• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氰基橋聯(lián)的Fe(Ⅱ)-Mn(Ⅲ)雙金屬鏈的可控組裝和磁性作用的調(diào)控

    2016-12-15 07:43:12矯成奇姜文靜文雯任奕王佳良劉濤何成
    關(guān)鍵詞:劉濤雙金屬鐵磁

    矯成奇 姜文靜 文雯 任奕 王佳良 劉濤何成

    氰基橋聯(lián)的Fe(Ⅱ)-Mn(Ⅲ)雙金屬鏈的可控組裝和磁性作用的調(diào)控

    矯成奇 姜文靜 文雯 任奕 王佳良 劉濤*何成

    (大連理工大學(xué)精細(xì)化工重點(diǎn)實(shí)驗(yàn)室,大連116024)

    基于不同位阻的三氰基構(gòu)筑單元和雙齒配體,合成了2個(gè)氰基橋聯(lián)的Fe(Ⅱ)-Mn(Ⅲ)鏈狀化合物。利用不同的結(jié)構(gòu)扭曲類型調(diào)控了它們的磁性相互作用?;衔飡[Fe(Ⅲ)(Pz Tp)(CN)3][Mn(Ⅲ)(5,5′-dmbpy)2]ClO4}n(1;Pz Tp=tetrakis(pyrazolyl)borate;5,5′-dmbpy= 5,5′-dimethyl-2,2′-bipyridine)顯示為左右手螺旋鏈的一維2,2-CC鏈狀結(jié)構(gòu)并且表現(xiàn)出亞鐵磁行為?;衔飡[Fe(Ⅲ)(Tp*)(CN)3]2 [Mn(Ⅱ)(dpqc)]·CH3OH·H2O}n(2;Tp*=hydridotris(3,5-dimethylpyrazolyl)borate;dpqc=dipyrido[3,2-a:2′,3′-c]-(6,7,8,9-tetrahydro) phenazine)具有一維4,2-帶狀的雙鏈結(jié)構(gòu)并且表現(xiàn)出典型的反鐵磁性相互作用。

    氰基橋聯(lián);鏈;亞鐵磁;反鐵磁

    0 Introduction

    Cyano-bridged molecule-based magnetic materials have been a research field of rapid expansion in recent decades,because the cyano-bridge not only directs the formation of predictable structure but also can efficiently transfer magnetic interactions[1-5]. Meanwhile,since the first experimental onedimensional(1D)system displaying slow magnetic dynamics was reported by Gatteschi and co-workers[6], single-chain magnets(SCMs)have attracted increasing interest because they exhibit the same slow magnetic relaxation as well as with possibly higher magnetic transition temperature than the single-moleculemagnets(SMMs)[7-10].Therefore,the rationaldesign and synthesis of the low dimensional cyanometallate compounds with the property of the SCMs has become a particularly important subject.A rational synthetic strategy is to use the capped building blocks [Fe(L)(CN)x]y-(x=2~5),where L isa variety ofbidentate, tridentate or tetradentate ligands and so on[4,5,11-15]. Based on these building blocks,a great number of low dimensional cyanide-bridged compounds have been prepared;some of them are SCMs[16-19].Among them, the use of fac-[Fe(TpR)CN)3]-as the cyanometallate building block has attracted our attention.The above building block exhibits a stable topology,and directs the formation of predictable structure through rational design.As a consequence,its use often leads to form the tetranuclear{Fe2M2}square systems[20-22],2,2-CT (C=cis;T=trans)single chain[23-25]and double 4,2-ribbon like bimetallic chain[16,26-27](Scheme 1).Most of the reported studies focused on Fe(Ⅲ)-M(Ⅱ)(M=Fe,Co, Ni and Cu)bimetallic assemblies.However,a few Fe (Ⅲ)-Mn(Ⅱ)bimetallic systems were reported based on the fac-[Fe(TpR)CN)3]-[28-33],and they all exhibited the antiferromagnetic behavior.Numerous papers dealing with Fe(Ⅲ)-M analogous systems showed that the magnetic interactions strength is highly sensitive to metal-ligand distances,M-C≡N and M′-N≡C angles and torsion angles[24-25,34-36].In the reported Fe(Ⅲ)-Mn(Ⅱ) systems,the bending of the Mn-N≡C bond angles is larger in chain systems than that of in polynuclear systems(Table 1).Therefore,if the bending of the Mn-N≡C bond angles becomes large,the decrease of the antiferromagnetic interactions could be realized, leading to the ferromagnetic or ferrimagnetic behaviors.The introduction of steric hindrance ligands may induce the distortion of the structure,realizing the control of the magnetic interactions.Herein,we selected different bulky[Fe(PzTp)CN)3]-and[Fe(Tp*) CN)3]-as the building blocks,5,5′-dmbpy(5,5′-dmbpy= 5,5′-dimethyl-2,2′-bipyridine)and dpqc(dpqc= dipyrido[3,2-a:2′,3′-c]-(6,7,8,9-tetrahydro) phenazine)as the second ligands.Two cyano-bridged chains{[Fe(Ⅲ)(PzTp)(CN)3][Mn(Ⅱ)(5,5′-dmbpy)2]ClO4}n (1)and{[Fe(Ⅲ)(Tp*)(CN)3]2Mn(Ⅱ)(dpqc)·CH3OH·H2O}n (2)were synthesized.Compound 1 exhibits a 1D 2,2-CC helix chain structure and shows the ferrimagnetic behavior.Compound 2 has a novel 4,2-ribbon double chain structure and displays the antiferromagnetic interactions.As far as we know,such a novel architecture has never been reported previously.

