• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于5-(4-羥基吡啶基甲基)間苯二甲酸配體的兩種Zn(Ⅱ)的配位聚合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    2016-12-15 07:43:20李付安徐伏楊維春李松田
    無機(jī)化學(xué)學(xué)報 2016年9期
    關(guān)鍵詞:間苯二甲酸吡啶基平頂山

    李付安 徐伏 楊維春 李松田

    基于5-(4-羥基吡啶基甲基)間苯二甲酸配體的兩種Zn(Ⅱ)的配位聚合物的合成、結(jié)構(gòu)和熒光性質(zhì)

    李付安 徐伏 楊維春*李松田

    (平頂山學(xué)院化學(xué)與環(huán)境工程學(xué)院,平頂山467000)

    采用水熱合成的方法,在以5-(4-羥基吡啶基甲基)間苯二甲酸(H2L)作主配體、4,4′-聯(lián)吡啶(4,4′-bpy)和1,2-二(4-吡啶基)乙烯(bpe)作輔配體的條件下,得到2種新穎的Zn(Ⅱ)配位聚合物{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)和{[Zn(L)(bpe)0.5]·2H2O}n(2)。配合物通過單晶X射線衍射的方法進(jìn)行了結(jié)構(gòu)分析,并進(jìn)一步通過紅外光譜(IR)、元素分析、PXRD和熱重分析(TG)的方法進(jìn)行了表征。結(jié)構(gòu)分析表明配合物1展現(xiàn)出的是一種三維三重互穿網(wǎng)絡(luò);聚合物2為二維雙層結(jié)構(gòu),并進(jìn)一步組合成了三重平行互穿的2D→3D的空間網(wǎng)絡(luò)。此外,研究了配合物的熒光性質(zhì)。

    5-(4-羥基吡啶基甲基)間苯二甲酸;聚合物;鋅;互穿網(wǎng)絡(luò)

    In the past decades,the construction of novel coordination polymers has attracted the interest of chemist communities in the field of supramolecular chemistry and crystal engineering due to their novel architectures as well as potential applications[1-11].The self-assembly processes of coordination polymers can be directed by several factors:the coordination geometry of metal ions,the structural characteristics of ligands,the solvent system,and so on[12-16],among which the rational design and reasonable use of the characteristic ligand are very important in the construction ofthe desired coordination polymers[17-20].

    It is well-known that organic aromatic polycarboxylate ligands are important multidentate O-donor ligands which have been concerned much in recent years because of their pluridentated and excellent coordinated ability.Up to now,coordination polymers with unusual structures and distinctive properties have been extensively assembled by combining organic aromatic polycarboxylate ligands and metalions[21-23].Recently,Sun etal.have introduced a versatile ligand,3-(4-hydroxypyridinium-1-yl) phthalic acid,and its corresponding coordination polymers with helical subunits[24-25].We chose 5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid(H2L)as a building block for the following reasons:(1)H2L possesses a flexible-CH2-spacer between the phenyl ring and pyridine ring,which makes the pyridine ring rotate freely to meet the requirements for coordination; (2)the pyridine ring and phenyl ring are twisted around the-CH2-spacer,and the skew coordination orientation of the carboxyl groups provide the potential of helices formation;(3)the functional hydroxyl groups of this ligand can actnotonly as coordination sites,butalso as side arms of interdigital architecture in incoordination mode.

    To the bestof our knowledge,the architectures of coordination polymers constructed from H2L have not been investigated.In this work,by using ligand H2Land N-donor ancillary ligands,two coordination polymers, {[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1),and{[Zn(L)(bpe)0.5]· 2H2O}n(2),were prepared by hydrothermal methods. Theirstructures have been determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra(IR),elementalanalyses,powder X-ray diffraction(PXRD),and thermogravimetric(TG) analyses.Their crystal structures and the systematic investigation of the effects of H2L ligand and N-donor ancillary co-ligands on the ultimate frameworks are discussed in detail.Furthermore,their fluorescence properties have also been investigated in detail.

    Scheme 1 Coordination mode of the ligand H2L found in compounds 1 and 2

    1 Experimental

    1.1 Materials and physical measurement

    All reagents and solvents employed in the presentwork were of analytical grade as obtained from commercial sources without further purification.H2L was synthesized according to the literature[26]. Elemental analysis for C,H,and N was performed on a Perkin-Elmer 240 elemental analyzer.The FTIR spectra were recorded from KBr pellets in the range from 4 000 to 400 cm-1on a Nicolet NEXUS 470-FTIR spectrometer.Thermal analysis was performed on a SDT 2960 thermal analyzer from room temperature to 800℃with a heating rate of10℃·min-1under nitrogen flow.Powder X-ray diffraction(PXRD) for compounds 1~2 were measured at293 K on a Rigaku D/max-3B diffractometer equipped with Cu Kα(λ= 0.154 06 nm)radiation(45 kV,200 mA).The crushed single crystalline powder samples were prepared by crushing the crystals and the 2θscanning angle range wasfrom 5°to 50°with a step of0.1°·s-1.Luminescence spectra forthe solid samples were recorded on a Hitachi 850 fluorescence spectrophotometer.

