was used to check the purity of compounds 1~2.As shown in Fig. 6,The experimental PXRD patterns correspond well with the results simulated from the single crystal data, indicating the high purity of the synthesized samples and single phases of compounds 1~2 are formed.

    Fig.5 TG curves for compounds 1 and 2

    Fig.6 Simulated and experimental PXRD patterns for compounds 1(a)and 2(b)

    2.4 Photochemical Properties

    Luminescent compounds composed of d10metal centers and organic ligands are ofgreat interestdue to theirpotentialapplications,such as in chemicalsensors, photochemistry,electroluminescent display[31-36].The solid-state emission spectra of compounds 1~2 and H2L ligand used in this work have been investigated at room temperature.The emission spectra of H2L andcompounds 1~2 are shown in Fig.7.Here,intense bands were observed at 412 nm(λex=317 nm)for H2L, 433 nm(λex=315 nm)for compound 1,400 nm(λex= 343 nm)for compound 2.The emission bands of compound 1 are similar to that of the free H2L,which can be probably assigned to intraligand fluorescent emission[37-38].Compound 2 results in a slight blue shift of 12 nm.This indicates that the emission of compound 2 may be attributed to metal-ligand coordination interactions.Compared to the free ligand, the different locations and profiles of their emission/ excitation peaks of compounds 1~2 probably due to the coordination effectively increased the rigidity of the ligands and reduced the loss of energy by radiationless decay.

    Fig.7 Solid-state emission spectra of free H2L and compounds 1 and 2 at room temperature

    3 Conclusions

    In conclusion,two new coordination polymers based on H2L with the help of N-donor ligands have been hydrothermally synthesized.The two compounds show different three-dimensional architectures.First, helical segments are found in compound 1 due to the flexible H2L with the pyridine ring and phenyl ring twisting around the-CH2-spacer.Second,compound 2 has 2D double-layer structure and exhibits a 3-fold parallel interpenetrated 2D→3D network motif.The result reveals that the N-donor ancillary co-ligands have great inuence on the structures of the complexes due to their different structures and exibility. Subsequent studies will be focused on the structures and properties of the novel functional coordination polymers constructed by the present ligand with a wide range of rare earth metals.Further investigations on this domain are underway.

