• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于5-(4-羥基吡啶基甲基)間苯二甲酸配體的兩種Zn(Ⅱ)的配位聚合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    2016-12-15 07:43:20李付安徐伏楊維春李松田
    無機(jī)化學(xué)學(xué)報 2016年9期
    關(guān)鍵詞:間苯二甲酸吡啶基平頂山

    李付安 徐伏 楊維春 李松田

    基于5-(4-羥基吡啶基甲基)間苯二甲酸配體的兩種Zn(Ⅱ)的配位聚合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    李付安 徐伏 楊維春*李松田

    (平頂山學(xué)院化學(xué)與環(huán)境工程學(xué)院,平頂山467000)

    采用水熱合成的方法,在以5-(4-羥基吡啶基甲基)間苯二甲酸(H2L)作主配體、4,4′-聯(lián)吡啶(4,4′-bpy)和1,2-二(4-吡啶基)乙烯(bpe)作輔配體的條件下,得到2種新穎的Zn(Ⅱ)配位聚合物{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)和{[Zn(L)(bpe)0.5]·2H2O}n(2)。配合物通過單晶X射線衍射的方法進(jìn)行了結(jié)構(gòu)分析,并進(jìn)一步通過紅外光譜(IR)、元素分析、PXRD和熱重分析(TG)的方法進(jìn)行了表征。結(jié)構(gòu)分析表明配合物1展現(xiàn)出的是一種三維三重互穿網(wǎng)絡(luò);聚合物2為二維雙層結(jié)構(gòu),并進(jìn)一步組合成了三重平行互穿的2D→3D的空間網(wǎng)絡(luò)。此外,研究了配合物的熒光性質(zhì)。

    5-(4-羥基吡啶基甲基)間苯二甲酸;聚合物;鋅;互穿網(wǎng)絡(luò)

    In the past decades,the construction of novel coordination polymers has attracted the interest of chemist communities in the field of supramolecular chemistry and crystal engineering due to their novel architectures as well as potential applications[1-11].The self-assembly processes of coordination polymers can be directed by several factors:the coordination geometry of metal ions,the structural characteristics of ligands,the solvent system,and so on[12-16],among which the rational design and reasonable use of the characteristic ligand are very important in the construction ofthe desired coordination polymers[17-20].

    It is well-known that organic aromatic polycarboxylate ligands are important multidentate O-donor ligands which have been concerned much in recent years because of their pluridentated and excellent coordinated ability.Up to now,coordination polymers with unusual structures and distinctive properties have been extensively assembled by combining organic aromatic polycarboxylate ligands and metalions[21-23].Recently,Sun etal.have introduced a versatile ligand,3-(4-hydroxypyridinium-1-yl) phthalic acid,and its corresponding coordination polymers with helical subunits[24-25].We chose 5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid(H2L)as a building block for the following reasons:(1)H2L possesses a flexible-CH2-spacer between the phenyl ring and pyridine ring,which makes the pyridine ring rotate freely to meet the requirements for coordination; (2)the pyridine ring and phenyl ring are twisted around the-CH2-spacer,and the skew coordination orientation of the carboxyl groups provide the potential of helices formation;(3)the functional hydroxyl groups of this ligand can actnotonly as coordination sites,butalso as side arms of interdigital architecture in incoordination mode.

    To the bestof our knowledge,the architectures of coordination polymers constructed from H2L have not been investigated.In this work,by using ligand H2Land N-donor ancillary ligands,two coordination polymers, {[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1),and{[Zn(L)(bpe)0.5]· 2H2O}n(2),were prepared by hydrothermal methods. Theirstructures have been determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra(IR),elementalanalyses,powder X-ray diffraction(PXRD),and thermogravimetric(TG) analyses.Their crystal structures and the systematic investigation of the effects of H2L ligand and N-donor ancillary co-ligands on the ultimate frameworks are discussed in detail.Furthermore,their fluorescence properties have also been investigated in detail.

    Scheme 1 Coordination mode of the ligand H2L found in compounds 1 and 2

    1 Experimental

    1.1 Materials and physical measurement

    All reagents and solvents employed in the presentwork were of analytical grade as obtained from commercial sources without further purification.H2L was synthesized according to the literature[26]. Elemental analysis for C,H,and N was performed on a Perkin-Elmer 240 elemental analyzer.The FTIR spectra were recorded from KBr pellets in the range from 4 000 to 400 cm-1on a Nicolet NEXUS 470-FTIR spectrometer.Thermal analysis was performed on a SDT 2960 thermal analyzer from room temperature to 800℃with a heating rate of10℃·min-1under nitrogen flow.Powder X-ray diffraction(PXRD) for compounds 1~2 were measured at293 K on a Rigaku D/max-3B diffractometer equipped with Cu Kα(λ= 0.154 06 nm)radiation(45 kV,200 mA).The crushed single crystalline powder samples were prepared by crushing the crystals and the 2θscanning angle range wasfrom 5°to 50°with a step of0.1°·s-1.Luminescence spectra forthe solid samples were recorded on a Hitachi 850 fluorescence spectrophotometer.