    1.2 Syntheses of the complexes

    1.2.1 Synthesis of{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)

    Complex 1 was synthesized hydrothermally in a 30 mL Teflon-lined autoclave by heating a mixture of 4,4′-bpy(0.007 8 g,0.05 mmol),Zn(OAc)2·2H2O (0.022 g,0.1 mmol),H2L(0.016 8 g,0.05 mmol),and LiOH(0.004 2 g,0.1 mmol)at 160℃in 6 mL H2O for three days.Colorless block-wise crystals of 1 were obtained in 80%yield based on Zn(OAc)2·2H2O. Anal.Calcd.for C19H17N2O7Zn(%):C 50.63,H 3.80, N 6.22;Found(%):C 50.71,H 3.79,N 6.17;IR(KBr, cm-1):3 501(s,br),3 421(s),1 636(s),1 614(s),1 583 (m),1 521(s),1 432(m),1 356(s),1 229(w),1 154(s), 1 066(m),1 029(w),845(w),769(w),723(w).

    1.2.2 Synthesis of{[Zn(L)(bpe)0.5]·2H2O}n(2)

    The procedure issimilarto the synthesisof1 except thatbpe wasused instead of4,4′-bpy.Colorless crystals of 2 were obtained in 57%yield based on Zn(OAc)2· 2H2O.Anal.Calcd.for C20H17N2O6.5Zn(%):C 52.83,H 3.77,N 6.16;Found(%):C 52.85,H 3.72,N,6.19;IR (KBr,cm-1):3 410(s,br),3 053(m),1 637(s),1 614(s), 1 581(m),1 533(s),1 431(w),1 355(s),1 239(w),1 178 (m),1 060(w),1 029(w),850(m),770(w),732(w).

    1.3 Crystallographic data collection and structure determination

    Single-crystal X-ray diffraction data of complexes 1~2 were collected on a Bruker SMART APEX CCD diffractometer[27]equipped with graphite monochromatized Mo Kαradiation(λ=0.071 073 nm)at room temperature using theφ-ωscan technique.Empirical absorption corrections were applied to the intensities using the SADABS program[28].The structures were solved with directmethods using the program SHELXS-97[29]and refined anisotropically with the program SHELXL-97[30]using full matrix least-squares procedures.All nonhydrogen atoms were refined anisotropically.The hydrogen atoms of the coordination water molecules,and ligands were included in the structure factor calculation at idealized positions by using a riding model and refined isotropically.The hydrogen atoms ofthe solventwater molecules were located from the difference Fourier maps,then restrained at fixed positions and refined isotropically.Analytical expressions of neutral atom scattering factors were employed,and anomalous dispersion corrections were incorporated.The crystallographic data for 1 and 2 are summarized in Table 1.Selected bond lengths and angles are given in Table 2.

    CCDC:908520,1;908521,2.

    Table 1 Crystallographic data and structure refinement for compounds 1 and 2

    Table 2 Selected bond lengths(nm)and bond angles(°)for compounds 1 and 2

    Continued Table 1

    Fig.1(a)Metal coordination and atom labeling in compound 1;(b)Two types of helical chains in compound 1;(c)Two types of 2D helical layers(left and right)and 3D framework of 1 with helical layers pillared by 4,4′-bpy ligands in ABBA queues(middle);(d)Single 3D topology framework;(e)Schematic representation of the 3-fold interpenetrated topology nets for 1

    2 Results and discussion

    2.1 Crystal structure of{[Zn(L)(4,4′-bpy)0.5]· 2H2O}n(1)

    A single-crystal X-ray diffraction analysis reveals that compound 1 crystallizes in monoclinic,space group P21/c,and has a 3-fold interpenetrating 3D framework.The asymmetric unit contains one Zn(Ⅱ)ion,one L2-ligand,half 4,4′-bpy,and two free water molecules(Fig.1a).The Zn(Ⅱ)center is located in a distorted tetrahedral geometry,which is shaped by two oxygen atoms from carboxyl group of two different L2-anions,one hydroxyl oxygen atom from another L2-anion,and one nitrogen atom from 4,4′-bpy.As for L2-anion,L2-employs a twisted conformation,and the dihedral angle between pyridine ring and the phenyl ring is 89.6°.Two carboxylate groups have a dihedral angle of 14.1°and 16.6°towards the plane of the corresponding linking phenyl rings,respectively.The L2-anion links three Zn(Ⅱ)ions in theμ3-bridging mode with both carboxylate groups inμ2-η1:η1coordination modes and the hydroxyl group adopting monodentate coordination mode(Scheme 1).

    In 1,two type of helical chains have been observed.The screw axes of these helices are all parallel to the b axis,and the pitch is 1.447 8 nm. Helical chains with opposite rotation are connected to form chiral helical layers A and B(Fig.1c,left and right).Along the c axis,the chirality of each type of helical chain in one layer(A or B)is opposite to that of the nearest ones of the same type in another layer (B or A)(Fig.2a).Thus,the helical layers are pillared by 4,4′-bpy in ABBA queues to give rise to a 3D racemic framework(Fig.1c,middle).

