• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氰基橋聯(lián)的Fe(Ⅱ)-Mn(Ⅲ)雙金屬鏈的可控組裝和磁性作用的調(diào)控

    2016-12-15 07:43:12矯成奇姜文靜文雯任奕王佳良劉濤何成
    關(guān)鍵詞:劉濤雙金屬鐵磁

    矯成奇 姜文靜 文雯 任奕 王佳良 劉濤何成

    氰基橋聯(lián)的Fe(Ⅱ)-Mn(Ⅲ)雙金屬鏈的可控組裝和磁性作用的調(diào)控

    矯成奇 姜文靜 文雯 任奕 王佳良 劉濤*何成

    (大連理工大學(xué)精細(xì)化工重點(diǎn)實(shí)驗(yàn)室,大連116024)

    基于不同位阻的三氰基構(gòu)筑單元和雙齒配體,合成了2個(gè)氰基橋聯(lián)的Fe(Ⅱ)-Mn(Ⅲ)鏈狀化合物。利用不同的結(jié)構(gòu)扭曲類型調(diào)控了它們的磁性相互作用?;衔飡[Fe(Ⅲ)(Pz Tp)(CN)3][Mn(Ⅲ)(5,5′-dmbpy)2]ClO4}n(1;Pz Tp=tetrakis(pyrazolyl)borate;5,5′-dmbpy= 5,5′-dimethyl-2,2′-bipyridine)顯示為左右手螺旋鏈的一維2,2-CC鏈狀結(jié)構(gòu)并且表現(xiàn)出亞鐵磁行為?;衔飡[Fe(Ⅲ)(Tp*)(CN)3]2 [Mn(Ⅱ)(dpqc)]·CH3OH·H2O}n(2;Tp*=hydridotris(3,5-dimethylpyrazolyl)borate;dpqc=dipyrido[3,2-a:2′,3′-c]-(6,7,8,9-tetrahydro) phenazine)具有一維4,2-帶狀的雙鏈結(jié)構(gòu)并且表現(xiàn)出典型的反鐵磁性相互作用。

    氰基橋聯(lián);鏈;亞鐵磁;反鐵磁

    0 Introduction

    Cyano-bridged molecule-based magnetic materials have been a research field of rapid expansion in recent decades,because the cyano-bridge not only directs the formation of predictable structure but also can efficiently transfer magnetic interactions[1-5]. Meanwhile,since the first experimental onedimensional(1D)system displaying slow magnetic dynamics was reported by Gatteschi and co-workers[6], single-chain magnets(SCMs)have attracted increasing interest because they exhibit the same slow magnetic relaxation as well as with possibly higher magnetic transition temperature than the single-moleculemagnets(SMMs)[7-10].Therefore,the rationaldesign and synthesis of the low dimensional cyanometallate compounds with the property of the SCMs has become a particularly important subject.A rational synthetic strategy is to use the capped building blocks [Fe(L)(CN)x]y-(x=2~5),where L isa variety ofbidentate, tridentate or tetradentate ligands and so on[4,5,11-15]. Based on these building blocks,a great number of low dimensional cyanide-bridged compounds have been prepared;some of them are SCMs[16-19].Among them, the use of fac-[Fe(TpR)CN)3]-as the cyanometallate building block has attracted our attention.The above building block exhibits a stable topology,and directs the formation of predictable structure through rational design.As a consequence,its use often leads to form the tetranuclear{Fe2M2}square systems[20-22],2,2-CT (C=cis;T=trans)single chain[23-25]and double 4,2-ribbon like bimetallic chain[16,26-27](Scheme 1).Most of the reported studies focused on Fe(Ⅲ)-M(Ⅱ)(M=Fe,Co, Ni and Cu)bimetallic assemblies.However,a few Fe (Ⅲ)-Mn(Ⅱ)bimetallic systems were reported based on the fac-[Fe(TpR)CN)3]-[28-33],and they all exhibited the antiferromagnetic behavior.Numerous papers dealing with Fe(Ⅲ)-M analogous systems showed that the magnetic interactions strength is highly sensitive to metal-ligand distances,M-C≡N and M′-N≡C angles and torsion angles[24-25,34-36].In the reported Fe(Ⅲ)-Mn(Ⅱ) systems,the bending of the Mn-N≡C bond angles is larger in chain systems than that of in polynuclear systems(Table 1).Therefore,if the bending of the Mn-N≡C bond angles becomes large,the decrease of the antiferromagnetic interactions could be realized, leading to the ferromagnetic or ferrimagnetic behaviors.The introduction of steric hindrance ligands may induce the distortion of the structure,realizing the control of the magnetic interactions.Herein,we selected different bulky[Fe(PzTp)CN)3]-and[Fe(Tp*) CN)3]-as the building blocks,5,5′-dmbpy(5,5′-dmbpy= 5,5′-dimethyl-2,2′-bipyridine)and dpqc(dpqc= dipyrido[3,2-a:2′,3′-c]-(6,7,8,9-tetrahydro) phenazine)as the second ligands.Two cyano-bridged chains{[Fe(Ⅲ)(PzTp)(CN)3][Mn(Ⅱ)(5,5′-dmbpy)2]ClO4}n (1)and{[Fe(Ⅲ)(Tp*)(CN)3]2Mn(Ⅱ)(dpqc)·CH3OH·H2O}n (2)were synthesized.Compound 1 exhibits a 1D 2,2-CC helix chain structure and shows the ferrimagnetic behavior.Compound 2 has a novel 4,2-ribbon double chain structure and displays the antiferromagnetic interactions.As far as we know,such a novel architecture has never been reported previously.

    Scheme 1 Different topologies based on different synthetic strategies of cyanide building blocks fac-[Fe(TpR)CN)3]-in the Fe(Ⅱ)-Mn(Ⅲ)bimetallic chains

    Table 1 Mn-N≡C bond angles and related magnetic behaviors for Fe(Ⅱ)-Mn(Ⅲ)systems constructed from the tricyanide precursors fac-[Fe(TpR)CN)3]-

    1 Experimental

    1.1 Materials and physical measurements

    All chemical reagents were acquired from commercial sources and were used as received without further purification.Bu4N[Fe(PzTp)(CN)3],Bu4N[Fe (Tp*)(CN)3]and the ligand dpqc were synthesized according to the literature method[37-38].Elemental analyses were performed on an Elementar Vario ELⅢanalyzer.IR spectra were recorded on a Bruker AXS TENSOR-27 FTIR spectrometer with KBr pellets in the range of 400~4 000 cm-1.Magnetic measurements of the samples were performed on a Quantum Design SQUID(MPMSXL-7)magnetometer. Data were corrected for the diamagnetic contribution calculated from Pascal constants.