    1.2 Syntheses of the complexes

    1.2.1 Synthesis of{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)

    Complex 1 was synthesized hydrothermally in a 30 mL Teflon-lined autoclave by heating a mixture of 4,4′-bpy(0.007 8 g,0.05 mmol),Zn(OAc)2·2H2O (0.022 g,0.1 mmol),H2L(0.016 8 g,0.05 mmol),and LiOH(0.004 2 g,0.1 mmol)at 160℃in 6 mL H2O for three days.Colorless block-wise crystals of 1 were obtained in 80%yield based on Zn(OAc)2·2H2O. Anal.Calcd.for C19H17N2O7Zn(%):C 50.63,H 3.80, N 6.22;Found(%):C 50.71,H 3.79,N 6.17;IR(KBr, cm-1):3 501(s,br),3 421(s),1 636(s),1 614(s),1 583 (m),1 521(s),1 432(m),1 356(s),1 229(w),1 154(s), 1 066(m),1 029(w),845(w),769(w),723(w).

    1.2.2 Synthesis of{[Zn(L)(bpe)0.5]·2H2O}n(2)

    The procedure issimilarto the synthesisof1 except thatbpe wasused instead of4,4′-bpy.Colorless crystals of 2 were obtained in 57%yield based on Zn(OAc)2· 2H2O.Anal.Calcd.for C20H17N2O6.5Zn(%):C 52.83,H 3.77,N 6.16;Found(%):C 52.85,H 3.72,N,6.19;IR (KBr,cm-1):3 410(s,br),3 053(m),1 637(s),1 614(s), 1 581(m),1 533(s),1 431(w),1 355(s),1 239(w),1 178 (m),1 060(w),1 029(w),850(m),770(w),732(w).

    1.3 Crystallographic data collection and structure determination

    Single-crystal X-ray diffraction data of complexes 1~2 were collected on a Bruker SMART APEX CCD diffractometer[27]equipped with graphite monochromatized Mo Kαradiation(λ=0.071 073 nm)at room temperature using theφ-ωscan technique.Empirical absorption corrections were applied to the intensities using the SADABS program[28].The structures were solved with directmethods using the program SHELXS-97[29]and refined anisotropically with the program SHELXL-97[30]using full matrix least-squares procedures.All nonhydrogen atoms were refined anisotropically.The hydrogen atoms of the coordination water molecules,and ligands were included in the structure factor calculation at idealized positions by using a riding model and refined isotropically.The hydrogen atoms ofthe solventwater molecules were located from the difference Fourier maps,then restrained at fixed positions and refined isotropically.Analytical expressions of neutral atom scattering factors were employed,and anomalous dispersion corrections were incorporated.The crystallographic data for 1 and 2 are summarized in Table 1.Selected bond lengths and angles are given in Table 2.

    CCDC:908520,1;908521,2.

    Table 1 Crystallographic data and structure refinement for compounds 1 and 2

    Table 2 Selected bond lengths(nm)and bond angles(°)for compounds 1 and 2

    Continued Table 1

    Fig.1(a)Metal coordination and atom labeling in compound 1;(b)Two types of helical chains in compound 1;(c)Two types of 2D helical layers(left and right)and 3D framework of 1 with helical layers pillared by 4,4′-bpy ligands in ABBA queues(middle);(d)Single 3D topology framework;(e)Schematic representation of the 3-fold interpenetrated topology nets for 1

    2 Results and discussion

    2.1 Crystal structure of{[Zn(L)(4,4′-bpy)0.5]· 2H2O}n(1)

    A single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in monoclinic,space group P21/c,and has a 3-fold interpenetrating 3D framework.The asymmetric unit contains one Zn(Ⅱ)ion,one L2-ligand,half 4,4′-bpy,and two free water molecules(Fig.1a).The Zn(Ⅱ)center is located in a distorted tetrahedral geometry,which is shaped by two oxygen atoms from carboxyl group of two different L2-anions,one hydroxyl oxygen atom from another L2-anion,and one nitrogen atom from 4,4′-bpy.As for L2-anion,L2-employs a twisted conformation,and the dihedral angle between pyridine ring and the phenyl ring is 89.6°.Two carboxylate groups have a dihedral angle of 14.1°and 16.6°towards the plane of the corresponding linking phenyl rings,respectively.The L2-anion links three Zn(Ⅱ)ions in theμ3-bridging mode with both carboxylate groups inμ2-η1:η1coordination modes and the hydroxyl group adopting monodentate coordination mode(Scheme 1).

    In 1,two type of helical chains have been observed.The screw axes of these helices are all parallel to the b axis,and the pitch is 1.447 8 nm. Helical chains with opposite rotation are connected to form chiral helical layers A and B(Fig.1c,left and right).Along the c axis,the chirality of each type of helical chain in one layer(A or B)is opposite to that of the nearest ones of the same type in another layer (B or A)(Fig.2a).Thus,the helical layers are pillared by 4,4′-bpy in ABBA queues to give rise to a 3D racemic framework(Fig.1c,middle).

    Fig.2(a)Interesting arrangement of two types of helical chains in polymer 1;(b)Hydrogen bonding interactions in polymer 1

    In order to better understand the final architecture,Zn(Ⅱ)centers can to be viewed as 4-connected nodes,L2-anions can be viewed as 3-connected nodes,and 4,4′-bpy can be considered as linkers,so the overall structure can be described as a 3D(3,4)-connected framework with a Schl?fli symbol of{63}{65.8}(Fig.1d).Moreover,there are large rectangular windows(1.076 nm×1.121 nm)in 1.Thus, in order to minimize the big void cavities and stabilize the framework,the potential voids cavities are filled by the other two identical networks,resulting in a 3-fold interpenetrating network(Fig.1e).The large void space in a single net is mainly occupied by interpenetration,leaving small and irregular channels along the b-axis direction,in which solvent water molecules are enclosed.Thus,the lattice water molecules embed themselves in the void space by forming hydrogen bonding interactions together with the coordinated water molecule,carboxylate groups and uncoordinated hydroxyl groups to give the additionalstability(Table 3,Fig.2b).