    [1]Maji T K,Mostafa G,Chang H C,et al.Chem.Commun., 2005,24:2436-2438

    [2]Armentano D,Mastropietro T F,Julve M,et al.J.Am. Chem.Soc.,2007,129:2740-2741

    [3]Qin L,Hu J S,Huang L F,et al.Cryst.Growth Des., 2010,10:4176-4183

    [4]Leong W L,Vittal J J.Chem.Rev.,2011,111:688-764

    [5]Wang R H,Zhou Y F,Sun Y Q,et al.Cryst.Growth Des., 2005,5:251-256

    [6]Zheng X L,Liu Y,Pan M,et al.Angew.Chem.,Int.Ed., 2007,46:7399-7403

    [7]Pan Z R,Zheng H G,Wang T W,et al.Inorg.Chem., 2008,47:9528-9536

    [8]Lu Z Z,Zhang R,Li Y Z,et al.J.Am.Chem.Soc., 2011,133:4172-4174

    [9]Cui H,Zhou B,Long L S,et al.Angew.Chem.Int.Ed., 2008,47:3376-3380

    [10]Li J R,Kuppler R J,Zhou H C.Chem.Soc.Rev.,2009,38: 1477-1504

    [11]Seidel C,Lorbeer C,Cybinska J,et al.Inorg.Chem.,2012, 51:4679-4688

    [12]Seidel C,Ahlers R,Ruschewitz U.Cryst.Growth Des., 2011,11:5053-5063

    [13]Mezei G,Baran P,Raptis R G.Angew.Chem.Int.Ed., 2004,43:574-577

    [14]Sun D F,Ke Y X,Mattox T M,et al.Chem.Commun., 2005,5447-5449

    [15]Zheng B,Dong H,Bai J F,et al.J.Am.Chem.Soc.,2008, 130:7778-7779

    [16]Li C P,Du M.Chem.Commun.,2011,47:5958-5972

    [17]Du M,Jiang X J,Zhao X J.Inorg.Chem.,2007,46:3984 -3995

    [18]Sarma D,Ramanujachary K V,Stock N,et al.Cryst.Growth Des.,2011,11:1357-1369

    [19]Ritchie C,Baslon V,Moore E G,et al.Inorg.Chem., 2012,51:1142-1151

    [20]Liu F J,Hao H J,Sun C J,et al.Cryst.Growth Des., 2012,12:2004-2012

    [21]Ye B H,Tong M L,Chen X M.Coord.Chem.Rev.,2005,249:545-565

    [22]Mihalcea I,Henry N,Clavier N,et al.Inorg.Chem., 2011,50:6243-6249

    [23]Hijikata Y,Horike S,Tanaka D,et al.Chem.Commun., 2011,47:7632-7634

    [24]Sun X L,Song W C,Zang S Q,et al.Chem.Commun., 2012,48:2113-2115

    [25]Sun X L,Zang S Q,Song W C,et al.Cryst.Growth Des., 2012,12:4431-4440

    [26]Yang Q Y,Li K,Luo J,et al.Chem.Commun.,2011,47: 4234-4236

    [27]SMART and SAINT,Area Detector Control and Integration Software,Siemens Analytical X-Ray Systems Inc.,Madison, WI(US),1996.

    [28]Sheldrick G M.SADABS,Ver2.05,University of G?ttingen, Germany,1997.

    [29]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Germany,1997.

    [30]Sheldrick G M.Acta Crystallogr.Sect.A,2008,A64: 112.

    [31]Wang S N,Xing H,Li Y Z,et al.Eur.J.Inorg.Chem., 2006,3041-3053

    [32]Gong Y Q,Wang R H,Yuan D Q,et al.Polyhedron, 2007,26:5309-5316

    [33]He Y H,Feng Y L,Lan Y Z,et al.Cryst.Growth Des., 2008,8:3586-3594

    [34]Das P,Bhattacharya S,Mishra S,et al.Chem Commun., 2011,47:8118-8120

    [35]Chang Z,Zhang A S,Hu T L,et al.Cryst.Growth Des., 2009,9:4840-4846

    [36]Yao X Q,Cao D P,Hu J S,et al.Cryst.Growth Des., 2011,11:231-239

    [37]Guo J,Ma J F,Liu B,et al.Cryst.Growth Des.,2011,11: 3609-3621

    [38]Yang J X,Zhang X,Cheng J K,et al.Cryst.Growth Des., 2012,12:333-345

    Syntheses,Structures,and Photoluminescent Properties of Two Zn(Ⅱ)Coordination Polymers Based on 5-(4-Hydroxypyridinium-1-ylmethyl)Isophthalic Acid

    LI Fu-An XU Fu YANG Wei-Chun*LI Song-Tian
    (College of Chemistry and Environmental Engineering,Pingdingshan University,Pingdingshan,Henan 467000,China)

    Two novelcoordination polymers,{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)and{[Zn(L)(bpe)0.5]·2H2O}n(2)(H2L=5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid,4,4′-bpy=4,4′-bipyridine,bpe=1,2-bis(4-pyridyl)ethylene),have been hydrothermally synthesized.Both compound 1 and 2 were structurally characterized by X-ray diffraction analyses,infrared spectra(IR),elemental analyses,powder X-ray diffraction(PXRD),and thermogravimetric(TG) analyses.Compound 1 exhibits a three-dimensional(3D)3-fold interpenetrating framework.Compound 2 has the similar 2D double-layer structure and exhibits a 3-fold parallel interpenetrated 2D→3D network motif. Meanwhile,their luminescentproperties have also been investigated in detail.CCDC:908520,1;908521,2.