    1.2 Synthesis of{[Fe(Ⅱ)(PzTp)(CN)3][Mn(Ⅲ)(5,5′-dmbpy)2]ClO4}n(1)

    A 6.0 mL aqueous solution of Mn(ClO4)2·6H2O (0.03 mmol)was placed at the bottom of a test tube,a mixture of methanol and water(1∶2,V/V,6 mL)was gently layered on the top of the solution,and then a 6.0 mL methanol solution of Bu4N[Fe(PzTp)(CN)3] (0.03 mmol)and 5,5′-dmbpy(0.06 mmol)was carefully added as the third layer.After few weeks,red block crystals of 1 were collected,washed with water and dried in air.Yield:58%based on Mn(ClO4)2·6H2O. Anal.Calcd.for C39H36BClFeMnN15O4(%):C 50.05,H 3.88,N 22.45;Found(%):C 50.10,H 3.98,N 22.37. IR(KBr,cm-1):3 123(w),2 927(w),2 141(s),2 136(s), 1 610(m),1 572(m),1 504(m),1 482(s),1 436(m), 1 406(s),1 391(s),1316(s),1 241(m),1 211(s),1 106 (s),917(m),857(s),766(s),623(s),488(m),413(s).

    1.3 Synthesis of{[Fe(Ⅱ)(Tp*)(CN)3]2Mn(Ⅲ)(dpqc) ·CH3OH·H2O}n(2)

    The compound was obtained with a similar procedure to that of 1,except using Bu4N[Fe(Tp*) (CN)3](0.06 mmol)and dpqc(0.03 mmol)to replace Bu4N[Fe(PzTp)(CN)3]and 5,5′-dmbpy,respectively. The black red plate crystals of 2 were collected after several weeks,washed with water and dried in air. Yield:45%based on Mn(ClO4)2·6H2O.Anal.Calcd. for C55H64B2Fe2MnN22O2(%):C 52.70,H 5.15,N 24.58; Found(%):C 52.65,H 5.19,N 24.67.IR(KBr,cm-1): 3 416(br),2 927(m),2 859(w),2 528(m),2 142(s), 2128(w),1 632(m),1 542(s),1 452(m),1 414(m), 1 376(s),1 308(m),1 203(s),1 060(s),857(m),819 (m),789(m),736(m),691(m),638(m),570(w),435(m).

    1.4 X-ray Crystallography

    The data were collected on a Bruker Smart APEX(Ⅱ)X-diffractometer equipped with graphite monochromated Mo Kαradiation(λ=0.071 073 nm) using the SMART and SAINT[39]programs at298 K for compounds 1 and 2.Final unit cell parameters were based on allobserved reflections from integration ofall frame data.The structures were solved in the space group by direct method and refined by the full-matrix least-squares using SHELXTL-97 fitting on F2[40].For compounds 1 and 2,all non-hydrogen atoms were refined anisotropically.The hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters.Attempts to add the hydrogen atoms for the solvent water molecules in the crystal structure of compound 2 through Fourier electron density were failed.The ClO4-group in compound 1 was disordered;therefore,large thermal displacement parameters were found for these atoms and refined with partial occupancy.In compound 2,the solvent water molecule(O1W)was disordered,which was splitover two sites and refined with partial occupancy.The crystal data and details of the structure refinement of compounds 1 and 2 are summarized in Table 2. Selected bond distances and angles ofcompounds 1 and 2 are listed in Table 3.

    CCDC:1449127,1;1449128,2.

    Table 2 Crystal data and structure refinements for compounds 1 and 2

    Table 3 Selected bond lengths(nm)and angles(°)for compounds 1 and 2

    Continued Table 3

    Fig.1(a)ORTEP representation of a selected unit of compound 1 with thermal ellipsoids drawn at the 30%probability level;(b)Side view ofa 1D single-zigzag chain ofcompound 1 along the b-axis;(c)Packing structure ofthe left-or right-handed helicalchains

    2 Results and discussion

    2.1 Crystal structural description

    2.1.1 Crystal structure of 1

    Single-crystal X-ray diffraction analysis revealed that 1 crystallized in the monoclinic space group P21/c.The crystal structure consists of a cyanobridged 2,2-CC zigzag chain(Fig.1b).The 2,2-CC chain is made up of a cyano-bridged alternating[Fe(Ⅱ)(PzTp)(CN)3]--[Mn(5,5′-dmbpy)2]2+fragment.Within the chain,each[Fe(Ⅱ)(PzTp)(CN)3]-entity connects two [Mn(5,5′-dmbpy)2]2+motifs with two ofits three cyanide groups in cis positions,and each[Mn(5,5′-dmbpy)2]2+unit links two[Fe(Ⅱ)(PzTp)(CN)3]-ions in cis modes. Interestingly,such connection mode results in forming a left-and right-handed helices along the b-axis(Fig. 1c).Because both left-and right-handed helices are alternatively arranged,the whole structure is mesomeric.Each centralFe(Ⅱ)environmentcan be described as a distorted octahedron,comprising three C atoms from terminal CN ligands and three N atoms from the tridentate ligand PzTp.The Fe-Ccyanide(0.192 8(5)~0.193 4(5)nm)and Fe-NPzTp(0.196 1(4)~0.197 4(4)nm) bond lengths are in good agreement with thoseobserved previously in the related LS Fe(Ⅱ)compounds[28].The Fe-C≡N bond angles in the range of 171.4(4)°~176.6(5)°depart slightly from linearity. In the[Mn(5,5′-dmbpy)2]2+unit,each Mn(Ⅲ)ion is also octahedral coordination.Four N atoms are from two bidentate 5,5′-dmbpy ligands,and the remaining coordination sites of each six-coordinated Mn(Ⅲ)ion are occupied by the bridging cyanide building blocks. The Mn-Ncyanidedistances(0.220 2(4)and 0.223 1(4) nm)are shorter than those of the Mn-Nbpy(0.225 4(3)~0.231 8(4)nm),which are comparable with related HS Mn(Ⅲ)compounds previously reported[32].The Mn-N≡C bond angles deviate significantly from linearity with the angles of C(39)-N(14)-Mn(1)164.6(4)°and C(37)-N(15)-Mn(1)ii140.2(4)°(Symmetry codes:ii-x,y+1/2, -z+1/2).The neighboring chains are linked together through C-H…πinteractions between methyl hydrogen and pyridine rings of 5,5′-dmbpy ligands (d=0.310 4 nm),resulting in a 2D supramolecular structure(Fig.2).The shortest intrachain Fe…Mn,Fe…Fe and Mn…Mn distances are 0.491,0.741 and 1.176 nm,respectively,while the nearest interchain Fe…Mn,Fe…Fe and Mn…Mn distances are 1.078, 1.021 and 0.969 nm,respectively,indicating that the interchain magnetic interactions are very weak.