    Fig.2(a)Interesting arrangement of two types of helical chains in polymer 1;(b)Hydrogen bonding interactions in polymer 1

    In order to better understand the final architecture,Zn(Ⅱ)centers can to be viewed as 4-connected nodes,L2-anions can be viewed as 3-connected nodes,and 4,4′-bpy can be considered as linkers,so the overall structure can be described as a 3D(3,4)-connected framework with a Schl?fli symbol of{63}{65.8}(Fig.1d).Moreover,there are large rectangular windows(1.076 nm×1.121 nm)in 1.Thus, in order to minimize the big void cavities and stabilize the framework,the potential voids cavities are filled by the other two identical networks,resulting in a 3-fold interpenetrating network(Fig.1e).The large void space in a single net is mainly occupied by interpenetration,leaving small and irregular channels along the b-axis direction,in which solvent water molecules are enclosed.Thus,the lattice water molecules embed themselves in the void space by forming hydrogen bonding interactions together with the coordinated water molecule,carboxylate groups and uncoordinated hydroxyl groups to give the additionalstability(Table 3,Fig.2b).

    2.2 CrystalStructureof{[Zn(L)(bpe)0.5]·2H2O}n(2)

    Compound 2 exhibits a 3-fold parallel interpenetrated 2D→3D network motif.As shown in Fig.3a,the asymmetric unit of 2 contains one Zn(Ⅱ)center,half bpe,one L2-anion,and two free water molecules.The Zn(Ⅱ)center displays a distorted tetrahedralgeometry:three O atoms from three different L2-anions and one N atom from bpe.The Zn1-O bond lengths range from 0.197 5(2)to 0.199 4(2)nm,and the Zn1-N bond distance is 0.204 2(2)nm.The L2-anion employsa twisted conformation,and the dihedralanglebetween pyridine ring and the phenyl ring is 83.2°, two carboxylate groups have a dihedral angle of 3.1° and 14.0°towards the plane of the corresponding linking phenylrings,respectively.

    Table 3 Geometrical parameters of hydrogen bonds in compounds 1~2

    Fig.3(a)Metal coordination and atom labeling in compound 2;(b)2D monolayer in compound 2;(c)Double layer in compound 2; (d)2D→3D interpenetration in compound 2

    In 2,each L2-acts asμ3-bridge connecting three Zn atoms via both carboxylate groups inμ2-η1:η1coordinated modes and the hydroxyl group in monodentate mode(Scheme 1)to form an undulate monolayer(Zn-L1)nparallel to the bc plane.The bpe ligands link adjacent monolayers(Zn-L1)nto result in an interesting 2D double-layered sheet with the distance of 1.345 5 nm between two layers(Fig.3c). The open space within each double-layered sheet leads to the formation of catenation between adjacent sheets,and thus,each double-layered sheet is bicatenated by two other sheets(one from upper and the other from lower layer)in a parallel fashion to minimize the large void cavities and stabilize thenetwork to produce a 2D→3D entanglement(Fig.3d). In addition,hydrogen bonding interactions are also observed in 2(Table 3).Thus,the interpenetrating pieces are stabilized by hydrogen bonding interactions (Fig.4).

    Fig.4 3D supramolecular structure of polymer 2

    2.3 Thermal analyses and PXRD patterns

    To characterize the compounds in terms of thermal stability,thermal gravimetric analysis(TGA) of compounds 1~2 were carried out in nitrogen atmosphere(Fig.5).For compound 1,a gradual weight loss between 30 and 379℃is attributed to the release of two lattice water molecules(Obsd.7.39%; Calcd.7.99%).Then the host framework started to decompose.The TG curve of compound 2 displays the first weight loss of 7.96%(Calcd.7.92%)from 30 to 384℃,corresponding to the loss of two lattice water molecules per formula unit.The further weight losses represented the decomposition of the compound 2.

    X-ray powder diffraction(PXRD)was used to check the purity of compounds 1~2.As shown in Fig. 6,The experimental PXRD patterns correspond well with the results simulated from the single crystal data, indicating the high purity of the synthesized samples and single phases of compounds 1~2 are formed.

    Fig.5 TG curves for compounds 1 and 2

    Fig.6 Simulated and experimental PXRD patterns for compounds 1(a)and 2(b)

    2.4 Photochemical Properties

    Luminescent compounds composed of d10metal centers and organic ligands are ofgreat interestdue to theirpotentialapplications,such as in chemicalsensors, photochemistry,electroluminescent display[31-36].The solid-state emission spectra of compounds 1~2 and H2L ligand used in this work have been investigated at room temperature.The emission spectra of H2L andcompounds 1~2 are shown in Fig.7.Here,intense bands were observed at 412 nm(λex=317 nm)for H2L, 433 nm(λex=315 nm)for compound 1,400 nm(λex= 343 nm)for compound 2.The emission bands of compound 1 are similar to that of the free H2L,which can be probably assigned to intraligand fluorescent emission[37-38].Compound 2 results in a slight blue shift of 12 nm.This indicates that the emission of compound 2 may be attributed to metal-ligand coordination interactions.Compared to the free ligand, the different locations and profiles of their emission/ excitation peaks of compounds 1~2 probably due to the coordination effectively increased the rigidity of the ligands and reduced the loss of energy by radiationless decay.

    Fig.7 Solid-state emission spectra of free H2L and compounds 1 and 2 at room temperature

    3 Conclusions

    In conclusion,two new coordination polymers based on H2L with the help of N-donor ligands have been hydrothermally synthesized.The two compounds show different three-dimensional architectures.First, helical segments are found in compound 1 due to the flexible H2L with the pyridine ring and phenyl ring twisting around the-CH2-spacer.Second,compound 2 has 2D double-layer structure and exhibits a 3-fold parallel interpenetrated 2D→3D network motif.The result reveals that the N-donor ancillary co-ligands have great inuence on the structures of the complexes due to their different structures and exibility. Subsequent studies will be focused on the structures and properties of the novel functional coordination polymers constructed by the present ligand with a wide range of rare earth metals.Further investigations on this domain are underway.