    Scheme 1 Different topologies based on different synthetic strategies of cyanide building blocks fac-[Fe(TpR)CN)3]-in the Fe(Ⅱ)-Mn(Ⅲ)bimetallic chains

    Table 1 Mn-N≡C bond angles and related magnetic behaviors for Fe(Ⅱ)-Mn(Ⅲ)systems constructed from the tricyanide precursors fac-[Fe(TpR)CN)3]-

    1 Experimental

    1.1 Materials and physical measurements

    All chemical reagents were acquired from commercial sources and were used as received without further purification.Bu4N[Fe(PzTp)(CN)3],Bu4N[Fe (Tp*)(CN)3]and the ligand dpqc were synthesized according to the literature method[37-38].Elemental analyses were performed on an Elementar Vario ELⅢanalyzer.IR spectra were recorded on a Bruker AXS TENSOR-27 FTIR spectrometer with KBr pellets in the range of 400~4 000 cm-1.Magnetic measurements of the samples were performed on a Quantum Design SQUID(MPMSXL-7)magnetometer. Data were corrected for the diamagnetic contribution calculated from Pascal constants.

    1.2 Synthesis of{[Fe(Ⅱ)(PzTp)(CN)3][Mn(Ⅲ)(5,5′-dmbpy)2]ClO4}n(1)

    A 6.0 mL aqueous solution of Mn(ClO4)2·6H2O (0.03 mmol)was placed at the bottom of a test tube,a mixture of methanol and water(1∶2,V/V,6 mL)was gently layered on the top of the solution,and then a 6.0 mL methanol solution of Bu4N[Fe(PzTp)(CN)3] (0.03 mmol)and 5,5′-dmbpy(0.06 mmol)was carefully added as the third layer.After few weeks,red block crystals of 1 were collected,washed with water and dried in air.Yield:58%based on Mn(ClO4)2·6H2O. Anal.Calcd.for C39H36BClFeMnN15O4(%):C 50.05,H 3.88,N 22.45;Found(%):C 50.10,H 3.98,N 22.37. IR(KBr,cm-1):3 123(w),2 927(w),2 141(s),2 136(s), 1 610(m),1 572(m),1 504(m),1 482(s),1 436(m), 1 406(s),1 391(s),1316(s),1 241(m),1 211(s),1 106 (s),917(m),857(s),766(s),623(s),488(m),413(s).

    1.3 Synthesis of{[Fe(Ⅱ)(Tp*)(CN)3]2Mn(Ⅲ)(dpqc) ·CH3OH·H2O}n(2)

    The compound was obtained with a similar procedure to that of 1,except using Bu4N[Fe(Tp*) (CN)3](0.06 mmol)and dpqc(0.03 mmol)to replace Bu4N[Fe(PzTp)(CN)3]and 5,5′-dmbpy,respectively. The black red plate crystals of 2 were collected after several weeks,washed with water and dried in air. Yield:45%based on Mn(ClO4)2·6H2O.Anal.Calcd. for C55H64B2Fe2MnN22O2(%):C 52.70,H 5.15,N 24.58; Found(%):C 52.65,H 5.19,N 24.67.IR(KBr,cm-1): 3 416(br),2 927(m),2 859(w),2 528(m),2 142(s), 2128(w),1 632(m),1 542(s),1 452(m),1 414(m), 1 376(s),1 308(m),1 203(s),1 060(s),857(m),819 (m),789(m),736(m),691(m),638(m),570(w),435(m).

    1.4 X-ray Crystallography

    The data were collected on a Bruker Smart APEX(Ⅱ)X-diffractometer equipped with graphite monochromated Mo Kαradiation(λ=0.071 073 nm) using the SMART and SAINT[39]programs at298 K for compounds 1 and 2.Final unit cell parameters were based on allobserved reflections from integration ofall frame data.The structures were solved in the space group by direct method and refined by the full-matrix least-squares using SHELXTL-97 fitting on F2[40].For compounds 1 and 2,all non-hydrogen atoms were refined anisotropically.The hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters.Attempts to add the hydrogen atoms for the solvent water molecules in the crystal structure of compound 2 through Fourier electron density were failed.The ClO4-group in compound 1 was disordered;therefore,large thermal displacement parameters were found for these atoms and refined with partial occupancy.In compound 2,the solvent water molecule(O1W)was disordered,which was splitover two sites and refined with partial occupancy.The crystal data and details of the structure refinement of compounds 1 and 2 are summarized in Table 2. Selected bond distances and angles ofcompounds 1 and 2 are listed in Table 3.

    CCDC:1449127,1;1449128,2.