    Fig.2 2D supramolecular structure of compound 1 via the C-H…πstacking interactions

    2.1.2 Crystalstructure of 2

    Single-crystal X-ray diffraction analysis revealed that 2 crystallized in the triclinic space group P1.The crystal structure comprises a neutral cyano-bridged 2, 4-ribbon like double-zigzag chain(Fig.3b).Within the chain,the basic structural unitis a Mn(Ⅲ)2(CN)4Fe(Ⅱ)2square with each Mn(Ⅲ)shared by two adjacent squares.Within each square,the[Fe(Ⅱ)(Tp*)(CN)3]-unit binds two Mn(Ⅲ)through two of its three cyanide groups,while each[Mn(Ⅲ)(dpqc)]2+unit links four [Fe(Ⅱ)(Tp*)(CN)3]-units.The square units exhibit two orientations of their mean planes(Fe(Ⅱ)2Mn(Ⅲ)2), showing an approximately perpendicular with the dihedral angle of 83.44°owing to the steric effect of the bulky[Fe(Ⅱ)(Tp*)(CN)3]-building block,which is rare for the double-zigzag chain reported in the literature[16].Each Fe(Ⅱ)center adopts a slightly distorted octahedral configuration consisting of three cyanide carbon atoms and three nitrogen atoms of Tp*-anion.The Fe-Ccyanidebond lengths range from 0.190 5(6) to 0.193 5(6)nm,and the Fe-NTp*distances are in the range of 0.198 8(5)~0.201 7(5)nm,respectively.The Fe-C≡N linkages are closer to linearity with bond angles of 174.3(5)°~178.6(6)°.Such characteristics of the bond lengths and bond angles indicate that the iron center is low-spin Fe(Ⅱ)[28].Each Mn(Ⅲ)center is located in a distorted N6octahedral coordination environment with four nitrogen atoms from four cyanide groups and two nitrogen atoms from a dpqc ligand.Similar to 1,the Mn-Ncyanidebond distances (0.215 3(5)~0.222 8(5)nm)are also shorter than the Mn-Ndpqcbond distances(0.228 6(5)and 0.230 6(5) nm).These values are in good agreement with the cyano-bridged Fe(Ⅱ)-Mn(Ⅲ)compounds[32].The Mn-N≡C bond angles range from 156.2(5)°to 164.1(5)°.The maximum deviation of the Mn-N≡C angles from linearity is smaller than that of 1(23.8°for 2 vs 39.2° for 1).The adjacent chains are linked to form a 3D supramolecular structure with assistance of C-H…π interactions between methyl hydrogen and pyrazole rings of Tp*ligands(d=0.300 3 nm and 0.310 5 nm) (Fig.3c).The shortest intrachain Fe…Mn,Fe…Fe andMn…Mn distances are 0.512,0.734 and 0.697 nm, respectively.Whereas,the shortest interchain Fe…Mn,Fe…Fe and Mn…Mn distances are 1.198,0.872 and 1.323 nm.

    Fig.3(a)ORTEP representation of a selected unit of compound 2 with thermal ellipsoids drawn at the 30%probability level; (b)Side view of a 1D double-zigzag chain along the b-axis;(c)3D supramolecular structure of compound 2 via the C-H…πstacking interactions

    It is worth noting that the structures of compounds 1 and 2 are quite different from the reported chains structures incorporating the anionic building block,fac-[Fe(TpR)CN)3]-.Self-assembly of the anionic building block,fac-[Fe(TpR)CN)3]-and fully solvated metal ions[M(S)6]2+or partially blocked metal cationic units[M(L)x(S)y]2+(L=monodentate, bidentate or tetradentate ligand;S=solvent molecule; x+y=6)frequently results in the formation of chains with two different topologies(Scheme 1):2,2-CT chain and 2,4-ribbon chain.In the reported 2,2-CT chain (Scheme 1a),the four coordination sites of the metal(Ⅱ)ion are occupied by two trans-positioned bidentate ligands or a tetradentate Schiff base ligand,and the remaining two sites are filled by two fac-[Fe(TpR)CN)3]-units in trans positions[23-25].In the 2,4-ribbon chain (Scheme 1c),each metal(Ⅱ)center is coordinated by fourcyanide nitrogen atoms from four fac-[Fe(TpR)CN)3]-units and two monodentate ligands or two solvent molecules[26-27,30].In the present work(Scheme 1b),in the[Mn(5,5′-dmbpy)2]2+unit,each Mn(Ⅲ)ion is coordinated by two bidentate ligands in cis positions, the remaining sites are occupied by the bridging cyanide building blocks in cis positions.Such similar structure was only reported by Oshio′s group incorporating a tetradentate N-donoring ligand and the [Fe(Tp)CN)3]-building block[19].Different from the classical 2,4-ribbon chain,each Mn(Ⅲ)ion in complex 2 is coordinated by a bidentate ligand in cis position instead of two monodentate ligands in trans-axial positions(Scheme 1d).As far as we know,such a novel architecture representing a new nettopology has never been reported previously.