    [1]Maji T K,Mostafa G,Chang H C,et al.Chem.Commun., 2005,24:2436-2438

    [2]Armentano D,Mastropietro T F,Julve M,et al.J.Am. Chem.Soc.,2007,129:2740-2741

    [3]Qin L,Hu J S,Huang L F,et al.Cryst.Growth Des., 2010,10:4176-4183

    [4]Leong W L,Vittal J J.Chem.Rev.,2011,111:688-764

    [5]Wang R H,Zhou Y F,Sun Y Q,et al.Cryst.Growth Des., 2005,5:251-256

    [6]Zheng X L,Liu Y,Pan M,et al.Angew.Chem.,Int.Ed., 2007,46:7399-7403

    [7]Pan Z R,Zheng H G,Wang T W,et al.Inorg.Chem., 2008,47:9528-9536

    [8]Lu Z Z,Zhang R,Li Y Z,et al.J.Am.Chem.Soc., 2011,133:4172-4174

    [9]Cui H,Zhou B,Long L S,et al.Angew.Chem.Int.Ed., 2008,47:3376-3380

    [10]Li J R,Kuppler R J,Zhou H C.Chem.Soc.Rev.,2009,38: 1477-1504

    [11]Seidel C,Lorbeer C,Cybinska J,et al.Inorg.Chem.,2012, 51:4679-4688

    [12]Seidel C,Ahlers R,Ruschewitz U.Cryst.Growth Des., 2011,11:5053-5063

    [13]Mezei G,Baran P,Raptis R G.Angew.Chem.Int.Ed., 2004,43:574-577

    [14]Sun D F,Ke Y X,Mattox T M,et al.Chem.Commun., 2005,5447-5449

    [15]Zheng B,Dong H,Bai J F,et al.J.Am.Chem.Soc.,2008, 130:7778-7779

    [16]Li C P,Du M.Chem.Commun.,2011,47:5958-5972

    [17]Du M,Jiang X J,Zhao X J.Inorg.Chem.,2007,46:3984 -3995

    [18]Sarma D,Ramanujachary K V,Stock N,et al.Cryst.Growth Des.,2011,11:1357-1369

    [19]Ritchie C,Baslon V,Moore E G,et al.Inorg.Chem., 2012,51:1142-1151

    [20]Liu F J,Hao H J,Sun C J,et al.Cryst.Growth Des., 2012,12:2004-2012

    [21]Ye B H,Tong M L,Chen X M.Coord.Chem.Rev.,2005,249:545-565

    [22]Mihalcea I,Henry N,Clavier N,et al.Inorg.Chem., 2011,50:6243-6249

    [23]Hijikata Y,Horike S,Tanaka D,et al.Chem.Commun., 2011,47:7632-7634

    [24]Sun X L,Song W C,Zang S Q,et al.Chem.Commun., 2012,48:2113-2115

    [25]Sun X L,Zang S Q,Song W C,et al.Cryst.Growth Des., 2012,12:4431-4440

    [26]Yang Q Y,Li K,Luo J,et al.Chem.Commun.,2011,47: 4234-4236

    [27]SMART and SAINT,Area Detector Control and Integration Software,Siemens Analytical X-Ray Systems Inc.,Madison, WI(US),1996.

    [28]Sheldrick G M.SADABS,Ver2.05,University of G?ttingen, Germany,1997.

    [29]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Germany,1997.

    [30]Sheldrick G M.Acta Crystallogr.Sect.A,2008,A64: 112.

    [31]Wang S N,Xing H,Li Y Z,et al.Eur.J.Inorg.Chem., 2006,3041-3053

    [32]Gong Y Q,Wang R H,Yuan D Q,et al.Polyhedron, 2007,26:5309-5316

    [33]He Y H,Feng Y L,Lan Y Z,et al.Cryst.Growth Des., 2008,8:3586-3594

    [34]Das P,Bhattacharya S,Mishra S,et al.Chem Commun., 2011,47:8118-8120

    [35]Chang Z,Zhang A S,Hu T L,et al.Cryst.Growth Des., 2009,9:4840-4846

    [36]Yao X Q,Cao D P,Hu J S,et al.Cryst.Growth Des., 2011,11:231-239

    [37]Guo J,Ma J F,Liu B,et al.Cryst.Growth Des.,2011,11: 3609-3621

    [38]Yang J X,Zhang X,Cheng J K,et al.Cryst.Growth Des., 2012,12:333-345

    Syntheses,Structures,and Photoluminescent Properties of Two Zn(Ⅱ)Coordination Polymers Based on 5-(4-Hydroxypyridinium-1-ylmethyl)Isophthalic Acid

    LI Fu-An XU Fu YANG Wei-Chun*LI Song-Tian
    (College of Chemistry and Environmental Engineering,Pingdingshan University,Pingdingshan,Henan 467000,China)

    Two novelcoordination polymers,{[Zn(L)(4,4′-bpy)0.5]·2H2O}n(1)and{[Zn(L)(bpe)0.5]·2H2O}n(2)(H2L=5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid,4,4′-bpy=4,4′-bipyridine,bpe=1,2-bis(4-pyridyl)ethylene),have been hydrothermally synthesized.Both compound 1 and 2 were structurally characterized by X-ray diffraction analyses,infrared spectra(IR),elemental analyses,powder X-ray diffraction(PXRD),and thermogravimetric(TG) analyses.Compound 1 exhibits a three-dimensional(3D)3-fold interpenetrating framework.Compound 2 has the similar 2D double-layer structure and exhibits a 3-fold parallel interpenetrated 2D→3D network motif. Meanwhile,their luminescentproperties have also been investigated in detail.CCDC:908520,1;908521,2.