    2.2 CrystalStructureof{[Zn(L)(bpe)0.5]·2H2O}n(2)

    Compound 2 exhibits a 3-fold parallel interpenetrated 2D→3D network motif.As shown in Fig.3a,the asymmetric unit of 2 contains one Zn(Ⅱ)center,half bpe,one L2-anion,and two free water molecules.The Zn(Ⅱ)center displays a distorted tetrahedralgeometry:three O atoms from three different L2-anions and one N atom from bpe.The Zn1-O bond lengths range from 0.197 5(2)to 0.199 4(2)nm,and the Zn1-N bond distance is 0.204 2(2)nm.The L2-anion employsa twisted conformation,and the dihedralanglebetween pyridine ring and the phenyl ring is 83.2°, two carboxylate groups have a dihedral angle of 3.1° and 14.0°towards the plane of the corresponding linking phenylrings,respectively.

    Table 3 Geometrical parameters of hydrogen bonds in compounds 1~2

    Fig.3(a)Metal coordination and atom labeling in compound 2;(b)2D monolayer in compound 2;(c)Double layer in compound 2; (d)2D→3D interpenetration in compound 2

    In 2,each L2-acts asμ3-bridge connecting three Zn atoms via both carboxylate groups inμ2-η1:η1coordinated modes and the hydroxyl group in monodentate mode(Scheme 1)to form an undulate monolayer(Zn-L1)nparallel to the bc plane.The bpe ligands link adjacent monolayers(Zn-L1)nto result in an interesting 2D double-layered sheet with the distance of 1.345 5 nm between two layers(Fig.3c). The open space within each double-layered sheet leads to the formation of catenation between adjacent sheets,and thus,each double-layered sheet is bicatenated by two other sheets(one from upper and the other from lower layer)in a parallel fashion to minimize the large void cavities and stabilize thenetwork to produce a 2D→3D entanglement(Fig.3d). In addition,hydrogen bonding interactions are also observed in 2(Table 3).Thus,the interpenetrating pieces are stabilized by hydrogen bonding interactions (Fig.4).

    Fig.4 3D supramolecular structure of polymer 2

    2.3 Thermal analyses and PXRD patterns

    To characterize the compounds in terms of thermal stability,thermal gravimetric analysis(TGA) of compounds 1~2 were carried out in nitrogen atmosphere(Fig.5).For compound 1,a gradual weight loss between 30 and 379℃is attributed to the release of two lattice water molecules(Obsd.7.39%; Calcd.7.99%).Then the host framework started to decompose.The TG curve of compound 2 displays the first weight loss of 7.96%(Calcd.7.92%)from 30 to 384℃,corresponding to the loss of two lattice water molecules per formula unit.The further weight losses represented the decomposition of the compound 2.

    X-ray powder diffraction(PXRD)was used to check the purity of compounds 1~2.As shown in Fig. 6,The experimental PXRD patterns correspond well with the results simulated from the single crystal data, indicating the high purity of the synthesized samples and single phases of compounds 1~2 are formed.

    Fig.5 TG curves for compounds 1 and 2

    Fig.6 Simulated and experimental PXRD patterns for compounds 1(a)and 2(b)

    2.4 Photochemical Properties

    Luminescent compounds composed of d10metal centers and organic ligands are ofgreat interestdue to theirpotentialapplications,such as in chemicalsensors, photochemistry,electroluminescent display[31-36].The solid-state emission spectra of compounds 1~2 and H2L ligand used in this work have been investigated at room temperature.The emission spectra of H2L andcompounds 1~2 are shown in Fig.7.Here,intense bands were observed at 412 nm(λex=317 nm)for H2L, 433 nm(λex=315 nm)for compound 1,400 nm(λex= 343 nm)for compound 2.The emission bands of compound 1 are similar to that of the free H2L,which can be probably assigned to intraligand fluorescent emission[37-38].Compound 2 results in a slight blue shift of 12 nm.This indicates that the emission of compound 2 may be attributed to metal-ligand coordination interactions.Compared to the free ligand, the different locations and profiles of their emission/ excitation peaks of compounds 1~2 probably due to the coordination effectively increased the rigidity of the ligands and reduced the loss of energy by radiationless decay.

    Fig.7 Solid-state emission spectra of free H2L and compounds 1 and 2 at room temperature

    3 Conclusions

    In conclusion,two new coordination polymers based on H2L with the help of N-donor ligands have been hydrothermally synthesized.The two compounds show different three-dimensional architectures.First, helical segments are found in compound 1 due to the flexible H2L with the pyridine ring and phenyl ring twisting around the-CH2-spacer.Second,compound 2 has 2D double-layer structure and exhibits a 3-fold parallel interpenetrated 2D→3D network motif.The result reveals that the N-donor ancillary co-ligands have great inuence on the structures of the complexes due to their different structures and exibility. Subsequent studies will be focused on the structures and properties of the novel functional coordination polymers constructed by the present ligand with a wide range of rare earth metals.Further investigations on this domain are underway.