    2.2 Magnetic properties

    2.2.1 Magnetic properties of 1

    The magnetic susceptibility data of 1 were measured at 1 000 Oe in the temperature range of 2~300 K(Fig.4a).TheχT value is 5.10 cm3·mol-1·K at 300 K,which is slightly larger than the spin-only value of 4.75 cm3·mol-1·K expected for an uncoupled LS Fe(Ⅱ)(S=1/2)and one HS Mn(Ⅲ)(S=5/2)assuming that g=2.00.As the temperature is lowered,theχT value undergoes a gradual reduction,reaching a minimum value of 4.18 cm3·mol-1·K at 10 K.Below the temperature,it increases rapidly up to 9.41 cm3· mol-1·K at 2.0 K.The overall magnetic behaviorindicates the typicalofa ferrimagnetic situation within a chain.The magnetic susceptibility data are fitted by the Curie-Weiss law in the temperature range of 2~300 K,which give a Curie constant of 5.10 cm3· mol-1·K and a Weiss temperature of-3.64 K.The negative Weiss temperature demonstrates the antiferromagnetic coupling interactions between the paramagnetic centers.When the magnetic behavior of the 1D chain was simulated through the MAGPACK program[41],the 1D chain can be treated as a ring mode[42].Because of the presence of two different Mn-N≡C bridging angles in compound 1,2J coupling parameters were used to simulate the experimental magnetic susceptibility.Therefore,we consider the 1D zigzag chain as a 10-atom Fe5Mn5ring with the Hamiltonian H=-2J1(SFe1SMn1+SFe2SMn2+SFe3SMn3+SFe4SMn4+SFe5SMn5)-2J2(SMn1SFe2+SMn2SFe3+SMn3SFe4+SMn4SFe5+ SMn5SFe1),where SFe=1/2 and SMn=5/2.Using this model (Fig.5a),the magnetic susceptibility data were fitted by the MAGPACK program in the temperature range of 10~300 K,which gave J1=-1.68,J2=-2.42 and g= 2.07 with the agreement factor R=1.05×10-4.The coupling parameters also indicate the antiferromagnetic interactions.The field dependence of the magnetization at 1.8 K was measured in the field range from 0 to 50 kOe(Fig.4b).The magnetization value at 50 kOe is 4.48Nβ,which is a little larger than the ferrimagnetic results of 4.0Nβ calculated from MS=g(SMn-SFe)with g=2.00.The large saturation magnetization may originate from the existence of the significant orbital contributions of the LS Fe(Ⅱ)ions.

    Fig.4(a)Temperature-dependent magnetic susceptibility for compound 1;(b)Field-dependent magnetization for compound 1

    Fig.5 Schematic representations for the fitting models for 1(a)and 2(b)

    2.2.2 Magnetic properties of 2

    The temperature dependence of the magnetic susceptibility of 2 was measured in the range of 2~300 K at 1 000 Oe(Fig.6a).TheχT value per Fe2Mn unitat 300 K is 6.01 cm3·mol-1·K,which is close to but somewhat larger than the spin-only value of 5.13cm3·mol-1·K for the uncorrelated two LS Fe(Ⅱ)(S=1/2) and one HS Mn(Ⅲ)(S=5/2)with g=2.00.As the temperature is lowered,theχT value decreases very smoothly down to 5.23 cm3·mol-1·K at 60 K.Upon further lowing,theχT value abruptly decreases to reach a minimum value of0.43 cm3·mol-1·K at 2.0 K. The magnetic susceptibility data above 15 K obey the Curie-Weiss law,which give a Curie constant of 6.19 cm3·mol-1·K and a Weiss temperature of-12.00 K. To simulate the magnetic susceptibility of compound 2,the double chain also can be fitted with a 12-atom Fe8Mn4ring mode(Fig.5b).The MAGPACK program was used to fit based on the Hamiltonian H=-2J(SMn1SFe2+SMn1SFe3+SFe2SMn4+SFe3SMn4+SMn4SFe5+SMn4SFe6+SFe5SMn7+SFe6SMn7+SMn7SFe8+SMn7SFe9+SFe8SMn10+SFe9SMn10+SMn10SFe11+SMn10SFe12+SFe11SMn1+SFe12SMn1).The best-fit parameters with J=-8.61 and g=2.21 with the agreement factor R=3.00×10-5show a good curve match.The negative Weiss temperature and coupling parameters indicate the presence of intrachain antiferromagnetic coupling between neighbouring Fe(Ⅱ)and Mn(Ⅲ)ions.As shown in the Fig.6b,the fielddependent magnetization of 2 was measured at 1.8 K in the field(0~50 kOe).The magnetization increases linearly with the applied magnetic field,reaching a value of 2.48Nβat 50 kOe,which is lower than the saturation magnetization value of 3.0Nβexpected for MS=g(SMn-SFe)with g=2.00.The result further indicates that the dominant intrachain antiferromagnetic interactions were transmitted via the cyanide bridge.

    Investigation of the magnetic properties of compounds 1 and 2 indicates that they have different magnetic behaviors.Compound 1 shows ferrimagnetic behavior in low temperature region,whereas compound 2 indicates the presence of the typically antiferromagnetic coupling.The different magnetic properties of compounds 1 and 2 may result from the different bent Mn-N≡C bond angles and interchain C-H…πstacking interactions.Generally,the bending ofthe Mn-N≡C bond angles diminishes the overlap of the spin-orbit coupling and then reduces the magnetic interactions.The maximum deviation of the Mn-N≡C angles from linearity in 1(39.2°)is the largest in comparison with the reported cyano-bridged Fe(Ⅱ)-Mn(Ⅲ)compounds(Table 1),therefore,the intrachain antiferromagnetic coupling of compound 1 is weak and then it exhibits the ferrimagnetic behavior.For compound 2,the Mn-N≡C bond angles are in the reported range of 144°~170°,thus it exhibits the typically antiferromagnetic coupling.

    Fig.6(a)Temperature-dependent magnetic susceptibility for compound 2;(b)Field-dependent magnetization for compound 2

    3 Conclusions

    In summary,different steric hindrance ligands were introduced into Fe(Ⅱ)-Mn(Ⅲ)system to induce the distortion of the structures and finally realized the adjustment of the magnetic interactions.A cyanobridged 1D FeMn 2,2-CC helix single chain 1 and a 1D Fe2Mn 2,4-ribbon double chain 2 were successfully synthesized via tunable assembly,and the structure of compound 2 has never been reported in the previous literature.Investigation of the magnetic properties of compounds 1 and 2 indicates the bending of Mn-N≡Cbond angles and interchain C-H…πstacking interactions play important roles in adjusting the magnetic interactions.Therefore,compound 1 shows ferrimagnetic behavior because ofits largestbending of Mn-N≡C bond angles,whereas compound 2 exhibits the presence ofthe antiferromagnetic coupling.