    Table 2 Crystal data and structure refinements for compounds 1 and 2

    Table 3 Selected bond lengths(nm)and angles(°)for compounds 1 and 2

    Continued Table 3

    Fig.1(a)ORTEP representation of a selected unit of compound 1 with thermal ellipsoids drawn at the 30%probability level;(b)Side view ofa 1D single-zigzag chain ofcompound 1 along the b-axis;(c)Packing structure ofthe left-or right-handed helicalchains

    2 Results and discussion

    2.1 Crystal structural description

    2.1.1 Crystal structure of 1

    Single-crystal X-ray diffraction analysis revealed that 1 crystallized in the monoclinic space group P21/c.The crystal structure consists of a cyanobridged 2,2-CC zigzag chain(Fig.1b).The 2,2-CC chain is made up of a cyano-bridged alternating[Fe(Ⅱ)(PzTp)(CN)3]--[Mn(5,5′-dmbpy)2]2+fragment.Within the chain,each[Fe(Ⅱ)(PzTp)(CN)3]-entity connects two [Mn(5,5′-dmbpy)2]2+motifs with two ofits three cyanide groups in cis positions,and each[Mn(5,5′-dmbpy)2]2+unit links two[Fe(Ⅱ)(PzTp)(CN)3]-ions in cis modes. Interestingly,such connection mode results in forming a left-and right-handed helices along the b-axis(Fig. 1c).Because both left-and right-handed helices are alternatively arranged,the whole structure is mesomeric.Each centralFe(Ⅱ)environmentcan be described as a distorted octahedron,comprising three C atoms from terminal CN ligands and three N atoms from the tridentate ligand PzTp.The Fe-Ccyanide(0.192 8(5)~0.193 4(5)nm)and Fe-NPzTp(0.196 1(4)~0.197 4(4)nm) bond lengths are in good agreement with thoseobserved previously in the related LS Fe(Ⅱ)compounds[28].The Fe-C≡N bond angles in the range of 171.4(4)°~176.6(5)°depart slightly from linearity. In the[Mn(5,5′-dmbpy)2]2+unit,each Mn(Ⅲ)ion is also octahedral coordination.Four N atoms are from two bidentate 5,5′-dmbpy ligands,and the remaining coordination sites of each six-coordinated Mn(Ⅲ)ion are occupied by the bridging cyanide building blocks. The Mn-Ncyanidedistances(0.220 2(4)and 0.223 1(4) nm)are shorter than those of the Mn-Nbpy(0.225 4(3)~0.231 8(4)nm),which are comparable with related HS Mn(Ⅲ)compounds previously reported[32].The Mn-N≡C bond angles deviate significantly from linearity with the angles of C(39)-N(14)-Mn(1)164.6(4)°and C(37)-N(15)-Mn(1)ii140.2(4)°(Symmetry codes:ii-x,y+1/2, -z+1/2).The neighboring chains are linked together through C-H…πinteractions between methyl hydrogen and pyridine rings of 5,5′-dmbpy ligands (d=0.310 4 nm),resulting in a 2D supramolecular structure(Fig.2).The shortest intrachain Fe…Mn,Fe…Fe and Mn…Mn distances are 0.491,0.741 and 1.176 nm,respectively,while the nearest interchain Fe…Mn,Fe…Fe and Mn…Mn distances are 1.078, 1.021 and 0.969 nm,respectively,indicating that the interchain magnetic interactions are very weak.

    Fig.2 2D supramolecular structure of compound 1 via the C-H…πstacking interactions

    2.1.2 Crystalstructure of 2

    Single-crystal X-ray diffraction analysis revealed that 2 crystallized in the triclinic space group P1.The crystal structure comprises a neutral cyano-bridged 2, 4-ribbon like double-zigzag chain(Fig.3b).Within the chain,the basic structural unitis a Mn(Ⅲ)2(CN)4Fe(Ⅱ)2square with each Mn(Ⅲ)shared by two adjacent squares.Within each square,the[Fe(Ⅱ)(Tp*)(CN)3]-unit binds two Mn(Ⅲ)through two of its three cyanide groups,while each[Mn(Ⅲ)(dpqc)]2+unit links four [Fe(Ⅱ)(Tp*)(CN)3]-units.The square units exhibit two orientations of their mean planes(Fe(Ⅱ)2Mn(Ⅲ)2), showing an approximately perpendicular with the dihedral angle of 83.44°owing to the steric effect of the bulky[Fe(Ⅱ)(Tp*)(CN)3]-building block,which is rare for the double-zigzag chain reported in the literature[16].Each Fe(Ⅱ)center adopts a slightly distorted octahedral configuration consisting of three cyanide carbon atoms and three nitrogen atoms of Tp*-anion.The Fe-Ccyanidebond lengths range from 0.190 5(6) to 0.193 5(6)nm,and the Fe-NTp*distances are in the range of 0.198 8(5)~0.201 7(5)nm,respectively.The Fe-C≡N linkages are closer to linearity with bond angles of 174.3(5)°~178.6(6)°.Such characteristics of the bond lengths and bond angles indicate that the iron center is low-spin Fe(Ⅱ)[28].Each Mn(Ⅲ)center is located in a distorted N6octahedral coordination environment with four nitrogen atoms from four cyanide groups and two nitrogen atoms from a dpqc ligand.Similar to 1,the Mn-Ncyanidebond distances (0.215 3(5)~0.222 8(5)nm)are also shorter than the Mn-Ndpqcbond distances(0.228 6(5)and 0.230 6(5) nm).These values are in good agreement with the cyano-bridged Fe(Ⅱ)-Mn(Ⅲ)compounds[32].The Mn-N≡C bond angles range from 156.2(5)°to 164.1(5)°.The maximum deviation of the Mn-N≡C angles from linearity is smaller than that of 1(23.8°for 2 vs 39.2° for 1).The adjacent chains are linked to form a 3D supramolecular structure with assistance of C-H…π interactions between methyl hydrogen and pyrazole rings of Tp*ligands(d=0.300 3 nm and 0.310 5 nm) (Fig.3c).The shortest intrachain Fe…Mn,Fe…Fe andMn…Mn distances are 0.512,0.734 and 0.697 nm, respectively.Whereas,the shortest interchain Fe…Mn,Fe…Fe and Mn…Mn distances are 1.198,0.872 and 1.323 nm.