    [1]Maji T K,Mostafa G,Chang H C,et al.Chem.Commun., 2005,24:2436-2438

    [2]Armentano D,Mastropietro T F,Julve M,et al.J.Am. Chem.Soc.,2007,129:2740-2741

    [3]Qin L,Hu J S,Huang L F,et al.Cryst.Growth Des., 2010,10:4176-4183

    [4]Leong W L,Vittal J J.Chem.Rev.,2011,111:688-764

    [5]Wang R H,Zhou Y F,Sun Y Q,et al.Cryst.Growth Des., 2005,5:251-256

    [6]Zheng X L,Liu Y,Pan M,et al.Angew.Chem.,Int.Ed., 2007,46:7399-7403

    [7]Pan Z R,Zheng H G,Wang T W,et al.Inorg.Chem., 2008,47:9528-9536

    [8]Lu Z Z,Zhang R,Li Y Z,et al.J.Am.Chem.Soc., 2011,133:4172-4174

    [9]Cui H,Zhou B,Long L S,et al.Angew.Chem.Int.Ed., 2008,47:3376-3380

    [10]Li J R,Kuppler R J,Zhou H C.Chem.Soc.Rev.,2009,38: 1477-1504

    [11]Seidel C,Lorbeer C,Cybinska J,et al.Inorg.Chem.,2012, 51:4679-4688

    [12]Seidel C,Ahlers R,Ruschewitz U.Cryst.Growth Des., 2011,11:5053-5063

    [13]Mezei G,Baran P,Raptis R G.Angew.Chem.Int.Ed., 2004,43:574-577

    [14]Sun D F,Ke Y X,Mattox T M,et al.Chem.Commun., 2005,5447-5449

    [15]Zheng B,Dong H,Bai J F,et al.J.Am.Chem.Soc.,2008, 130:7778-7779

    [16]Li C P,Du M.Chem.Commun.,2011,47:5958-5972

    [17]Du M,Jiang X J,Zhao X J.Inorg.Chem.,2007,46:3984 -3995

    [18]Sarma D,Ramanujachary K V,Stock N,et al.Cryst.Growth Des.,2011,11:1357-1369

    [19]Ritchie C,Baslon V,Moore E G,et al.Inorg.Chem., 2012,51:1142-1151

    [20]Liu F J,Hao H J,Sun C J,et al.Cryst.Growth Des., 2012,12:2004-2012

    [21]Ye B H,Tong M L,Chen X M.Coord.Chem.Rev.,2005,249:545-565

    [22]Mihalcea I,Henry N,Clavier N,et al.Inorg.Chem., 2011,50:6243-6249

    [23]Hijikata Y,Horike S,Tanaka D,et al.Chem.Commun., 2011,47:7632-7634

    [24]Sun X L,Song W C,Zang S Q,et al.Chem.Commun., 2012,48:2113-2115

    [25]Sun X L,Zang S Q,Song W C,et al.Cryst.Growth Des., 2012,12:4431-4440

    [26]Yang Q Y,Li K,Luo J,et al.Chem.Commun.,2011,47: 4234-4236

    [27]SMART and SAINT,Area Detector Control and Integration Software,Siemens Analytical X-Ray Systems Inc.,Madison, WI(US),1996.

    [28]Sheldrick G M.SADABS,Ver2.05,University of G?ttingen, Germany,1997.

    [29]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Germany,1997.

    [30]Sheldrick G M.Acta Crystallogr.Sect.A,2008,A64: 112.

    [31]Wang S N,Xing H,Li Y Z,et al.Eur.J.Inorg.Chem., 2006,3041-3053

    [32]Gong Y Q,Wang R H,Yuan D Q,et al.Polyhedron, 2007,26:5309-5316

    [33]He Y H,Feng Y L,Lan Y Z,et al.Cryst.Growth Des., 2008,8:3586-3594

    [34]Das P,Bhattacharya S,Mishra S,et al.Chem Commun., 2011,47:8118-8120

    [35]Chang Z,Zhang A S,Hu T L,et al.Cryst.Growth Des., 2009,9:4840-4846

    [36]Yao X Q,Cao D P,Hu J S,et al.Cryst.Growth Des., 2011,11:231-239

    [37]Guo J,Ma J F,Liu B,et al.Cryst.Growth Des.,2011,11: 3609-3621

    [38]Yang J X,Zhang X,Cheng J K,et al.Cryst.Growth Des., 2012,12:333-345

    Syntheses,Structures,and Photoluminescent Properties of Two Zn(Ⅱ)Coordination Polymers Based on 5-(4-Hydroxypyridinium-1-ylmethyl)Isophthalic Acid

    LI Fu-An XU Fu YANG Wei-Chun*LI Song-Tian
    (College of Chemistry and Environmental Engineering,Pingdingshan University,Pingdingshan,Henan 467000,China)

    Two novelcoordination polymers,{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)and{[Zn(L)(bpe)0.5]·2H2O}n(2)(H2L=5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid,4,4′-bpy=4,4′-bipyridine,bpe=1,2-bis(4-pyridyl)ethylene),have been hydrothermally synthesized.Both compound 1 and 2 were structurally characterized by X-ray diffraction analyses,infrared spectra(IR),elemental analyses,powder X-ray diffraction(PXRD),and thermogravimetric(TG) analyses.Compound 1 exhibits a three-dimensional(3D)3-fold interpenetrating framework.Compound 2 has the similar 2D double-layer structure and exhibits a 3-fold parallel interpenetrated 2D→3D network motif. Meanwhile,their luminescentproperties have also been investigated in detail.CCDC:908520,1;908521,2.