    5-(4-hydroxypyridinium-1-ylmethyl)isophthalic acid;polymer;zinc;interpenetrated network

    O614.24+1

    A

    1001-4861(2016)09-1683-09

    10.11862/CJIC.2016.216

    2016-04-14。收修改稿日期:2016-08-06。

    河南省教育廳(No.15A150068)和平頂山學(xué)院應(yīng)用化學(xué)重點實驗室(No.201201)資助項目。

    *通信聯(lián)系人。E-mail:lifuanpds@163.com

    猜你喜歡
    間苯二甲酸吡啶基平頂山
    平頂山學(xué)院作品精選
    聲屏世界(2023年8期)2023-07-07 03:34:24
    熱烈祝賀《平頂山日報》復(fù)刊40周年(1982-2022)
    平頂山詩群
    天津詩人(2019年4期)2019-11-27 05:06:50
    平頂山:第四支紅九軍誕生地
    間苯二甲酸二烯丙酯合成方法
    基于5,5'-亞甲基二間苯二甲酸及1,2-雙(咪唑基-1-甲基)苯的Zn2+、Co2+配位聚合物的合成及晶體結(jié)構(gòu)
    一個基于β-[Mo8O26]和5-(3-吡啶基)-四唑橋連的二核鎳配合物構(gòu)筑的無機(jī)-有機(jī)雜化化合物
    5-4-(1H-四唑基)苯氧基-間苯二甲酸構(gòu)筑的鎘配位聚合物的合成、晶體結(jié)構(gòu)及熒光性質(zhì)
    1,3-二吡啶基苯和4,4′-二羧基二苯砜構(gòu)筑的鈷(Ⅱ)配合物合成、結(jié)構(gòu)和性質(zhì)
    2,4-二氨基-6-(2'-吡啶基)均三嗪銅(Ⅱ)配合物的結(jié)構(gòu)、抗菌活性及DNA作用
    超碰97精品在线观看| 极品少妇高潮喷水抽搐| 18禁动态无遮挡网站| 免费看av在线观看网站| 高清在线视频一区二区三区| 伊人久久国产一区二区| 免费在线观看完整版高清| 日韩一本色道免费dvd| 亚洲av成人精品一二三区| 久久ye,这里只有精品| 国产精品熟女久久久久浪| 18禁观看日本| 亚洲精品美女久久av网站| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| 久久久久精品性色| 国产成人系列免费观看| 高清黄色对白视频在线免费看| 国产成人91sexporn| 一二三四中文在线观看免费高清| 嫩草影视91久久| 中文字幕人妻丝袜一区二区 | av天堂久久9| 成年人午夜在线观看视频| 一个人免费看片子| 高清黄色对白视频在线免费看| 国产成人欧美在线观看 | 亚洲伊人色综图| 国产在线免费精品| 性少妇av在线| 夜夜骑夜夜射夜夜干| 99久久人妻综合| 国产伦理片在线播放av一区| 欧美人与性动交α欧美精品济南到| 精品第一国产精品| 精品电影一区二区在线| 久久久久久国产a免费观看| 给我免费播放毛片高清在线观看| 伦理电影免费视频| 不卡一级毛片| 啦啦啦 在线观看视频| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 亚洲成人久久性| 国产精品免费一区二区三区在线| tocl精华| 免费在线观看日本一区| 久久婷婷成人综合色麻豆| 欧美黄色片欧美黄色片| 可以在线观看的亚洲视频| 免费在线观看日本一区| 12—13女人毛片做爰片一| 国产91精品成人一区二区三区| 一级,二级,三级黄色视频| 国产成人啪精品午夜网站| 老熟妇乱子伦视频在线观看| 精品久久久久久,| 亚洲九九香蕉| 欧美丝袜亚洲另类 | 亚洲自偷自拍图片 自拍| 亚洲色图av天堂| 亚洲欧美激情在线| 欧美日韩瑟瑟在线播放| 国产成人欧美| 18禁观看日本| 亚洲国产精品999在线| 中文字幕人成人乱码亚洲影| 国产精品久久久人人做人人爽| 国产成年人精品一区二区| 十八禁网站免费在线| 日本精品一区二区三区蜜桃| 国产一区二区在线av高清观看| 日韩视频一区二区在线观看| 久久亚洲真实| 久99久视频精品免费| 脱女人内裤的视频| 午夜福利18| 俄罗斯特黄特色一大片| 精品欧美一区二区三区在线| 欧美不卡视频在线免费观看 | 91字幕亚洲| 深夜精品福利| 国产高清有码在线观看视频 | 老司机深夜福利视频在线观看| 精品久久久精品久久久| 啦啦啦免费观看视频1| 少妇裸体淫交视频免费看高清 | www.熟女人妻精品国产| 国产精品一区二区免费欧美| 一本综合久久免费| 精品少妇一区二区三区视频日本电影| 国产精品一区二区精品视频观看| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区三区在线| 久久精品国产清高在天天线| 国产av精品麻豆| 青草久久国产| 国产97色在线日韩免费| 日韩大码丰满熟妇| 久久性视频一级片| 99久久综合精品五月天人人| 丁香六月欧美| 久久国产亚洲av麻豆专区| 久久精品亚洲精品国产色婷小说| 一二三四在线观看免费中文在| 免费在线观看影片大全网站| 久久久国产精品麻豆| 69精品国产乱码久久久| 最新在线观看一区二区三区| 夜夜躁狠狠躁天天躁| 国产精品电影一区二区三区| 色综合婷婷激情| 