    Fig.3(a)ORTEP representation of a selected unit of compound 2 with thermal ellipsoids drawn at the 30%probability level; (b)Side view of a 1D double-zigzag chain along the b-axis;(c)3D supramolecular structure of compound 2 via the C-H…πstacking interactions

    It is worth noting that the structures of compounds 1 and 2 are quite different from the reported chains structures incorporating the anionic building block,fac-[Fe(TpR)CN)3]-.Self-assembly of the anionic building block,fac-[Fe(TpR)CN)3]-and fully solvated metal ions[M(S)6]2+or partially blocked metal cationic units[M(L)x(S)y]2+(L=monodentate, bidentate or tetradentate ligand;S=solvent molecule; x+y=6)frequently results in the formation of chains with two different topologies(Scheme 1):2,2-CT chain and 2,4-ribbon chain.In the reported 2,2-CT chain (Scheme 1a),the four coordination sites of the metal(Ⅱ)ion are occupied by two trans-positioned bidentate ligands or a tetradentate Schiff base ligand,and the remaining two sites are filled by two fac-[Fe(TpR)CN)3]-units in trans positions[23-25].In the 2,4-ribbon chain (Scheme 1c),each metal(Ⅱ)center is coordinated by fourcyanide nitrogen atoms from four fac-[Fe(TpR)CN)3]-units and two monodentate ligands or two solvent molecules[26-27,30].In the present work(Scheme 1b),in the[Mn(5,5′-dmbpy)2]2+unit,each Mn(Ⅲ)ion is coordinated by two bidentate ligands in cis positions, the remaining sites are occupied by the bridging cyanide building blocks in cis positions.Such similar structure was only reported by Oshio′s group incorporating a tetradentate N-donoring ligand and the [Fe(Tp)CN)3]-building block[19].Different from the classical 2,4-ribbon chain,each Mn(Ⅲ)ion in complex 2 is coordinated by a bidentate ligand in cis position instead of two monodentate ligands in trans-axial positions(Scheme 1d).As far as we know,such a novel architecture representing a new nettopology has never been reported previously.

    2.2 Magnetic properties

    2.2.1 Magnetic properties of 1

    The magnetic susceptibility data of 1 were measured at 1 000 Oe in the temperature range of 2~300 K(Fig.4a).TheχT value is 5.10 cm3·mol-1·K at 300 K,which is slightly larger than the spin-only value of 4.75 cm3·mol-1·K expected for an uncoupled LS Fe(Ⅱ)(S=1/2)and one HS Mn(Ⅲ)(S=5/2)assuming that g=2.00.As the temperature is lowered,theχT value undergoes a gradual reduction,reaching a minimum value of 4.18 cm3·mol-1·K at 10 K.Below the temperature,it increases rapidly up to 9.41 cm3· mol-1·K at 2.0 K.The overall magnetic behaviorindicates the typicalofa ferrimagnetic situation within a chain.The magnetic susceptibility data are fitted by the Curie-Weiss law in the temperature range of 2~300 K,which give a Curie constant of 5.10 cm3· mol-1·K and a Weiss temperature of-3.64 K.The negative Weiss temperature demonstrates the antiferromagnetic coupling interactions between the paramagnetic centers.When the magnetic behavior of the 1D chain was simulated through the MAGPACK program[41],the 1D chain can be treated as a ring mode[42].Because of the presence of two different Mn-N≡C bridging angles in compound 1,2J coupling parameters were used to simulate the experimental magnetic susceptibility.Therefore,we consider the 1D zigzag chain as a 10-atom Fe5Mn5ring with the Hamiltonian H=-2J1(SFe1SMn1+SFe2SMn2+SFe3SMn3+SFe4SMn4+SFe5SMn5)-2J2(SMn1SFe2+SMn2SFe3+SMn3SFe4+SMn4SFe5+ SMn5SFe1),where SFe=1/2 and SMn=5/2.Using this model (Fig.5a),the magnetic susceptibility data were fitted by the MAGPACK program in the temperature range of 10~300 K,which gave J1=-1.68,J2=-2.42 and g= 2.07 with the agreement factor R=1.05×10-4.The coupling parameters also indicate the antiferromagnetic interactions.The field dependence of the magnetization at 1.8 K was measured in the field range from 0 to 50 kOe(Fig.4b).The magnetization value at 50 kOe is 4.48Nβ,which is a little larger than the ferrimagnetic results of 4.0Nβ calculated from MS=g(SMn-SFe)with g=2.00.The large saturation magnetization may originate from the existence of the significant orbital contributions of the LS Fe(Ⅱ)ions.