    [1]Sato O,Iyoda T,Fujishima A,et al.Science,1996,272:704 -705

    [2]Shatruk M,Avendano C,Dunbar K R.Prog.Inorg.Chem., 2009,56:155-274

    [3]Ohba M,kawa H.Coord.Chem.Rev.,2000,198:313-328

    [4]Wang S,Ding X H,Li Y H,et al.Coord.Chem.Rev., 2012,256:439-464

    [5]Wang S,Ding X H,Zuo J L,et al.Coord.Chem.Rev., 2011,255:1713-1732

    [6]Caneschi A,Gatteschi D,Lalioti N,et al.Angew.Chem.Int. Ed.,2001,40:1760-1763

    [7]Coulon C,Miyasaka H,Clerac R.Struct.Bond.,2006,122: 163-206

    [8]Miyasaka H,Julve M,Yamashita M,et al.Inorg.Chem., 2009,48:3420-3437

    [9]Sun H L,Wang Z M,Gao S.Coord.Chem.Rev.,2010,254: 1081-1100

    [10]Lescou?zec R,Toma L M,Vaissermann J,et al.Coord. Chem.Rev.,2005,249:2691-2729

    [11]Nihei M,Ui M,Yokota M,et al.Angew.Chem.Int.Ed., 2005,44:6484-6487

    [12]Shen X P,Zhou H B,Yan J H,et al.Inorg.Chem.,2014, 53:116-127

    [13]Liu T,Zhang Y J,Kanegawa S,et al.J.Am.Chem.Soc., 2010,132:8250-8251

    [14]Wen H R,Wang C F,Zuo J L,et al.Inorg.Chem.,2006,45: 582-590

    [15]Kim J I,Kwak H Y,Yoon J H,et al.Inorg.Chem.,2009, 48:2956-2966

    [16]Dong D P,Liu T,Kanegawa S,et al.Angew.Chem.Int.Ed., 2012,51:5119-5123

    [17]Liu T,Zheng H,Kang S,et al.Nat.Commun.,2013,4:2826 -2833

    [18]Shao D,Zhang S L,Zhao X H,et al.Chem.Commun.,2015, 51:4360-4363

    [19]Hoshino N,Iijima F,Newton G N,et al.Nat.Chem.,2012, 4:921-926

    [20]Liu W,Wang C F,Li Y Z,et al.Inorg.Chem.,2006,45: 10058-10065

    [21]Zhang Y Z,Mallik U P,Clérac R,et al.Polyhedron,2013, 52:115-121

    [22]Zhang Y Z,Ferko P,Siretanu D,et al.J.Am.Chem.Soc., 2014,136:16854-16864

    [23]Wen H R,Tang Y Z,Liu C M,et al.Inorg.Chem.,2009,48: 10177-10185

    [24]Kwak H Y,Ryu D W,Lee J W,et al.Inorg.Chem.,2010, 49:4632-4642

    [25]Dong D P,Zhang Y J,Zheng H,et al.Dalton Trans.,2013, 42:7693-7698

    [26]Wen H R,Wang C F,Song Y,et al.Inorg.Chem.,2006,45: 8942-8949

    [27]Mitsumoto K,Ui M,Nihei M,et al.CrystEngComm, 2010,12:2697-2699

    [28]Kim J,Han S J,Cho I-K,et al.Polyhedron,2004,23:1333-1339

    [29]Li D F,Parkin S,Wang G B,et al.Inorg.Chem.,2005,44: 4903-4905

    [30]Jiang L,Feng X L,Lu T B,et al.Inorg.Chem.,2006,45: 5018-5026

    [31]Gheorghe R,Kalisz M,Clérac R,et al.Inorg.Chem., 2010,49:11045-11056

    [32]Pardo E,Verdaguer M,Herson P,et al.Inorg.Chem., 2011,50:6250-6262

    [33]ZHENG Hui(鄭慧),XU Yang(徐楊),DUAN Chun-Ying (段春迎).Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31 (7):1460-1466

    [34]Wang S,Zuo J L,Zhou H C,et al.Eur.J.Inorg.Chem., 2004,3681-3687

    [35]Ni Z H,Kou H Z,Zhang L F,et al.Angew.Chem.Int.Ed., 2005,44:7742-7745

    [36]Costa V,Lescou?zec R,Vaissermann J,et al.Inorg.Chim. Acta,2008,361:3912-3918

    [37]Gu Z G,Liu W,Yang Q F,et al.Inorg.Chem.,2007,46: 3236-3244

    [38]Ma L L,Ge K,Zhang R,et al.Eur.J.Med.Chem.,2014, 87:624-630

    [39]SMART,SAINT and XPREP,Area Detectr and Data Integration and Reduction Software,Bruker Analytical Instruments Inc.,Madison,WI,1995.

    [40]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Solution and Refinement,University of G?ttingen, Germany,1997.

    [41]Borrás-Almenar J J,Clemente-Juan J M,Coronado E,et al. MAGPACK,J.Comput.Chem.,2001,22:985-991

    [42]Kou H Z,Ni Z H,Liu C M,et al.New J.Chem.,2009,33: 2296-2299

    Tuning Assembly and Magnetic Interactions of Cyano-bridged Fe(Ⅱ)-Mn(Ⅲ)Bimetallic Chains

    JIAO Cheng-Qi JIANG Wen-Jing WEN Wen REN Yi WANG Jia-Liang LIU Tao*HE Cheng
    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Two cyano-bridged Fe(Ⅲ)-Mn(Ⅱ)chains were synthesized via using bidentate ligands and cyanometallate building blocks with different steric hindrance.The magnetic interactions were adjusted by the structural distortions of the two compounds.Compound{[Fe(Ⅲ)(PzTp)(CN)3][Mn(Ⅱ)(5,5′-dmbpy)2]ClO4}n(1;PzTp=tetrakis (pyrazolyl)borate;5,5′-dmbpy=5,5′-dimethyl-2,2′-bipyridine)shows a 1D 2,2-CC chain-like structure with a leftand right-handed helices chains and exhibits the ferrimagnetic behavior.Compound{[Fe(Ⅲ)(Tp*)(CN)3]2[Mn(Ⅱ) (dpqc)]·CH3OH·H2O}n(2;Tp*=hydridotris(3,5-dimethylpyrazolyl)borate;dpqc=dipyrido[3,2-a:2′,3′-c]-(6,7,8,9-tetrahydro)phenazine)has a novel 1D 4,2-ribbon double chain-like structure with dominant antiferromagnetic interactions.CCDC:1449127,1;1449128,2.

    cyano-bridged;chain;ferrimagnetic;antiferromagnetic

    O614.81+1;O614.7+11

    A

    1001-4861(2016)09-1637-10

    10.11862/CJIC.2016.210

    2016-05-25。收修改稿日期:2016-08-04。國(guó)家自然科學(xué)基金(No.21322103)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:liutao@dlut.edu.cn