精品少妇一区二区三区视频日本电影| ponron亚洲| 国产xxxxx性猛交| 电影成人av| 欧美大码av| 999久久久精品免费观看国产| 国产一区二区三区综合在线观看| 狂野欧美激情性xxxx| 又黄又爽又免费观看的视频| 亚洲成av片中文字幕在线观看| 久久香蕉激情| 亚洲国产日韩欧美精品在线观看 | 91大片在线观看| 久久精品国产综合久久久| 一级黄色大片毛片| 精品人妻1区二区| 亚洲男人天堂网一区| 日韩三级视频一区二区三区| 亚洲成av片中文字幕在线观看| 丝袜美腿诱惑在线| 可以在线观看的亚洲视频| 亚洲国产中文字幕在线视频| 在线国产一区二区在线| 精品久久久久久,| 最近最新免费中文字幕在线| 伦理电影免费视频| 变态另类成人亚洲欧美熟女 | 在线观看舔阴道视频| 国产精品98久久久久久宅男小说| 女人高潮潮喷娇喘18禁视频| 久久久久久国产a免费观看| 久久性视频一级片| www.熟女人妻精品国产| 日韩精品中文字幕看吧| 无遮挡黄片免费观看| 90打野战视频偷拍视频| 一本久久中文字幕| 老司机午夜福利在线观看视频| 麻豆一二三区av精品| 久久国产精品影院| 91成人精品电影| 99在线人妻在线中文字幕| 最近最新免费中文字幕在线| 国产区一区二久久| 正在播放国产对白刺激| 成人av一区二区三区在线看| av超薄肉色丝袜交足视频| 天堂影院成人在线观看| 777久久人妻少妇嫩草av网站| 亚洲自拍偷在线| 美女高潮到喷水免费观看| 亚洲av熟女| 97超级碰碰碰精品色视频在线观看| 少妇裸体淫交视频免费看高清 | 日韩视频一区二区在线观看| 亚洲欧洲精品一区二区精品久久久| 国产成人欧美| 亚洲七黄色美女视频| 久久午夜综合久久蜜桃| www.自偷自拍.com| 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 国产xxxxx性猛交| 久久亚洲真实| 色综合欧美亚洲国产小说| 香蕉久久夜色| 午夜影院日韩av| 一边摸一边抽搐一进一小说| 亚洲av成人一区二区三| 久久婷婷人人爽人人干人人爱 | 美女午夜性视频免费| 午夜免费激情av| 黑人操中国人逼视频| 黄色女人牲交| 国产97色在线日韩免费| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 三级毛片av免费| 窝窝影院91人妻| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久免费视频| 一区福利在线观看| 久久这里只有精品19| 欧美不卡视频在线免费观看 | 久热这里只有精品99| 亚洲七黄色美女视频| 国产单亲对白刺激| 亚洲欧美精品综合一区二区三区| 女生性感内裤真人,穿戴方法视频| 成人三级做爰电影| 亚洲 国产 在线| av网站免费在线观看视频| 九色国产91popny在线| 久久香蕉精品热| 亚洲av美国av| 91麻豆av在线| 亚洲精品国产区一区二| 欧美老熟妇乱子伦牲交| 男女下面插进去视频免费观看| 美女扒开内裤让男人捅视频| 老熟妇乱子伦视频在线观看| 久久久久久大精品| 日本在线视频免费播放| 国产精品久久久av美女十八| 午夜老司机福利片| 亚洲精品一卡2卡三卡4卡5卡| 91成年电影在线观看| 国产av一区在线观看免费| 欧美+亚洲+日韩+国产| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| 90打野战视频偷拍视频| 免费观看精品视频网站| 精品国产美女av久久久久小说| 国内精品久久久久久久电影| 丝袜在线中文字幕| 在线观看午夜福利视频| 色老头精品视频在线观看| 久久久久久国产a免费观看| 色尼玛亚洲综合影院| 久久欧美精品欧美久久欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 中文亚洲av片在线观看爽| 欧美激情高清一区二区三区| 精品久久久久久久人妻蜜臀av | 国产精品亚洲av一区麻豆| 动漫黄色视频在线观看| 18美女黄网站色大片免费观看| 久久久久久久久免费视频了| 国产精品综合久久久久久久免费 | 最新美女视频免费是黄的| 色在线成人网| 亚洲人成伊人成综合网2020| 99久久久亚洲精品蜜臀av| 久久久久久久久久久久大奶| 超碰成人久久| 国内毛片毛片毛片毛片毛片| 久久国产亚洲av麻豆专区| 免费av毛片视频| 性欧美人与动物交配| 国产高清视频在线播放一区| 午夜精品在线福利| 777久久人妻少妇嫩草av网站| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图| 色哟哟哟哟哟哟| 日韩视频一区二区在线观看| 精品欧美一区二区三区在线| 亚洲av成人不卡在线观看播放网| 国产精品久久视频播放| 国产成人av激情在线播放| 99久久久亚洲精品蜜臀av| 久久香蕉国产精品| 黄色片一级片一级黄色片| 亚洲av片天天在线观看| 最好的美女福利视频网| 久久亚洲真实| 亚洲欧美日韩高清在线视频| 国产精品免费视频内射| 日本 av在线| 老鸭窝网址在线观看| 国产1区2区3区精品| 国产精品香港三级国产av潘金莲| 狂野欧美激情性xxxx| 大型黄色视频在线免费观看| 欧美人与性动交α欧美精品济南到| 一级a爱视频在线免费观看| 久久久久久国产a免费观看| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| 