    5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid;polymer;zinc;interpenetrated network

    O614.24+1

    A

    1001-4861(2016)09-1683-09

    10.11862/CJIC.2016.216

    2016-04-14。收修改稿日期:2016-08-06。

    河南省教育廳(No.15A150068)和平頂山學(xué)院應(yīng)用化學(xué)重點實驗室(No.201201)資助項目。

    *通信聯(lián)系人。E-mail:lifuanpds@163.com

    猜你喜歡
    間苯二甲酸吡啶基平頂山
    平頂山學(xué)院作品精選
    聲屏世界(2023年8期)2023-07-07 03:34:24
    熱烈祝賀《平頂山日報》復(fù)刊40周年(1982-2022)
    平頂山詩群
    天津詩人(2019年4期)2019-11-27 05:06:50
    平頂山:第四支紅九軍誕生地
    間苯二甲酸二烯丙酯合成方法
    基于5,5'-亞甲基二間苯二甲酸及1,2-雙(咪唑基-1-甲基)苯的Zn2+、Co2+配位聚合物的合成及晶體結(jié)構(gòu)
    一個基于β-[Mo8O26]和5-(3-吡啶基)-四唑橋連的二核鎳配合物構(gòu)筑的無機(jī)-有機(jī)雜化化合物
    5-4-(1H-四唑基)苯氧基-間苯二甲酸構(gòu)筑的鎘配位聚合物的合成、晶體結(jié)構(gòu)及熒光性質(zhì)
    1,3-二吡啶基苯和4,4′-二羧基二苯砜構(gòu)筑的鈷(Ⅱ)配合物合成、結(jié)構(gòu)和性質(zhì)
    2,4-二氨基-6-(2'-吡啶基)均三嗪銅(Ⅱ)配合物的結(jié)構(gòu)、抗菌活性及DNA作用
    制服人妻中文乱码| 51午夜福利影视在线观看| 欧美黄色片欧美黄色片| 国产精品,欧美在线| 波多野结衣av一区二区av| 日韩免费av在线播放| 12—13女人毛片做爰片一| 精品国产超薄肉色丝袜足j| 亚洲国产欧美日韩在线播放| 黄网站色视频无遮挡免费观看| 手机成人av网站| 激情在线观看视频在线高清| 一本大道久久a久久精品| 老司机深夜福利视频在线观看| 日韩国内少妇激情av| 看免费av毛片| 国产激情欧美一区二区| 亚洲情色 制服丝袜| 国内久久婷婷六月综合欲色啪| 热99re8久久精品国产| 免费在线观看亚洲国产| 99久久国产精品久久久| 99香蕉大伊视频| 午夜福利在线观看吧| 电影成人av| av视频在线观看入口| 日日干狠狠操夜夜爽| 99国产综合亚洲精品| 一夜夜www| av视频在线观看入口| 精品免费久久久久久久清纯| 日日干狠狠操夜夜爽| 男女之事视频高清在线观看| 亚洲精品粉嫩美女一区| 欧美午夜高清在线| 国产91精品成人一区二区三区| 91麻豆精品激情在线观看国产| 男女床上黄色一级片免费看| 天堂动漫精品| 老司机福利观看| 可以在线观看的亚洲视频| 一本久久中文字幕| 又大又爽又粗| 国产精品久久视频播放| 给我免费播放毛片高清在线观看| 日韩大码丰满熟妇| 在线观看免费日韩欧美大片| 亚洲五月婷婷丁香| 91国产中文字幕| 两性夫妻黄色片| 国产亚洲av嫩草精品影院| 丝袜人妻中文字幕| 国内毛片毛片毛片毛片毛片| 日本a在线网址| 视频在线观看一区二区三区| 好男人在线观看高清免费视频 | 国产精品久久视频播放| 国产麻豆成人av免费视频| 成年女人毛片免费观看观看9| 日本在线视频免费播放| 国产精品一区二区免费欧美| 亚洲色图综合在线观看| 亚洲在线自拍视频| 国产成人精品久久二区二区免费| 亚洲最大成人中文| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久亚洲av鲁大| av在线播放免费不卡| 日韩欧美一区视频在线观看| 国产精品二区激情视频| videosex国产| 18禁美女被吸乳视频| 免费搜索国产男女视频| 又大又爽又粗| 黄色片一级片一级黄色片| 久久久国产成人精品二区| 