    Fig.4(a)Temperature-dependent magnetic susceptibility for compound 1;(b)Field-dependent magnetization for compound 1

    Fig.5 Schematic representations for the fitting models for 1(a)and 2(b)

    2.2.2 Magnetic properties of 2

    The temperature dependence of the magnetic susceptibility of 2 was measured in the range of 2~300 K at 1 000 Oe(Fig.6a).TheχT value per Fe2Mn unitat 300 K is 6.01 cm3·mol-1·K,which is close to but somewhat larger than the spin-only value of 5.13cm3·mol-1·K for the uncorrelated two LS Fe(Ⅱ)(S=1/2) and one HS Mn(Ⅲ)(S=5/2)with g=2.00.As the temperature is lowered,theχT value decreases very smoothly down to 5.23 cm3·mol-1·K at 60 K.Upon further lowing,theχT value abruptly decreases to reach a minimum value of0.43 cm3·mol-1·K at 2.0 K. The magnetic susceptibility data above 15 K obey the Curie-Weiss law,which give a Curie constant of 6.19 cm3·mol-1·K and a Weiss temperature of-12.00 K. To simulate the magnetic susceptibility of compound 2,the double chain also can be fitted with a 12-atom Fe8Mn4ring mode(Fig.5b).The MAGPACK program was used to fit based on the Hamiltonian H=-2J(SMn1SFe2+SMn1SFe3+SFe2SMn4+SFe3SMn4+SMn4SFe5+SMn4SFe6+SFe5SMn7+SFe6SMn7+SMn7SFe8+SMn7SFe9+SFe8SMn10+SFe9SMn10+SMn10SFe11+SMn10SFe12+SFe11SMn1+SFe12SMn1).The best-fit parameters with J=-8.61 and g=2.21 with the agreement factor R=3.00×10-5show a good curve match.The negative Weiss temperature and coupling parameters indicate the presence of intrachain antiferromagnetic coupling between neighbouring Fe(Ⅱ)and Mn(Ⅲ)ions.As shown in the Fig.6b,the fielddependent magnetization of 2 was measured at 1.8 K in the field(0~50 kOe).The magnetization increases linearly with the applied magnetic field,reaching a value of 2.48Nβat 50 kOe,which is lower than the saturation magnetization value of 3.0Nβexpected for MS=g(SMn-SFe)with g=2.00.The result further indicates that the dominant intrachain antiferromagnetic interactions were transmitted via the cyanide bridge.

    Investigation of the magnetic properties of compounds 1 and 2 indicates that they have different magnetic behaviors.Compound 1 shows ferrimagnetic behavior in low temperature region,whereas compound 2 indicates the presence of the typically antiferromagnetic coupling.The different magnetic properties of compounds 1 and 2 may result from the different bent Mn-N≡C bond angles and interchain C-H…πstacking interactions.Generally,the bending ofthe Mn-N≡C bond angles diminishes the overlap of the spin-orbit coupling and then reduces the magnetic interactions.The maximum deviation of the Mn-N≡C angles from linearity in 1(39.2°)is the largest in comparison with the reported cyano-bridged Fe(Ⅱ)-Mn(Ⅲ)compounds(Table 1),therefore,the intrachain antiferromagnetic coupling of compound 1 is weak and then it exhibits the ferrimagnetic behavior.For compound 2,the Mn-N≡C bond angles are in the reported range of 144°~170°,thus it exhibits the typically antiferromagnetic coupling.

    Fig.6(a)Temperature-dependent magnetic susceptibility for compound 2;(b)Field-dependent magnetization for compound 2

    3 Conclusions

    In summary,different steric hindrance ligands were introduced into Fe(Ⅱ)-Mn(Ⅲ)system to induce the distortion of the structures and finally realized the adjustment of the magnetic interactions.A cyanobridged 1D FeMn 2,2-CC helix single chain 1 and a 1D Fe2Mn 2,4-ribbon double chain 2 were successfully synthesized via tunable assembly,and the structure of compound 2 has never been reported in the previous literature.Investigation of the magnetic properties of compounds 1 and 2 indicates the bending of Mn-N≡Cbond angles and interchain C-H…πstacking interactions play important roles in adjusting the magnetic interactions.Therefore,compound 1 shows ferrimagnetic behavior because ofits largestbending of Mn-N≡C bond angles,whereas compound 2 exhibits the presence ofthe antiferromagnetic coupling.