    猜你喜歡
    劉濤雙金屬鐵磁
    助人為樂的劉濤
    助人為樂的劉濤
    關(guān)于兩類多分量海森堡鐵磁鏈模型的研究
    雙金屬支承圈擴(kuò)散焊替代技術(shù)研究
    雙金屬?gòu)?fù)合管液壓脹形機(jī)控制系統(tǒng)
    雙金屬?gòu)?fù)合管焊接方法選用
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    你好,鐵磁
    你好,鐵磁
    雙金屬?gòu)?fù)合板的拉伸回彈特性研究
    久久国产亚洲av麻豆专区| 亚洲不卡免费看| 街头女战士在线观看网站| 99国产精品免费福利视频| 中文字幕制服av| 久久97久久精品| 桃花免费在线播放| 蜜臀久久99精品久久宅男| 国产探花极品一区二区| 高清在线视频一区二区三区| 国产亚洲精品久久久com| 久久精品久久精品一区二区三区| 69精品国产乱码久久久| 最近中文字幕2019免费版| 国产精品麻豆人妻色哟哟久久| 中文在线观看免费www的网站| 高清午夜精品一区二区三区| 在线观看人妻少妇| 日韩一区二区三区影片| 好男人视频免费观看在线| 亚洲一级一片aⅴ在线观看| 日日啪夜夜撸| av天堂中文字幕网| 国产精品麻豆人妻色哟哟久久| 热re99久久精品国产66热6| 人妻人人澡人人爽人人| 少妇裸体淫交视频免费看高清| 久久久久久久久大av| 久久精品国产自在天天线| 一级毛片黄色毛片免费观看视频| 久久久精品免费免费高清| 嘟嘟电影网在线观看| 久久国产亚洲av麻豆专区| 一边亲一边摸免费视频| 黄片无遮挡物在线观看| 亚洲成人av在线免费| 午夜免费男女啪啪视频观看| 国产在线一区二区三区精| 亚洲精品成人av观看孕妇| 亚洲,一卡二卡三卡| 一级片'在线观看视频| 国产精品无大码| 国产男女超爽视频在线观看| 久热这里只有精品99| 香蕉精品网在线| 欧美日韩av久久| 91久久精品国产一区二区成人| 日韩中文字幕视频在线看片| 深夜a级毛片| 欧美最新免费一区二区三区| 成人午夜精彩视频在线观看| 亚洲人成网站在线播| 亚洲欧美中文字幕日韩二区| 国模一区二区三区四区视频| 国产精品福利在线免费观看| 肉色欧美久久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频 | 国产淫片久久久久久久久| 中文字幕精品免费在线观看视频 | av在线老鸭窝| 少妇熟女欧美另类| 一级毛片我不卡| 久久精品久久精品一区二区三区| a级毛片免费高清观看在线播放| 国产伦精品一区二区三区视频9| 午夜日本视频在线| 汤姆久久久久久久影院中文字幕| 国产女主播在线喷水免费视频网站| av天堂中文字幕网| 色94色欧美一区二区| 亚洲精华国产精华液的使用体验| 纯流量卡能插随身wifi吗| 国产片特级美女逼逼视频| 国产高清国产精品国产三级| 亚洲欧洲日产国产| 日本wwww免费看| 日本av免费视频播放| 国产黄色免费在线视频| 熟女电影av网| 大陆偷拍与自拍| 亚洲性久久影院| 国产欧美日韩精品一区二区| 乱码一卡2卡4卡精品| 国产亚洲一区二区精品| 五月天丁香电影| 国产在视频线精品| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 狂野欧美激情性bbbbbb| 精品久久久精品久久久| 亚洲欧美日韩卡通动漫| 黑人猛操日本美女一级片| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美丝袜亚洲另类| 色视频www国产| 少妇人妻精品综合一区二区| 久久久久网色| av卡一久久| 久久精品久久精品一区二区三区| 久久久久人妻精品一区果冻| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲国产欧美日韩在线播放 | 亚洲av日韩在线播放| 最近中文字幕2019免费版| 伦理电影大哥的女人| 欧美人与善性xxx| 精品少妇黑人巨大在线播放| 日韩人妻高清精品专区| 亚洲精品,欧美精品| 国产欧美另类精品又又久久亚洲欧美| 国产国拍精品亚洲av在线观看| 一级二级三级毛片免费看| 婷婷色综合www| 99热这里只有是精品在线观看| 丁香六月天网| 欧美+日韩+精品| 波野结衣二区三区在线| 在线观看av片永久免费下载| 日韩精品有码人妻一区| 最近最新中文字幕免费大全7| 2018国产大陆天天弄谢| 亚洲精品国产色婷婷电影| 高清不卡的av网站| 最近中文字幕高清免费大全6| 亚洲综合精品二区| 亚洲综合精品二区| 欧美xxxx性猛交bbbb| 熟女人妻精品中文字幕| 亚洲成人一二三区av| 成年av动漫网址| 如何舔出高潮| 黄色欧美视频在线观看| 亚洲性久久影院| 女人久久www免费人成看片| 欧美xxⅹ黑人| 在线观看av片永久免费下载| 欧美精品一区二区大全| av播播在线观看一区| 亚洲精品日韩av片在线观看| 亚洲欧洲国产日韩| 欧美精品国产亚洲| 偷拍熟女少妇极品色| 免费观看无遮挡的男女| 国产成人a∨麻豆精品| 曰老女人黄片| 秋霞在线观看毛片| 91精品国产九色| 精品人妻熟女av久视频| 啦啦啦啦在线视频资源| 亚洲精品中文字幕在线视频 | 最近2019中文字幕mv第一页| 好男人视频免费观看在线| 黑人高潮一二区| 亚州av有码| 免费大片18禁| 久久ye,这里只有精品| 欧美日韩国产mv在线观看视频| 久久国内精品自在自线图片| 亚洲av综合色区一区| 国产色爽女视频免费观看| 日本欧美视频一区| 国产午夜精品一二区理论片| 久久精品熟女亚洲av麻豆精品| 日韩熟女老妇一区二区性免费视频| 全区人妻精品视频| 日韩一本色道免费dvd| 亚洲熟女精品中文字幕| 亚洲伊人久久精品综合| 久久久久视频综合| 亚洲国产精品一区三区| 欧美日韩国产mv在线观看视频| 狂野欧美激情性bbbbbb| 涩涩av久久男人的天堂| 国产成人一区二区在线| 国产精品一区二区性色av| 亚洲美女黄色视频免费看| 色吧在线观看| 9色porny在线观看| av卡一久久| 国产片特级美女逼逼视频| 久久精品久久久久久久性| 美女视频免费永久观看网站| 国产在线男女| 看免费成人av毛片| 午夜福利在线观看免费完整高清在| 男女免费视频国产| 男女啪啪激烈高潮av片| 午夜日本视频在线| 精品一区二区免费观看| 一区二区三区精品91| 欧美精品一区二区免费开放| 日韩精品有码人妻一区| 自拍欧美九色日韩亚洲蝌蚪91 | 成年女人在线观看亚洲视频| 人人妻人人澡人人爽人人夜夜| av网站免费在线观看视频| 亚洲av成人精品一二三区| 亚洲国产欧美在线一区| 亚洲av电影在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 免费观看的影片在线观看| 欧美丝袜亚洲另类| 老女人水多毛片| 精品少妇黑人巨大在线播放| 成人毛片60女人毛片免费| 亚洲美女视频黄频| 亚洲精品国产色婷婷电影| 能在线免费看毛片的网站| 热99国产精品久久久久久7| 18禁动态无遮挡网站| 亚洲国产精品999| 精品国产一区二区三区久久久樱花| 成人毛片a级毛片在线播放| 精品国产一区二区三区久久久樱花| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 日本爱情动作片www.