    5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid;polymer;zinc;interpenetrated network

    O614.24+1

    A

    1001-4861(2016)09-1683-09

    10.11862/CJIC.2016.216

    2016-04-14。收修改稿日期:2016-08-06。

    河南省教育廳(No.15A150068)和平頂山學(xué)院應(yīng)用化學(xué)重點實驗室(No.201201)資助項目。

    *通信聯(lián)系人。E-mail:lifuanpds@163.com

    猜你喜歡
    間苯二甲酸吡啶基平頂山
    平頂山學(xué)院作品精選
    聲屏世界(2023年8期)2023-07-07 03:34:24
    熱烈祝賀《平頂山日報》復(fù)刊40周年(1982-2022)
    平頂山詩群
    天津詩人(2019年4期)2019-11-27 05:06:50
    平頂山:第四支紅九軍誕生地
    間苯二甲酸二烯丙酯合成方法
    基于5,5'-亞甲基二間苯二甲酸及1,2-雙(咪唑基-1-甲基)苯的Zn2+、Co2+配位聚合物的合成及晶體結(jié)構(gòu)
    一個基于β-[Mo8O26]和5-(3-吡啶基)-四唑橋連的二核鎳配合物構(gòu)筑的無機(jī)-有機(jī)雜化化合物
    5-4-(1H-四唑基)苯氧基-間苯二甲酸構(gòu)筑的鎘配位聚合物的合成、晶體結(jié)構(gòu)及熒光性質(zhì)
    1,3-二吡啶基苯和4,4′-二羧基二苯砜構(gòu)筑的鈷(Ⅱ)配合物合成、結(jié)構(gòu)和性質(zhì)
    2,4-二氨基-6-(2'-吡啶基)均三嗪銅(Ⅱ)配合物的結(jié)構(gòu)、抗菌活性及DNA作用
    久久久久久久午夜电影| 免费搜索国产男女视频| 精华霜和精华液先用哪个| 波野结衣二区三区在线| 啦啦啦观看免费观看视频高清| 如何舔出高潮| 国产在视频线精品| 色哟哟·www| 亚洲成人中文字幕在线播放| 欧美日韩一区二区视频在线观看视频在线 | 亚洲性久久影院| 国产伦一二天堂av在线观看| 搡老妇女老女人老熟妇| 国产一级毛片七仙女欲春2| or卡值多少钱| 国内精品美女久久久久久| 天堂网av新在线| 乱系列少妇在线播放| 国产亚洲午夜精品一区二区久久 | 伦精品一区二区三区| 中文字幕精品亚洲无线码一区| 99在线人妻在线中文字幕| 你懂的网址亚洲精品在线观看 | 村上凉子中文字幕在线| 亚洲国产精品合色在线| 丝袜喷水一区| 欧美色视频一区免费| 久久久久久大精品| 亚洲真实伦在线观看| 免费观看在线日韩| 亚洲成色77777| 国产 一区 欧美 日韩| 一区二区三区四区激情视频| 床上黄色一级片| 免费播放大片免费观看视频在线观看 | 69人妻影院| 色噜噜av男人的天堂激情| 亚洲精品乱码久久久久久按摩| 伊人久久精品亚洲午夜| 丝袜喷水一区| 中文字幕制服av| 午夜激情欧美在线| 国产亚洲av嫩草精品影院| 深爱激情五月婷婷| av又黄又爽大尺度在线免费看 | 久久久久久伊人网av| av播播在线观看一区| 欧美三级亚洲精品| 成人高潮视频无遮挡免费网站| 成人美女网站在线观看视频| 亚洲精品乱码久久久v下载方式| 国产成人aa在线观看| 精品久久久久久久末码| 丰满乱子伦码专区| 国产精品,欧美在线| 国产精品,欧美在线| 少妇被粗大猛烈的视频| .国产精品久久| 国产伦在线观看视频一区| 大又大粗又爽又黄少妇毛片口| 国产91av在线免费观看| 午夜激情福利司机影院| 最近手机中文字幕大全| 嫩草影院新地址| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影| 91av网一区二区| 国产精品国产三级专区第一集| 九九在线视频观看精品| 国产成人freesex在线| 老女人水多毛片| 国产单亲对白刺激| 亚洲欧美中文字幕日韩二区| 欧美成人一区二区免费高清观看| 一个人免费在线观看电影| 最近视频中文字幕2019在线8| 又粗又硬又长又爽又黄的视频| 热99在线观看视频| 亚洲真实伦在线观看| 中文欧美无线码| 亚洲精品aⅴ在线观看| 国产成人freesex在线| 国产精品野战在线观看| 亚洲国产成人一精品久久久| 乱系列少妇在线播放| 最近手机中文字幕大全| 日日摸夜夜添夜夜爱| 国产亚洲最大av| 国产一区亚洲一区在线观看| 国产av在哪里看| 精品国产露脸久久av麻豆 | 高清日韩中文字幕在线| 亚洲精品自拍成人| 国产精品福利在线免费观看| 黄色配什么色好看| 大又大粗又爽又黄少妇毛片口| 国产精品国产三级国产专区5o | 精华霜和精华液先用哪个| 国产精品一区二区三区四区免费观看| 国产精品野战在线观看| 亚洲在线自拍视频| 蜜桃亚洲精品一区二区三区| 在现免费观看毛片| 免费观看的影片在线观看| 亚洲综合精品二区| 色播亚洲综合网| 青春草亚洲视频在线观看| 综合色av麻豆| 国产黄a三级三级三级人| 