高清在线国产一区| 制服人妻中文乱码| 欧美一级a爱片免费观看看 | 中文字幕人成人乱码亚洲影| 欧美黑人精品巨大| 男女床上黄色一级片免费看| 久久久精品欧美日韩精品| or卡值多少钱| 长腿黑丝高跟| 国产av精品麻豆| 国产精品av久久久久免费| 男女做爰动态图高潮gif福利片 | 久久香蕉国产精品| 亚洲无线在线观看| 久久久久久久午夜电影| 99国产综合亚洲精品| 国产成人精品无人区| 最近最新免费中文字幕在线| 日韩高清综合在线| 久久久久久久精品吃奶| 午夜精品在线福利| 欧美日韩一级在线毛片| 女警被强在线播放| e午夜精品久久久久久久| 91麻豆av在线| 高潮久久久久久久久久久不卡| 99国产精品一区二区三区| 久久国产精品影院| 国产成人欧美| 欧美日本亚洲视频在线播放| 他把我摸到了高潮在线观看| 深夜精品福利| 亚洲九九香蕉| cao死你这个sao货| 视频在线观看一区二区三区| 99香蕉大伊视频| 少妇的丰满在线观看| 天堂影院成人在线观看| 色播在线永久视频| 免费无遮挡裸体视频| 黄色 视频免费看| www.自偷自拍.com| 亚洲美女黄片视频| 国产一区在线观看成人免费| 欧美午夜高清在线| 在线天堂中文资源库| 高清黄色对白视频在线免费看| 嫁个100分男人电影在线观看| 欧美日韩福利视频一区二区| 国产97色在线日韩免费| 婷婷丁香在线五月| 午夜免费鲁丝| 一本大道久久a久久精品| 夜夜看夜夜爽夜夜摸| 纯流量卡能插随身wifi吗| 天天躁狠狠躁夜夜躁狠狠躁| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 国产高清有码在线观看视频 | 成人18禁在线播放| 啦啦啦观看免费观看视频高清 | 国产一区二区在线av高清观看| 母亲3免费完整高清在线观看| 亚洲精华国产精华精| 大型av网站在线播放| 给我免费播放毛片高清在线观看| 久久久久久亚洲精品国产蜜桃av| 日韩欧美国产在线观看| 窝窝影院91人妻| 一边摸一边抽搐一进一出视频| 亚洲电影在线观看av| 人人妻,人人澡人人爽秒播| 99re在线观看精品视频| 国产一区二区三区综合在线观看| 欧美在线一区亚洲| 久久久精品国产亚洲av高清涩受| 日本在线视频免费播放| 亚洲午夜理论影院| 免费无遮挡裸体视频| 乱人伦中国视频| 国产精品免费一区二区三区在线| 欧美成人性av电影在线观看| 黄色片一级片一级黄色片| 精品第一国产精品| 少妇熟女aⅴ在线视频| 神马国产精品三级电影在线观看 | 最近最新中文字幕大全电影3 | 精品久久久久久成人av| 一级毛片精品| 亚洲欧美精品综合一区二区三区| 一区二区三区高清视频在线| 亚洲精品在线观看二区| 亚洲成人国产一区在线观看| 日韩三级视频一区二区三区| 一级片免费观看大全| 99在线视频只有这里精品首页| 国产成人啪精品午夜网站| 欧美日本视频| 好男人电影高清在线观看| 欧美激情 高清一区二区三区| а√天堂www在线а√下载| 亚洲人成伊人成综合网2020| 久久人妻av系列| 欧美性长视频在线观看| 欧美精品亚洲一区二区| 大型黄色视频在线免费观看| 精品国产一区二区三区四区第35| 99国产精品免费福利视频| 成在线人永久免费视频| 亚洲精品中文字幕一二三四区| 99香蕉大伊视频| 正在播放国产对白刺激| 欧美 亚洲 国产 日韩一| 99久久久亚洲精品蜜臀av| 他把我摸到了高潮在线观看| cao死你这个sao货| www国产在线视频色| 亚洲色图综合在线观看| 日本黄色视频三级网站网址| 国产不卡一卡二| 黑丝袜美女国产一区| 成年人黄色毛片网站| www国产在线视频色| 久久国产亚洲av麻豆专区| 国产成人欧美| 黄色女人牲交| 狠狠狠狠99中文字幕| bbb黄色大片| 国产日韩一区二区三区精品不卡| 9热在线视频观看99| 亚洲精品一区av在线观看| 欧美激情极品国产一区二区三区| 十八禁人妻一区二区| 午夜成年电影在线免费观看| 国产亚洲精品一区二区www| 国产高清视频在线播放一区| 99热只有精品国产| 一级,二级,三级黄色视频| 国产亚洲欧美98| 国产亚洲精品综合一区在线观看 | 搡老妇女老女人老熟妇| 18禁黄网站禁片午夜丰满| 99久久99久久久精品蜜桃| 