在线观看| 精品卡一卡二卡四卡免费| 精品一区二区三区视频在线| 蜜桃久久精品国产亚洲av| 午夜免费观看性视频| 日韩欧美 国产精品| 成人国产麻豆网| 日本猛色少妇xxxxx猛交久久| 久久97久久精品| 麻豆成人午夜福利视频| 午夜精品国产一区二区电影| 国产在线男女| 黑丝袜美女国产一区| 如日韩欧美国产精品一区二区三区 | 久久久精品94久久精品| 美女福利国产在线| 亚洲国产色片| 精品亚洲成a人片在线观看| 在线播放无遮挡| 日本免费在线观看一区| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图 | 高清av免费在线| 午夜福利视频精品| 啦啦啦啦在线视频资源| av视频免费观看在线观看| 人体艺术视频欧美日本| 观看av在线不卡| 欧美国产精品一级二级三级 | 亚洲国产日韩一区二区| 免费人妻精品一区二区三区视频| 国产男女内射视频| 最近手机中文字幕大全| 亚洲精品乱码久久久v下载方式| 久久av网站| 国内少妇人妻偷人精品xxx网站| av又黄又爽大尺度在线免费看| 啦啦啦中文免费视频观看日本| 欧美精品亚洲一区二区| 老女人水多毛片| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久久久久婷婷小说| 各种免费的搞黄视频| 一区二区三区四区激情视频| 亚洲欧美日韩另类电影网站| 免费看不卡的av| 老司机影院毛片| 成人毛片a级毛片在线播放| 亚洲av成人精品一二三区| 国产黄片视频在线免费观看| 日韩免费高清中文字幕av| 五月天丁香电影| 极品少妇高潮喷水抽搐| 国产一区二区三区综合在线观看 | 国产精品成人在线| 欧美日韩精品成人综合77777| 国国产精品蜜臀av免费| 人妻人人澡人人爽人人| 精品亚洲乱码少妇综合久久| 伦理电影大哥的女人| 观看av在线不卡| 偷拍熟女少妇极品色| 三级国产精品片| 国产精品久久久久久久久免| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 爱豆传媒免费全集在线观看| 能在线免费看毛片的网站| 精品99又大又爽又粗少妇毛片| 午夜福利,免费看| 天天躁夜夜躁狠狠久久av| 亚洲av福利一区| 色视频在线一区二区三区| 麻豆成人午夜福利视频| 精品亚洲成国产av| 色94色欧美一区二区| 精品一区二区免费观看| av在线播放精品| 午夜精品国产一区二区电影| 亚洲人成网站在线观看播放| 国产免费福利视频在线观看| 一级毛片 在线播放| 大片免费播放器 马上看| 性色av一级| 国产免费一区二区三区四区乱码| 51国产日韩欧美| 国产精品麻豆人妻色哟哟久久| 国产黄片美女视频| 少妇人妻一区二区三区视频| 精品一区在线观看国产| 2021少妇久久久久久久久久久| 91精品国产九色| 亚洲精华国产精华液的使用体验| 日韩一本色道免费dvd| 精品久久国产蜜桃| 国产精品久久久久成人av| 精品99又大又爽又粗少妇毛片| 人妻一区二区av| 亚洲av国产av综合av卡| 免费不卡的大黄色大毛片视频在线观看| 热re99久久国产66热| 亚洲国产成人一精品久久久| 亚洲性久久影院| 亚洲真实伦在线观看| 免费av中文字幕在线| 亚洲欧美清纯卡通| 97在线人人人人妻| www.av在线官网国产| 日韩欧美 国产精品| 高清av免费在线| 国产淫片久久久久久久久| 老女人水多毛片| h日本视频在线播放| 欧美日韩在线观看h| 久久久精品94久久精品| 亚洲国产色片| 秋霞伦理黄片| 天天躁夜夜躁狠狠久久av| 男女边吃奶边做爰视频| 简卡轻食公司| 亚洲丝袜综合中文字幕| 两个人的视频大全免费| 桃花免费在线播放| 99九九在线精品视频 | 熟女电影av网| 99久久精品热视频| 亚洲欧美日韩卡通动漫| 香蕉精品网在线| 国产一区二区三区综合在线观看 | 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 亚洲真实伦在线观看| 18禁在线播放成人免费| 韩国高清视频一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 777米奇影视久久| 日本欧美国产在线视频| 免费黄频网站在线观看国产| 老司机影院毛片| av福利片在线| 国产成人免费无遮挡视频| 狠狠精品人妻久久久久久综合| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 91精品国产国语对白视频| 精品亚洲成国产av| 国产成人精品无人区| 国产亚洲午夜精品一区二区久久| 人妻少妇偷人精品九色| 秋霞伦理黄片| 精品人妻偷拍中文字幕| 亚洲情色 制服丝袜| 国产中年淑女户外野战色| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 国产视频首页在线观看| 国产精品久久久久久精品古装| 久久女婷五月综合色啪小说| xxx大片免费视频| 免费黄色在线免费观看| 国产一区二区三区综合在线观看 | av女优亚洲男人天堂| 国产欧美日韩精品一区二区| av在线观看视频网站免费| av在线播放精品| 亚洲第一av免费看| 最新的欧美精品一区二区| av卡一久久| 在线观看人妻少妇| 久久人妻熟女aⅴ| 少妇丰满av| 亚洲情色 制服丝袜| 涩涩av久久男人的天堂| 午夜福利网站1000一区二区三区| 国产亚洲最大av| 91精品国产九色| 亚洲电影在线观看av| 亚洲精品色激情综合| 在线免费观看不下载黄p国产| kizo精华| 欧美bdsm另类| 高清不卡的av网站| 黄色欧美视频在线观看| 亚洲精品,欧美精品| 好男人视频免费观看在线| 国产成人精品一,二区| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 