国产精品人妻久久久影院| 亚洲真实伦在线观看| 纵有疾风起免费观看全集完整版 | 男女视频在线观看网站免费| 国产精品人妻久久久影院| 全区人妻精品视频| 麻豆成人av视频| 亚洲av成人精品一区久久| 中文字幕免费在线视频6| 最近2019中文字幕mv第一页| 久久精品久久精品一区二区三区| 国产精品三级大全| 高清日韩中文字幕在线| 国产成人免费观看mmmm| 最新中文字幕久久久久| 久久99蜜桃精品久久| 国产成人精品久久久久久| 尾随美女入室| 可以在线观看毛片的网站| 女人被狂操c到高潮| 日韩亚洲欧美综合| 久久99热这里只频精品6学生 | 亚洲熟妇中文字幕五十中出| 亚洲中文字幕一区二区三区有码在线看| 高清视频免费观看一区二区 | 欧美成人一区二区免费高清观看| 变态另类丝袜制服| 国产精品一区二区三区四区久久| 久久久亚洲精品成人影院| 日本-黄色视频高清免费观看| 伦理电影大哥的女人| 亚洲在久久综合| 国产伦一二天堂av在线观看| 免费黄色在线免费观看| 亚洲熟妇中文字幕五十中出| 日本免费在线观看一区| 伊人久久精品亚洲午夜| 老司机影院毛片| 人体艺术视频欧美日本| 精品不卡国产一区二区三区| 白带黄色成豆腐渣| 黄色配什么色好看| 看片在线看免费视频| av线在线观看网站| 亚洲久久久久久中文字幕| 久久久国产成人精品二区| 建设人人有责人人尽责人人享有的 | 国模一区二区三区四区视频| 丰满乱子伦码专区| 国产一区二区亚洲精品在线观看| 国产精品人妻久久久影院| 国产精品一及| 国产一区二区在线观看日韩| 免费看a级黄色片| 纵有疾风起免费观看全集完整版 | 最近2019中文字幕mv第一页| 免费观看的影片在线观看| 亚洲精品国产av成人精品| 99在线视频只有这里精品首页| 能在线免费观看的黄片| 久久精品夜色国产| 一级黄片播放器| 麻豆精品久久久久久蜜桃| 国产精品美女特级片免费视频播放器| 天美传媒精品一区二区| 一个人观看的视频www高清免费观看| av又黄又爽大尺度在线免费看 | 久久99热这里只频精品6学生 | 男插女下体视频免费在线播放| 六月丁香七月| 免费搜索国产男女视频| 久久韩国三级中文字幕| 嫩草影院新地址| 久久精品久久精品一区二区三区| 国产高清有码在线观看视频| 欧美性感艳星| 18禁在线播放成人免费| 一个人免费在线观看电影| 久久99热这里只频精品6学生 | 美女内射精品一级片tv| 少妇裸体淫交视频免费看高清| 26uuu在线亚洲综合色| 日韩国内少妇激情av| 青青草视频在线视频观看| 国产精品久久久久久久电影| 亚洲欧美日韩高清专用| 国产男人的电影天堂91| 色吧在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产国拍精品亚洲av在线观看| 天堂√8在线中文| 国产一区二区亚洲精品在线观看| 99九九线精品视频在线观看视频| 亚洲av熟女| 1024手机看黄色片| 久99久视频精品免费| 国产亚洲一区二区精品| 国产av一区在线观看免费| 成人欧美大片| 一个人看视频在线观看www免费| 插逼视频在线观看| 久久欧美精品欧美久久欧美| 自拍偷自拍亚洲精品老妇| 久久精品夜夜夜夜夜久久蜜豆| 亚洲熟妇中文字幕五十中出| 国产一区二区在线av高清观看| 18禁在线播放成人免费| 一个人观看的视频www高清免费观看| 国产精华一区二区三区| 亚洲人与动物交配视频| 99久国产av精品| 国产乱人偷精品视频| 啦啦啦韩国在线观看视频| 中文资源天堂在线| 熟女电影av网| 亚洲真实伦在线观看| 国产精品一及| 淫秽高清视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲国产色片| 国产单亲对白刺激| 高清在线视频一区二区三区 | 成年版毛片免费区| 插逼视频在线观看| 亚洲精品乱码久久久久久按摩| 婷婷色综合大香蕉| 日韩三级伦理在线观看| 激情 狠狠 欧美| 一区二区三区四区激情视频| 禁无遮挡网站| 午夜爱爱视频在线播放| 免费看日本二区| 中文字幕制服av| 老女人水多毛片| 久久久欧美国产精品| 看十八女毛片水多多多| 久久欧美精品欧美久久欧美| 亚洲欧洲国产日韩| 国产一区二区在线av高清观看| 国产黄色小视频在线观看| 最后的刺客免费高清国语| 日韩一区二区三区影片| 精品久久久久久久久久久久久| 亚洲丝袜综合中文字幕| 欧美日韩国产亚洲二区| 美女脱内裤让男人舔精品视频| 亚洲真实伦在线观看| 在线免费观看的www视频| 日韩强制内射视频| 国产成人a∨麻豆精品| 成人性生交大片免费视频hd| 女人被狂操c到高潮| 级片在线观看| 国产成人freesex在线| 日本免费一区二区三区高清不卡| 热99在线观看视频| 中文字幕熟女人妻在线| 校园人妻丝袜中文字幕| 最后的刺客免费高清国语| 免费看日本二区| 成人午夜精彩视频在线观看| 免费av不卡在线播放| 国产日韩欧美在线精品| 赤兔流量卡办理| 黄色配什么色好看| 国产av在哪里看| 亚洲18禁久久av| 91久久精品国产一区二区成人| 国产真实乱freesex| 成年av动漫网址| a级一级毛片免费在线观看| 在线天堂最新版资源| 