搡老岳熟女国产| 天堂√8在线中文| 男人的好看免费观看在线视频 | 免费在线观看完整版高清| 18美女黄网站色大片免费观看| 久久久久国产一级毛片高清牌| 国产免费男女视频| 亚洲一区中文字幕在线| 国产精品乱码一区二三区的特点 | 免费不卡黄色视频| 午夜日韩欧美国产| 老汉色∧v一级毛片| 午夜免费观看网址| 最近最新免费中文字幕在线| √禁漫天堂资源中文www| 9热在线视频观看99| 亚洲精品久久成人aⅴ小说| 日韩av在线大香蕉| 成年女人毛片免费观看观看9| 亚洲专区字幕在线| 午夜福利高清视频| 长腿黑丝高跟| 久9热在线精品视频| 亚洲天堂国产精品一区在线| 亚洲欧美精品综合一区二区三区| 国产精品香港三级国产av潘金莲| 欧美成人性av电影在线观看| 性欧美人与动物交配| 大码成人一级视频| 韩国av一区二区三区四区| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻丝袜一区二区| 亚洲国产欧美一区二区综合| 亚洲成国产人片在线观看| 亚洲一区二区三区不卡视频| 午夜免费成人在线视频| av有码第一页| 亚洲色图 男人天堂 中文字幕| 欧美一级a爱片免费观看看 | 制服诱惑二区| 最近最新中文字幕大全电影3 | 少妇的丰满在线观看| 美国免费a级毛片| 国产男靠女视频免费网站| 日本五十路高清| 国产黄a三级三级三级人| 99香蕉大伊视频| 久久国产亚洲av麻豆专区| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 久久这里只有精品19| 精品国内亚洲2022精品成人| 老汉色∧v一级毛片| 欧美日本中文国产一区发布| 好男人在线观看高清免费视频 | 精品高清国产在线一区| 人人妻,人人澡人人爽秒播| 亚洲无线在线观看| 老司机午夜十八禁免费视频| 老司机午夜福利在线观看视频| 一级毛片高清免费大全| 身体一侧抽搐| 欧美激情 高清一区二区三区| av在线天堂中文字幕| 精品国产一区二区久久| 亚洲国产中文字幕在线视频| 亚洲专区字幕在线| 一级a爱片免费观看的视频| av超薄肉色丝袜交足视频| 国产成人啪精品午夜网站| 亚洲欧美日韩另类电影网站| 精品乱码久久久久久99久播| 99香蕉大伊视频| 精品久久久久久久人妻蜜臀av | 亚洲av日韩精品久久久久久密| 亚洲人成伊人成综合网2020| 国产1区2区3区精品| 午夜视频精品福利| 久久久精品欧美日韩精品| 嫁个100分男人电影在线观看| 欧美一级毛片孕妇| 在线观看免费视频日本深夜| 久久亚洲精品不卡| www.www免费av| 久久久久久久久免费视频了| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 欧美成人一区二区免费高清观看 | 国内精品久久久久精免费| 免费在线观看影片大全网站| 亚洲狠狠婷婷综合久久图片| 欧美成人免费av一区二区三区| 精品福利观看| 一进一出好大好爽视频| 男人的好看免费观看在线视频 | 日本a在线网址| 国内久久婷婷六月综合欲色啪| 亚洲国产高清在线一区二区三 | 久久人人精品亚洲av| or卡值多少钱| 欧美日韩亚洲国产一区二区在线观看| 久热爱精品视频在线9| 宅男免费午夜| 亚洲色图 男人天堂 中文字幕| 亚洲中文日韩欧美视频| 在线视频色国产色| 叶爱在线成人免费视频播放| 丰满人妻熟妇乱又伦精品不卡| 色婷婷久久久亚洲欧美| 亚洲少妇的诱惑av| 成人免费观看视频高清| 精品欧美一区二区三区在线| 亚洲专区国产一区二区| 亚洲,欧美精品.| 99香蕉大伊视频| 一本综合久久免费| 美女午夜性视频免费| 这个男人来自地球电影免费观看| 免费在线观看日本一区| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 午夜成年电影在线免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲精品中文字幕一二三四区| 中文字幕最新亚洲高清| 妹子高潮喷水视频| av在线天堂中文字幕| 色尼玛亚洲综合影院| 黄色 视频免费看| 国产一区二区激情短视频| 首页视频小说图片口味搜索| 美女国产高潮福利片在线看| 