视频区欧美日本亚洲| 精品第一国产精品| 久久亚洲精品不卡| 欧美另类亚洲清纯唯美| 中文字幕人成人乱码亚洲影| 中出人妻视频一区二区| 波多野结衣av一区二区av| 国产极品粉嫩免费观看在线| 一进一出抽搐gif免费好疼| 18禁裸乳无遮挡免费网站照片 | 成人特级黄色片久久久久久久| 亚洲av熟女| 精品久久久精品久久久| 极品教师在线免费播放| 韩国av一区二区三区四区| 国产午夜精品久久久久久| 成人18禁高潮啪啪吃奶动态图| 日韩精品免费视频一区二区三区| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| 精品无人区乱码1区二区| 少妇粗大呻吟视频| 久久九九热精品免费| 一二三四在线观看免费中文在| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 非洲黑人性xxxx精品又粗又长| 9热在线视频观看99| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 国产三级黄色录像| 成人欧美大片| 国产一区二区三区综合在线观看| 国产一区二区三区在线臀色熟女| 丁香六月欧美| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 国产91精品成人一区二区三区| 国产成人啪精品午夜网站| 久久国产精品男人的天堂亚洲| 女人精品久久久久毛片| 无遮挡黄片免费观看| 极品人妻少妇av视频| 女人被躁到高潮嗷嗷叫费观| 麻豆国产av国片精品| 成人特级黄色片久久久久久久| 中亚洲国语对白在线视频| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 香蕉久久夜色| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av五月六月丁香网| 国产成人精品久久二区二区91| 国产精品亚洲美女久久久| 久久久精品欧美日韩精品| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 日韩大尺度精品在线看网址 | 国产亚洲精品综合一区在线观看 | 亚洲成av片中文字幕在线观看| 日韩欧美国产在线观看| 黄片小视频在线播放| 亚洲男人的天堂狠狠| 嫩草影视91久久| 久久精品91无色码中文字幕| 亚洲 欧美一区二区三区| 国产精品久久久av美女十八| 久久九九热精品免费| 在线十欧美十亚洲十日本专区| 长腿黑丝高跟| 久久久国产成人精品二区| 亚洲中文字幕日韩| av在线天堂中文字幕| 最新美女视频免费是黄的| 免费看a级黄色片| 18美女黄网站色大片免费观看| 午夜激情av网站| 一个人观看的视频www高清免费观看 | 丝袜在线中文字幕| 在线观看日韩欧美| 亚洲精品在线美女| 亚洲国产精品成人综合色| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人| 免费无遮挡裸体视频| 高清黄色对白视频在线免费看| 757午夜福利合集在线观看| 最近最新中文字幕大全免费视频| 少妇熟女aⅴ在线视频| 51午夜福利影视在线观看| 日韩国内少妇激情av| 精品国产乱码久久久久久男人| 成人永久免费在线观看视频| 国产成人精品久久二区二区91| 又黄又爽又免费观看的视频| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 色精品久久人妻99蜜桃| 黄网站色视频无遮挡免费观看| 大香蕉久久成人网| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 久久久久久免费高清国产稀缺| 香蕉国产在线看| 亚洲国产欧美日韩在线播放| 女警被强在线播放| 久久久国产欧美日韩av| 欧美一级毛片孕妇| 色综合亚洲欧美另类图片| 人妻久久中文字幕网| 久久国产乱子伦精品免费另类| 男人操女人黄网站| 一级a爱视频在线免费观看| av在线天堂中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 免费高清视频大片| 亚洲av成人一区二区三| 久久中文字幕一级| 久久久久国产精品人妻aⅴ院| 欧美在线一区亚洲| 亚洲三区欧美一区| 欧美日韩福利视频一区二区| 亚洲精品一区av在线观看| 性欧美人与动物交配| 国产真人三级小视频在线观看| 亚洲精品国产一区二区精华液| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 精品久久久精品久久久| 色播亚洲综合网| 女同久久另类99精品国产91| 久久久国产成人免费| 嫩草影视91久久| 欧美黄色淫秽网站| 国产不卡一卡二| 成人18禁在线播放| 亚洲男人天堂网一区| 国产激情欧美一区二区| 嫩草影院精品99| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 久久香蕉精品热| 久久久国产成人免费| 日韩欧美国产一区二区入口| 国产单亲对白刺激| 他把我摸到了高潮在线观看| www.www免费av| 国产成+人综合+亚洲专区| 19禁男女啪啪无遮挡网站| 国产成人精品久久二区二区免费| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| 