亚洲精品自拍成人| 亚洲av.av天堂| 欧美一区二区亚洲| 国产成人aa在线观看| 精品久久久久久久久久久久久| 小蜜桃在线观看免费完整版高清| 两个人的视频大全免费| 精品一区二区免费观看| 69人妻影院| 国产成人aa在线观看| 亚洲在线自拍视频| 女人久久www免费人成看片 | 免费观看的影片在线观看| 精品久久久久久成人av| 久久久久久久久久成人| 男的添女的下面高潮视频| 最近最新中文字幕免费大全7| 嫩草影院新地址| 精品无人区乱码1区二区| 国产淫语在线视频| 国产精品国产三级专区第一集| 成人国产麻豆网| a级毛片免费高清观看在线播放| 亚洲va在线va天堂va国产| 老司机福利观看| 特级一级黄色大片| 亚洲乱码一区二区免费版| 变态另类丝袜制服| 中文乱码字字幕精品一区二区三区 | 精品午夜福利在线看| 免费搜索国产男女视频| 国产精品蜜桃在线观看| 18+在线观看网站| 亚洲精品乱码久久久久久按摩| 欧美精品国产亚洲| 禁无遮挡网站| 精品久久久久久成人av| 久久久久国产网址| 久久精品国产自在天天线| a级毛片免费高清观看在线播放| 亚洲最大成人手机在线| 免费黄网站久久成人精品| 国产成人一区二区在线| 男人舔奶头视频| 少妇的逼好多水| 久久国内精品自在自线图片| 亚洲精品一区蜜桃| 亚洲色图av天堂| 日本色播在线视频| 听说在线观看完整版免费高清| 日韩亚洲欧美综合| 久久精品国产鲁丝片午夜精品| 久久久久国产网址| 国产精品无大码| 校园人妻丝袜中文字幕| 桃色一区二区三区在线观看| 午夜视频国产福利| 成人毛片a级毛片在线播放| 美女黄网站色视频| 好男人视频免费观看在线| 亚洲国产成人一精品久久久| 一个人看视频在线观看www免费| 亚洲精品自拍成人| 久久久久久大精品| 日韩 亚洲 欧美在线| 国产淫语在线视频| 欧美精品一区二区大全| 亚洲av成人av| 久久久久网色| 亚洲av成人精品一区久久| 女人久久www免费人成看片 | 亚洲精品国产av成人精品| av线在线观看网站| 小说图片视频综合网站| 亚洲18禁久久av| 亚洲av免费高清在线观看| av黄色大香蕉| 日本黄色视频三级网站网址| 国产成年人精品一区二区| 亚洲四区av| 黄色欧美视频在线观看| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| 国产麻豆成人av免费视频| 欧美潮喷喷水| 精品人妻偷拍中文字幕| 欧美性猛交黑人性爽| 国产亚洲av嫩草精品影院| 日本一本二区三区精品| av在线蜜桃| 一边亲一边摸免费视频| 久久久国产成人免费| 中文在线观看免费www的网站| 日本免费在线观看一区| 长腿黑丝高跟| 国产真实乱freesex| 欧美高清成人免费视频www| 国产av在哪里看| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类| 国产伦一二天堂av在线观看| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆 | 麻豆成人av视频| 91aial.com中文字幕在线观看| av在线天堂中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲精华国产精华液的使用体验| 国产三级中文精品| av在线天堂中文字幕| 男人狂女人下面高潮的视频| kizo精华| 欧美精品一区二区大全| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 国产成人免费观看mmmm| 国产精品久久久久久精品电影小说 | 精品久久久久久久久av| 亚洲国产最新在线播放| 中文在线观看免费www的网站| 成年女人看的毛片在线观看| 国产成人福利小说| 国产精品久久久久久精品电影小说 | 观看美女的网站| 国产69精品久久久久777片| 久久亚洲国产成人精品v| 久久精品夜夜夜夜夜久久蜜豆| 成人无遮挡网站| 国产成人a区在线观看| 午夜日本视频在线| 亚洲aⅴ乱码一区二区在线播放| 色尼玛亚洲综合影院| 人体艺术视频欧美日本| 国产一区二区亚洲精品在线观看| 亚洲人与动物交配视频| 尾随美女入室| 九九久久精品国产亚洲av麻豆| 亚洲国产色片| 网址你懂的国产日韩在线| 国产亚洲午夜精品一区二区久久 | 日韩,欧美,国产一区二区三区 | 一级黄片播放器| 91狼人影院| 色噜噜av男人的天堂激情| 国产精品熟女久久久久浪| 天堂av国产一区二区熟女人妻| 汤姆久久久久久久影院中文字幕 | 小说图片视频综合网站| 床上黄色一级片| 久久精品夜色国产| 日本熟妇午夜| 久久久久久伊人网av| 欧美色视频一区免费| kizo精华| 婷婷六月久久综合丁香| 亚洲av免费高清在线观看| 久久这里有精品视频免费| 国产 一区精品| 一级毛片我不卡| 久久久欧美国产精品| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片我不卡| 亚洲成av人片在线播放无| av国产免费在线观看| 亚洲欧美清纯卡通| 亚洲欧美成人精品一区二区| 久久精品夜色国产| 