国产精品,欧美在线| 18禁黄网站禁片午夜丰满| 欧美国产精品va在线观看不卡| 国产精品久久久久久精品电影 | 国产亚洲av嫩草精品影院| 9色porny在线观看| 亚洲全国av大片| 亚洲熟妇熟女久久| 国产av又大| 99国产精品99久久久久| 女人高潮潮喷娇喘18禁视频| 免费看十八禁软件| 亚洲精品国产色婷婷电影| 日韩中文字幕欧美一区二区| 黄片小视频在线播放| 视频在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 午夜视频精品福利| 日本黄色视频三级网站网址| 国产在线观看jvid| 国产成人精品久久二区二区91| 老司机福利观看| 色哟哟哟哟哟哟| 久久人妻福利社区极品人妻图片| 国产片内射在线| av天堂在线播放| 丝袜人妻中文字幕| 久久 成人 亚洲| 男人舔女人的私密视频| 久久人妻福利社区极品人妻图片| 国产aⅴ精品一区二区三区波| 97碰自拍视频| 亚洲av第一区精品v没综合| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 18禁美女被吸乳视频| 天堂影院成人在线观看| 自线自在国产av| 日本 欧美在线| 真人做人爱边吃奶动态| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 手机成人av网站| 久久精品人人爽人人爽视色| svipshipincom国产片| 国产欧美日韩一区二区三区在线| 欧美成人性av电影在线观看| 亚洲在线自拍视频| 亚洲国产精品999在线| 久久久久九九精品影院| 精品卡一卡二卡四卡免费| 日韩欧美一区二区三区在线观看| 国产精品秋霞免费鲁丝片| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| 高清在线国产一区| 色在线成人网| 久久午夜亚洲精品久久| 精品福利观看| 久久久国产精品麻豆| 亚洲精品国产色婷婷电影| 国产三级在线视频| 久9热在线精品视频| 手机成人av网站| 啦啦啦 在线观看视频| 久久久久国产一级毛片高清牌| 悠悠久久av| 日韩欧美免费精品| 看免费av毛片| 男女做爰动态图高潮gif福利片 | 九色国产91popny在线| 午夜影院日韩av| 国产熟女午夜一区二区三区| 亚洲欧美精品综合一区二区三区| 国产精品九九99| 成人18禁在线播放| 国产亚洲精品第一综合不卡| 亚洲成av人片免费观看| 97人妻天天添夜夜摸| 国产成人精品在线电影| 国产aⅴ精品一区二区三区波| 欧美在线黄色| bbb黄色大片| 久久精品91蜜桃| 一个人观看的视频www高清免费观看 | 9191精品国产免费久久| 精品久久久久久,| 国产精品 国内视频| 久久人人爽av亚洲精品天堂| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av在线| 一级,二级,三级黄色视频| 一级毛片高清免费大全| av视频免费观看在线观看| 老司机福利观看| 欧美国产日韩亚洲一区| 岛国在线观看网站| 1024香蕉在线观看| 成年女人毛片免费观看观看9| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看 | 午夜亚洲福利在线播放| 久久国产亚洲av麻豆专区| 亚洲,欧美精品.| 成人三级做爰电影| 久久人人97超碰香蕉20202| 亚洲成av人片免费观看| 日韩精品中文字幕看吧| 美女高潮到喷水免费观看| 午夜福利成人在线免费观看| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 亚洲av成人av| 级片在线观看| 亚洲片人在线观看| 中文字幕色久视频| 亚洲 国产 在线| 桃红色精品国产亚洲av| 亚洲中文字幕日韩| 丝袜人妻中文字幕| 欧美精品亚洲一区二区| 国产高清有码在线观看视频 | 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 日韩免费av在线播放| 国产熟女午夜一区二区三区| 亚洲精品在线美女| 一个人观看的视频www高清免费观看 | 夜夜夜夜夜久久久久| 18禁观看日本| 