    [1]Sato O,Iyoda T,Fujishima A,et al.Science,1996,272:704 -705

    [2]Shatruk M,Avendano C,Dunbar K R.Prog.Inorg.Chem., 2009,56:155-274

    [3]Ohba M,kawa H.Coord.Chem.Rev.,2000,198:313-328

    [4]Wang S,Ding X H,Li Y H,et al.Coord.Chem.Rev., 2012,256:439-464

    [5]Wang S,Ding X H,Zuo J L,et al.Coord.Chem.Rev., 2011,255:1713-1732

    [6]Caneschi A,Gatteschi D,Lalioti N,et al.Angew.Chem.Int. Ed.,2001,40:1760-1763

    [7]Coulon C,Miyasaka H,Clerac R.Struct.Bond.,2006,122: 163-206

    [8]Miyasaka H,Julve M,Yamashita M,et al.Inorg.Chem., 2009,48:3420-3437

    [9]Sun H L,Wang Z M,Gao S.Coord.Chem.Rev.,2010,254: 1081-1100

    [10]Lescou?zec R,Toma L M,Vaissermann J,et al.Coord. Chem.Rev.,2005,249:2691-2729

    [11]Nihei M,Ui M,Yokota M,et al.Angew.Chem.Int.Ed., 2005,44:6484-6487

    [12]Shen X P,Zhou H B,Yan J H,et al.Inorg.Chem.,2014, 53:116-127

    [13]Liu T,Zhang Y J,Kanegawa S,et al.J.Am.Chem.Soc., 2010,132:8250-8251

    [14]Wen H R,Wang C F,Zuo J L,et al.Inorg.Chem.,2006,45: 582-590

    [15]Kim J I,Kwak H Y,Yoon J H,et al.Inorg.Chem.,2009, 48:2956-2966

    [16]Dong D P,Liu T,Kanegawa S,et al.Angew.Chem.Int.Ed., 2012,51:5119-5123

    [17]Liu T,Zheng H,Kang S,et al.Nat.Commun.,2013,4:2826 -2833

    [18]Shao D,Zhang S L,Zhao X H,et al.Chem.Commun.,2015, 51:4360-4363

    [19]Hoshino N,Iijima F,Newton G N,et al.Nat.Chem.,2012, 4:921-926

    [20]Liu W,Wang C F,Li Y Z,et al.Inorg.Chem.,2006,45: 10058-10065

    [21]Zhang Y Z,Mallik U P,Clérac R,et al.Polyhedron,2013, 52:115-121

    [22]Zhang Y Z,Ferko P,Siretanu D,et al.J.Am.Chem.Soc., 2014,136:16854-16864

    [23]Wen H R,Tang Y Z,Liu C M,et al.Inorg.Chem.,2009,48: 10177-10185

    [24]Kwak H Y,Ryu D W,Lee J W,et al.Inorg.Chem.,2010, 49:4632-4642

    [25]Dong D P,Zhang Y J,Zheng H,et al.Dalton Trans.,2013, 42:7693-7698

    [26]Wen H R,Wang C F,Song Y,et al.Inorg.Chem.,2006,45: 8942-8949

    [27]Mitsumoto K,Ui M,Nihei M,et al.CrystEngComm, 2010,12:2697-2699

    [28]Kim J,Han S J,Cho I-K,et al.Polyhedron,2004,23:1333-1339

    [29]Li D F,Parkin S,Wang G B,et al.Inorg.Chem.,2005,44: 4903-4905

    [30]Jiang L,Feng X L,Lu T B,et al.Inorg.Chem.,2006,45: 5018-5026

    [31]Gheorghe R,Kalisz M,Clérac R,et al.Inorg.Chem., 2010,49:11045-11056

    [32]Pardo E,Verdaguer M,Herson P,et al.Inorg.Chem., 2011,50:6250-6262

    [33]ZHENG Hui(鄭慧),XU Yang(徐楊),DUAN Chun-Ying (段春迎).Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31 (7):1460-1466

    [34]Wang S,Zuo J L,Zhou H C,et al.Eur.J.Inorg.Chem., 2004,3681-3687

    [35]Ni Z H,Kou H Z,Zhang L F,et al.Angew.Chem.Int.Ed., 2005,44:7742-7745

    [36]Costa V,Lescou?zec R,Vaissermann J,et al.Inorg.Chim. Acta,2008,361:3912-3918

    [37]Gu Z G,Liu W,Yang Q F,et al.Inorg.Chem.,2007,46: 3236-3244

    [38]Ma L L,Ge K,Zhang R,et al.Eur.J.Med.Chem.,2014, 87:624-630

    [39]SMART,SAINT and XPREP,Area Detectr and Data Integration and Reduction Software,Bruker Analytical Instruments Inc.,Madison,WI,1995.

    [40]Sheldrick G M.SHELXS-97,Program for X-ray Crystal Structure Solution and Refinement,University of G?ttingen, Germany,1997.