最近的中文字幕免费完整| 一卡2卡三卡四卡精品乱码亚洲| 国产视频内射| 国产大屁股一区二区在线视频| 中文天堂在线官网| 中文字幕熟女人妻在线| 国产久久久一区二区三区| 日韩av在线免费看完整版不卡| 99久久无色码亚洲精品果冻| 麻豆一二三区av精品| 免费播放大片免费观看视频在线观看 | 精品免费久久久久久久清纯| 国产免费又黄又爽又色| 久久国产乱子免费精品| 99久国产av精品国产电影| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| 日本黄色片子视频| 高清午夜精品一区二区三区| 超碰av人人做人人爽久久| 99热这里只有是精品50| 精华霜和精华液先用哪个| 午夜精品在线福利| 久久鲁丝午夜福利片| 变态另类丝袜制服| 国产精品蜜桃在线观看| 欧美精品一区二区大全| 男女视频在线观看网站免费| 国产在线男女| 美女国产视频在线观看| 日韩一区二区三区影片| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 老师上课跳d突然被开到最大视频| 国产精品国产三级专区第一集| 国产精华一区二区三区| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 99热这里只有精品一区| 国产亚洲5aaaaa淫片| 久久国内精品自在自线图片| 少妇熟女aⅴ在线视频| 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 成人三级黄色视频| 一本一本综合久久| 伦理电影大哥的女人| or卡值多少钱| 蜜桃久久精品国产亚洲av| 亚洲精品自拍成人| 亚洲最大成人手机在线| 少妇熟女aⅴ在线视频| 国产亚洲午夜精品一区二区久久 | 日韩中字成人| 欧美xxxx性猛交bbbb| 人体艺术视频欧美日本| 嫩草影院新地址| 看片在线看免费视频| 亚洲av.av天堂| 蜜桃亚洲精品一区二区三区| 久久热精品热| 高清日韩中文字幕在线| 中文字幕av成人在线电影| 国产精品久久视频播放| 欧美高清成人免费视频www| 99热网站在线观看| 免费看av在线观看网站| 国产女主播在线喷水免费视频网站 | 在线观看66精品国产| 我要搜黄色片| 国产午夜精品一二区理论片| 国产精品久久久久久精品电影| 日本黄色片子视频| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 男女边吃奶边做爰视频| 久久人妻av系列| 3wmmmm亚洲av在线观看| 乱系列少妇在线播放| 国产午夜福利久久久久久| 久久午夜福利片| 大香蕉久久网| 久久综合国产亚洲精品| 欧美高清成人免费视频www| 床上黄色一级片| 最近最新中文字幕大全电影3| www日本黄色视频网| 三级国产精品片| 中文字幕av成人在线电影| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| 国产精品久久久久久av不卡| 国产精品99久久久久久久久| 嫩草影院精品99| 99热精品在线国产| av又黄又爽大尺度在线免费看 | 黄色一级大片看看| 69人妻影院| 国产精品乱码一区二三区的特点| 偷拍熟女少妇极品色| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 麻豆一二三区av精品| 日本猛色少妇xxxxx猛交久久| 亚洲在线自拍视频| 97超视频在线观看视频| 色尼玛亚洲综合影院| 成人国产麻豆网| 成年av动漫网址| 久久久久精品久久久久真实原创| 99久国产av精品| 亚洲成人中文字幕在线播放| 一级av片app| 哪个播放器可以免费观看大片| 成年免费大片在线观看| 蜜臀久久99精品久久宅男| 久久久久性生活片| 又粗又爽又猛毛片免费看| 亚洲国产色片| ponron亚洲| 国产在视频线精品| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 精品熟女少妇av免费看| 禁无遮挡网站| 永久网站在线| 日韩高清综合在线| 日本免费在线观看一区| 日本欧美国产在线视频| 麻豆久久精品国产亚洲av| 久久国内精品自在自线图片| 国产极品精品免费视频能看的| 国产亚洲av嫩草精品影院| 在线天堂最新版资源| 99久国产av精品国产电影| av.在线天堂| 精品一区二区三区视频在线| 国产女主播在线喷水免费视频网站 | 男女下面进入的视频免费午夜| 国产精品蜜桃在线观看| 少妇丰满av| 国产久久久一区二区三区| 七月丁香在线播放| 亚洲国产精品久久男人天堂| 亚洲怡红院男人天堂| 九九爱精品视频在线观看| 高清日韩中文字幕在线| 一级爰片在线观看| 国产一区二区亚洲精品在线观看| 18+在线观看网站| 在线观看美女被高潮喷水网站| 天天一区二区日本电影三级| 69av精品久久久久久| 一级黄色大片毛片| 春色校园在线视频观看| 国产一级毛片七仙女欲春2| 国产淫片久久久久久久久| 在线观看av片永久免费下载| 秋霞在线观看毛片| 成人三级黄色视频| 蜜桃久久精品国产亚洲av| 色吧在线观看| 国产精品电影一区二区三区|