国产成人av教育| 国产精品综合久久久久久久免费 | 一级毛片女人18水好多| 日韩欧美三级三区| 亚洲第一电影网av| 免费av毛片视频| 多毛熟女@视频| 法律面前人人平等表现在哪些方面| 日韩精品青青久久久久久| 一区在线观看完整版| 亚洲人成网站在线播放欧美日韩| av超薄肉色丝袜交足视频| 757午夜福利合集在线观看| 亚洲七黄色美女视频| 一本大道久久a久久精品| 丝袜美腿诱惑在线| 丝袜美足系列| 一个人免费在线观看的高清视频| 热re99久久国产66热| 国产精品一区二区三区四区久久 | 免费在线观看黄色视频的| 不卡一级毛片| 波多野结衣一区麻豆| 久久婷婷成人综合色麻豆| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 久久精品91无色码中文字幕| 久久国产精品影院| 亚洲黑人精品在线| 亚洲av五月六月丁香网| 久久久久久久久久久久大奶| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 美国免费a级毛片| 19禁男女啪啪无遮挡网站| 久久午夜综合久久蜜桃| 亚洲成人国产一区在线观看| 日韩欧美国产在线观看| 久久天堂一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 99re在线观看精品视频| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 亚洲男人的天堂狠狠| 日韩 欧美 亚洲 中文字幕| 成熟少妇高潮喷水视频| 国产又爽黄色视频| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 99久久综合精品五月天人人| 久久久国产欧美日韩av| 最新在线观看一区二区三区| 午夜免费成人在线视频| 免费不卡黄色视频| 亚洲欧美日韩无卡精品| 欧美中文日本在线观看视频| 久久国产精品男人的天堂亚洲| www国产在线视频色| 巨乳人妻的诱惑在线观看| 精品日产1卡2卡| 国产精品香港三级国产av潘金莲| 欧洲精品卡2卡3卡4卡5卡区| 日本 av在线| 日韩欧美在线二视频| 在线永久观看黄色视频| 亚洲精品国产色婷婷电影| 久久中文看片网| 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看| 怎么达到女性高潮| 欧美日本中文国产一区发布| 免费一级毛片在线播放高清视频 | 久久国产精品人妻蜜桃| 久久中文看片网| 国内精品久久久久精免费| 岛国视频午夜一区免费看| 黄色丝袜av网址大全| 少妇被粗大的猛进出69影院| av天堂久久9| 99热只有精品国产| 中文字幕av电影在线播放| 亚洲av电影在线进入| 好看av亚洲va欧美ⅴa在| 日本a在线网址| 成人国产综合亚洲| 午夜福利在线观看吧| 动漫黄色视频在线观看| 黄片大片在线免费观看| 老汉色∧v一级毛片| 非洲黑人性xxxx精品又粗又长| 午夜福利18| 中文字幕色久视频| 中文字幕人成人乱码亚洲影| 伦理电影免费视频| 亚洲av成人av| 亚洲av成人一区二区三| 日韩欧美免费精品| 手机成人av网站| 亚洲人成电影观看| 少妇粗大呻吟视频| 桃色一区二区三区在线观看| 美女午夜性视频免费| av天堂久久9| 久久香蕉国产精品| av电影中文网址| av网站免费在线观看视频| 九色亚洲精品在线播放| 给我免费播放毛片高清在线观看| 91字幕亚洲| 久久草成人影院| 欧美黑人精品巨大| 50天的宝宝边吃奶边哭怎么回事| 国产精品爽爽va在线观看网站 | 欧美大码av| 女生性感内裤真人,穿戴方法视频| av电影中文网址| 国产精品久久视频播放| 免费在线观看影片大全网站| 免费不卡黄色视频| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久免费视频| 久久久国产精品麻豆| 中文字幕精品免费在线观看视频| 一个人观看的视频www高清免费观看 | 欧美丝袜亚洲另类 | 午夜成年电影在线免费观看| 亚洲成av片中文字幕在线观看| 亚洲国产日韩欧美精品在线观看 | 乱人伦中国视频| 女人被狂操c到高潮| 国产蜜桃级精品一区二区三区|