    [41]Borrás-Almenar J J,Clemente-Juan J M,Coronado E,et al. MAGPACK,J.Comput.Chem.,2001,22:985-991

    [42]Kou H Z,Ni Z H,Liu C M,et al.New J.Chem.,2009,33: 2296-2299

    Tuning Assembly and Magnetic Interactions of Cyano-bridged Fe(Ⅱ)-Mn(Ⅲ)Bimetallic Chains

    JIAO Cheng-Qi JIANG Wen-Jing WEN Wen REN Yi WANG Jia-Liang LIU Tao*HE Cheng
    (State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)

    Two cyano-bridged Fe(Ⅲ)-Mn(Ⅱ)chains were synthesized via using bidentate ligands and cyanometallate building blocks with different steric hindrance.The magnetic interactions were adjusted by the structural distortions of the two compounds.Compound{[Fe(Ⅲ)(PzTp)(CN)3][Mn(Ⅱ)(5,5′-dmbpy)2]ClO4}n(1;PzTp=tetrakis (pyrazolyl)borate;5,5′-dmbpy=5,5′-dimethyl-2,2′-bipyridine)shows a 1D 2,2-CC chain-like structure with a leftand right-handed helices chains and exhibits the ferrimagnetic behavior.Compound{[Fe(Ⅲ)(Tp*)(CN)3]2[Mn(Ⅱ) (dpqc)]·CH3OH·H2O}n(2;Tp*=hydridotris(3,5-dimethylpyrazolyl)borate;dpqc=dipyrido[3,2-a:2′,3′-c]-(6,7,8,9-tetrahydro)phenazine)has a novel 1D 4,2-ribbon double chain-like structure with dominant antiferromagnetic interactions.CCDC:1449127,1;1449128,2.

    cyano-bridged;chain;ferrimagnetic;antiferromagnetic

    O614.81+1;O614.7+11

    A

    1001-4861(2016)09-1637-10

    10.11862/CJIC.2016.210

    2016-05-25。收修改稿日期:2016-08-04。國(guó)家自然科學(xué)基金(No.21322103)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:liutao@dlut.edu.cn