亚洲成人精品中文字幕电影| 多毛熟女@视频| 男女床上黄色一级片免费看| netflix在线观看网站| 国产高清有码在线观看视频 | av天堂久久9| 天堂√8在线中文| 看黄色毛片网站| 18禁美女被吸乳视频| 欧美日韩精品网址| 青草久久国产| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 国产精品一区二区三区四区久久 | 亚洲欧美精品综合一区二区三区| 一区在线观看完整版| 午夜免费成人在线视频| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 精品高清国产在线一区| 99国产精品一区二区蜜桃av| 国产一级毛片七仙女欲春2 | 国产伦一二天堂av在线观看| a级毛片在线看网站| 国产成人欧美| 狂野欧美激情性xxxx| 他把我摸到了高潮在线观看| 看片在线看免费视频| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添小说| 久久香蕉国产精品| 啦啦啦观看免费观看视频高清 | 天堂影院成人在线观看| 在线观看一区二区三区| 色综合欧美亚洲国产小说| 在线视频色国产色| 亚洲成a人片在线一区二区| 久久人人97超碰香蕉20202| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区激情视频| 99riav亚洲国产免费| 国产精品1区2区在线观看.| 18禁美女被吸乳视频| 亚洲自偷自拍图片 自拍| 少妇裸体淫交视频免费看高清 | 天堂影院成人在线观看| 久久久久久大精品| 九色亚洲精品在线播放| 成在线人永久免费视频| av免费在线观看网站| 一区在线观看完整版| 精品久久久久久,| 中文字幕最新亚洲高清| 成人免费观看视频高清| 成年版毛片免费区| 久久久国产成人免费| 美女大奶头视频| 久久午夜综合久久蜜桃| 黑丝袜美女国产一区| 九色亚洲精品在线播放| 人人妻人人澡人人看| 日韩精品免费视频一区二区三区| 国产99久久九九免费精品| 国产亚洲精品久久久久5区| 午夜两性在线视频| 夜夜夜夜夜久久久久| 少妇被粗大的猛进出69影院| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 免费在线观看日本一区| 变态另类丝袜制服| 欧美最黄视频在线播放免费| 国产三级黄色录像| 色播在线永久视频| 久久人妻熟女aⅴ| 精品一区二区三区视频在线观看免费| 欧美丝袜亚洲另类 | 国产成人啪精品午夜网站| 啦啦啦 在线观看视频| 久久久久国产精品人妻aⅴ院| tocl精华| 午夜福利欧美成人| 国产精品野战在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲专区字幕在线| 一夜夜www| 欧美激情久久久久久爽电影 | 欧美乱码精品一区二区三区| 成人亚洲精品一区在线观看| 又黄又粗又硬又大视频| 一夜夜www| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 999精品在线视频| 久久香蕉激情| 神马国产精品三级电影在线观看 | 亚洲精品国产精品久久久不卡| 黄色a级毛片大全视频| 90打野战视频偷拍视频| 国产1区2区3区精品| 俄罗斯特黄特色一大片| 美女国产高潮福利片在线看| 高清毛片免费观看视频网站| 在线观看免费视频日本深夜| 国产精华一区二区三区| 精品少妇一区二区三区视频日本电影| 一本久久中文字幕| 妹子高潮喷水视频| 这个男人来自地球电影免费观看| 成人特级黄色片久久久久久久| av视频在线观看入口| 777久久人妻少妇嫩草av网站| 中亚洲国语对白在线视频| 亚洲欧美激情在线| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三| 香蕉久久夜色| 男人操女人黄网站| 日韩精品免费视频一区二区三区| 中文字幕高清在线视频| 久久久久九九精品影院| 久久久国产欧美日韩av| 久久青草综合色| 国产精品久久久久久人妻精品电影| 成人国产一区最新在线观看| 午夜久久久久精精品| 午夜亚洲福利在线播放| 老司机靠b影院| 法律面前人人平等表现在哪些方面| 国产成人精品在线电影| 夜夜看夜夜爽夜夜摸| 国产精品秋霞免费鲁丝片| 国产av在哪里看| 亚洲avbb在线观看| 黄色女人牲交| 国产精品一区二区免费欧美| 少妇裸体淫交视频免费看高清 | 久久精品成人免费网站| 在线观看www视频免费| 国产精品美女特级片免费视频播放器 | 亚洲狠狠婷婷综合久久图片| 黄网站色视频无遮挡免费观看| 少妇的丰满在线观看| 久久久水蜜桃国产精品网| 成年版毛片免费区| 亚洲成a人片在线一区二区| 国产精品一区二区三区四区久久 | 欧美一区二区精品小视频在线| 国产精品永久免费网站| 日韩欧美免费精品| 老司机靠b影院| 在线播放国产精品三级| 中文字幕另类日韩欧美亚洲嫩草| 每晚都被弄得嗷嗷叫到高潮| 在线播放国产精品三级| 制服丝袜大香蕉在线| 999久久久国产精品视频| www.熟女人妻精品国产| 久久中文字幕一级| 国产成人欧美| 午夜成年电影在线免费观看| 成人亚洲精品一区在线观看| 亚洲三区欧美一区| 99久久综合精品五月天人人| 国产三级黄色录像| 一级a爱视频在线免费观看| 亚洲免费av在线视频| 长腿黑丝高跟| 曰老女人黄片|