高清在线视频一区二区三区| 午夜福利网站1000一区二区三区| 偷拍熟女少妇极品色| 国产深夜福利视频在线观看| 熟女电影av网| 国产亚洲最大av| av线在线观看网站| 免费观看av网站的网址| 免费久久久久久久精品成人欧美视频 | 中文在线观看免费www的网站| 亚洲av日韩在线播放| 色哟哟·www| 在线亚洲精品国产二区图片欧美 | 久久99精品国语久久久| 激情五月婷婷亚洲| 国产精品久久久久久精品古装| 亚洲第一区二区三区不卡| 一边亲一边摸免费视频| 亚洲av综合色区一区| 女人久久www免费人成看片| 一级片'在线观看视频| 国产一级毛片在线| 中文字幕人妻丝袜制服| 少妇的逼好多水| a级毛色黄片| 久久精品国产亚洲av涩爱| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 成人美女网站在线观看视频| 一区二区三区精品91| 婷婷色综合www| 久久av网站| 各种免费的搞黄视频| 成人二区视频| 午夜福利在线观看免费完整高清在| 亚洲情色 制服丝袜| 一个人免费看片子| 国产精品福利在线免费观看| 婷婷色综合www| 人人妻人人爽人人添夜夜欢视频 | 亚洲av日韩在线播放| 国产熟女欧美一区二区| 国产亚洲最大av| 国产一区有黄有色的免费视频| 蜜臀久久99精品久久宅男| 99九九在线精品视频 | 最黄视频免费看| 国产淫片久久久久久久久| 色5月婷婷丁香| 一级片'在线观看视频| 丝袜在线中文字幕| av.在线天堂| 国产综合精华液| 欧美精品高潮呻吟av久久| 亚洲真实伦在线观看| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 日韩三级伦理在线观看| 热re99久久精品国产66热6| 一级毛片黄色毛片免费观看视频| 青春草亚洲视频在线观看| 久久久久久久久久久丰满| 免费观看在线日韩| 午夜久久久在线观看| 欧美成人午夜免费资源| 国产永久视频网站| av国产久精品久网站免费入址| 亚洲久久久国产精品| 亚洲内射少妇av| 久久精品国产亚洲av天美| 国产永久视频网站| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看 | 国产高清三级在线| 国产真实伦视频高清在线观看| 精品人妻熟女av久视频| 国产黄片美女视频| 夫妻午夜视频| 亚洲精品乱码久久久v下载方式| 欧美亚洲 丝袜 人妻 在线| 国产免费一区二区三区四区乱码| 国产成人一区二区在线| 少妇的逼好多水| 丝袜喷水一区| 视频区图区小说| 久热久热在线精品观看| 亚洲av国产av综合av卡| 高清欧美精品videossex| 三级经典国产精品| 久久综合国产亚洲精品| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 亚洲精品456在线播放app| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 国产成人精品久久久久久| 日韩免费高清中文字幕av| 伦精品一区二区三区| 成人影院久久| 国产精品国产av在线观看| 一本色道久久久久久精品综合| 内地一区二区视频在线| 国产熟女午夜一区二区三区 | 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 国产精品久久久久成人av| 国产高清不卡午夜福利| 国产精品女同一区二区软件| 国产成人午夜福利电影在线观看| 高清av免费在线| 精品一区二区三卡| 大码成人一级视频| 丁香六月天网| 精品一区二区免费观看| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 亚洲国产欧美日韩在线播放 | 狂野欧美激情性bbbbbb| 日韩欧美 国产精品| 亚洲av免费高清在线观看| av福利片在线观看| 免费观看性生交大片5| 午夜福利,免费看| 成人影院久久| 久热这里只有精品99| 亚洲国产欧美在线一区| 国产乱人偷精品视频| 一区在线观看完整版| 亚洲精品中文字幕在线视频 | 一级毛片电影观看| h视频一区二区三区| 精品久久国产蜜桃| 久久毛片免费看一区二区三区| 美女xxoo啪啪120秒动态图| 免费少妇av软件| 两个人的视频大全免费| av不卡在线播放| 日本-黄色视频高清免费观看| 精品少妇内射三级| 欧美日本中文国产一区发布| 中国国产av一级| 国产在线男女| 国产亚洲欧美精品永久| 亚洲国产毛片av蜜桃av| 国产一区亚洲一区在线观看| 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费 | 久久热精品热| 秋霞在线观看毛片| 日韩一本色道免费dvd| 狂野欧美激情性bbbbbb| 欧美精品一区二区大全| 老司机亚洲免费影院| 全区人妻精品视频| 丰满少妇做爰视频| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| 不卡视频在线观看欧美| 成人影院久久| 亚洲精品一二三| 国产视频首页在线观看| 国产精品国产av在线观看| 丰满乱子伦码专区| 乱码一卡2卡4卡精品| 桃花免费在线播放| 国产一区有黄有色的免费视频| av又黄又爽大尺度在线免费看| 高清在线视频一区二区三区| 一区在线观看完整版| 如何舔出高潮| 草草在线视频免费看| 高清在线视频一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 国产成人精品无人区| 中文乱码字字幕精品一区二区三区| 男女免费视频国产| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人 | 欧美日韩国产mv在线观看视频| 国产av精品麻豆| 人妻少妇偷人精品九色| 国产一区二区三区av在线| 97在线人人人人妻| 少妇的逼好多水| 久久av网站| 亚洲婷婷狠狠爱综合网| 亚洲国产精品一区二区三区在线| 99久国产av精品国产电影| 美女大奶头黄色视频| 少妇人妻精品综合一区二区| av在线观看视频网站免费| 美女视频免费永久观看网站| 最新中文字幕久久久久| 亚洲图色成人| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区 | 亚洲情色 制服丝袜| 国产一区二区三区综合在线观看 | 成人亚洲欧美一区二区av| av国产精品久久久久影院| 国产在线免费精品| 18禁在线无遮挡免费观看视频| av.在线天堂| 乱系列少妇在线播放|