    猜你喜歡
    劉濤雙金屬鐵磁
    助人為樂的劉濤
    助人為樂的劉濤
    關(guān)于兩類多分量海森堡鐵磁鏈模型的研究
    雙金屬支承圈擴(kuò)散焊替代技術(shù)研究
    雙金屬?gòu)?fù)合管液壓脹形機(jī)控制系統(tǒng)
    雙金屬?gòu)?fù)合管焊接方法選用
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    你好,鐵磁
    你好,鐵磁
    雙金屬?gòu)?fù)合板的拉伸回彈特性研究
    av女优亚洲男人天堂| 日韩精品青青久久久久久| 最新中文字幕久久久久| 久久久精品欧美日韩精品| 国产成人影院久久av| 99久国产av精品| 麻豆一二三区av精品| 久久久久久久久久成人| 天天躁夜夜躁狠狠久久av| 色噜噜av男人的天堂激情| 亚洲内射少妇av| 午夜福利在线观看吧| 国产麻豆成人av免费视频| 乱码一卡2卡4卡精品| 不卡视频在线观看欧美| 免费看a级黄色片| 99在线人妻在线中文字幕| 校园人妻丝袜中文字幕| 热99re8久久精品国产| 女人被狂操c到高潮| 国产v大片淫在线免费观看| 少妇的逼水好多| 日本黄色视频三级网站网址| 久久精品夜夜夜夜夜久久蜜豆| 听说在线观看完整版免费高清| 18禁在线无遮挡免费观看视频 | 白带黄色成豆腐渣| 神马国产精品三级电影在线观看| 国产精品日韩av在线免费观看| 一边摸一边抽搐一进一小说| 色尼玛亚洲综合影院| 国产精品乱码一区二三区的特点| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 精品无人区乱码1区二区| 又黄又爽又刺激的免费视频.| 内射极品少妇av片p| 日韩人妻高清精品专区| 国产黄a三级三级三级人| 一边摸一边抽搐一进一小说| 一本精品99久久精品77| 精品不卡国产一区二区三区| 久久久久久伊人网av| 精品免费久久久久久久清纯| 久久草成人影院| 亚洲成av人片在线播放无| 精品一区二区三区视频在线观看免费| 日本 av在线| 一夜夜www| aaaaa片日本免费| 亚洲欧美日韩高清在线视频| 精品一区二区三区人妻视频| 精品久久久久久久久av| 国产美女午夜福利| 久久久欧美国产精品| 国产午夜福利久久久久久| av免费在线看不卡| 免费观看的影片在线观看| 亚洲天堂国产精品一区在线| 欧美区成人在线视频| avwww免费| 最近中文字幕高清免费大全6| 非洲黑人性xxxx精品又粗又长| 国产在线精品亚洲第一网站| 日本黄大片高清| 国产成人91sexporn| 丝袜美腿在线中文| 成年av动漫网址| 不卡视频在线观看欧美| avwww免费| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 一个人看视频在线观看www免费| 日韩av不卡免费在线播放| 九色成人免费人妻av| 给我免费播放毛片高清在线观看| 精品国内亚洲2022精品成人| 一个人看视频在线观看www免费| 久久精品国产亚洲av涩爱 | 亚洲精品国产av成人精品 | 国产午夜福利久久久久久| 狂野欧美白嫩少妇大欣赏| 欧美日韩精品成人综合77777| 香蕉av资源在线| 两个人视频免费观看高清| 国产69精品久久久久777片| 精品国内亚洲2022精品成人| 插逼视频在线观看| 欧美日韩在线观看h| 精品乱码久久久久久99久播| 国产精品一及| 国产男人的电影天堂91| 麻豆国产97在线/欧美| 亚洲电影在线观看av| 看十八女毛片水多多多| 国产精品亚洲一级av第二区| 国产免费一级a男人的天堂| 久久欧美精品欧美久久欧美| 久久国产乱子免费精品| 日日撸夜夜添| 丰满乱子伦码专区| 校园人妻丝袜中文字幕| 亚洲欧美清纯卡通| 久久久久性生活片| 欧洲精品卡2卡3卡4卡5卡区| 看片在线看免费视频| 麻豆久久精品国产亚洲av| 99在线人妻在线中文字幕| 精品人妻熟女av久视频| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 中文字幕熟女人妻在线| 免费看日本二区| 少妇高潮的动态图| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 亚洲欧美日韩高清在线视频| av在线观看视频网站免费| 天美传媒精品一区二区| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 在线免费观看的www视频| 男插女下体视频免费在线播放| 国产色爽女视频免费观看| 精品一区二区三区视频在线观看免费| 亚洲内射少妇av| 久久精品夜色国产| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 欧美最新免费一区二区三区| 床上黄色一级片| 热99re8久久精品国产| 成人永久免费在线观看视频| 国产伦精品一区二区三区视频9| 插阴视频在线观看视频| 免费av观看视频| 日韩欧美精品v在线| 国产高清有码在线观看视频| 成人美女网站在线观看视频| 欧美又色又爽又黄视频| 免费看美女性在线毛片视频| 久久精品国产鲁丝片午夜精品| 国产午夜福利久久久久久| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 黄色日韩在线| 成年女人永久免费观看视频| 精品99又大又爽又粗少妇毛片| 在线观看66精品国产| 国产男人的电影天堂91| 国产精品伦人一区二区| 国产成人精品久久久久久| 麻豆国产97在线/欧美| 国产亚洲欧美98| 国产精品乱码一区二三区的特点| 精品乱码久久久久久99久播| 久久午夜福利片| 老司机福利观看| 精华霜和精华液先用哪个| 看非洲黑人一级黄片| av在线观看视频网站免费| 日日撸夜夜添| 在线观看美女被高潮喷水网站| 亚洲人与动物交配视频| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 最新中文字幕久久久久| 成人无遮挡网站| 内地一区二区视频在线| 又黄又爽又免费观看的视频| 自拍偷自拍亚洲精品老妇| 免费电影在线观看免费观看| 欧美成人一区二区免费高清观看| 晚上一个人看的免费电影| 看免费成人av毛片| 不卡一级毛片| 高清日韩中文字幕在线| 午夜老司机福利剧场| 蜜桃亚洲精品一区二区三区| 国产伦在线观看视频一区| 又粗又爽又猛毛片免费看| 国产高清视频在线观看网站| 久久久久国内视频| 中文字幕精品亚洲无线码一区| 亚洲av电影不卡..在线观看| 欧美日韩国产亚洲二区| 不卡一级毛片| 国产精品三级大全| 久久草成人影院| 亚洲av五月六月丁香网| 哪里可以看免费的av片| 成人二区视频| 日本-黄色视频高清免费观看| 国产成人福利小说| 国产久久久一区二区三区| 免费观看在线日韩| 久久久精品94久久精品| 级片在线观看| 国产爱豆传媒在线观看| 岛国在线免费视频观看| 国产精品电影一区二区三区| 男人舔女人下体高潮全视频| 亚洲成人久久爱视频| 成人永久免费在线观看视频| eeuss影院久久| 男人的好看免费观看在线视频| 精品久久久久久久人妻蜜臀av| 99国产极品粉嫩在线观看| 天天躁日日操中文字幕| 午夜视频国产福利| 精品国产三级普通话版| 性欧美人与动物交配| 午夜福利在线观看免费完整高清在 | 欧美日韩一区二区视频在线观看视频在线 | 欧美日韩在线观看h| 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| 美女xxoo啪啪120秒动态图| 国产精品久久电影中文字幕| 一个人看的www免费观看视频| 五月伊人婷婷丁香| 亚洲自偷自拍三级| 久久精品国产自在天天线| 亚洲无线在线观看| 久久国内精品自在自线图片| 99热这里只有精品一区| 亚洲人成网站在线观看播放| 国产高潮美女av| 天堂动漫精品| 国产亚洲av嫩草精品影院| 国产大屁股一区二区在线视频| 国产老妇女一区| 搡女人真爽免费视频火全软件 | 国产美女午夜福利| av专区在线播放| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| 能在线免费观看的黄片| 中文字幕av在线有码专区| 99热网站在线观看| 夜夜夜夜夜久久久久| 在线a可以看的网站| 91久久精品国产一区二区三区| 老司机福利观看| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 女人被狂操c到高潮| 1000部很黄的大片| 天美传媒精品一区二区| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 一区二区三区四区激情视频 | 丝袜喷水一区| 1000部很黄的大片| 最近中文字幕高清免费大全6| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看| 69av精品久久久久久| 日本一本二区三区精品| 午夜福利18| 亚洲国产色片| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻偷拍中文字幕| 综合色丁香网| 少妇的逼水好多| av免费在线看不卡| 欧美中文日本在线观看视频| 国产精品久久久久久久电影| 成人午夜高清在线视频| 亚洲在线自拍视频| 亚洲自拍偷在线| 一级毛片我不卡| 赤兔流量卡办理| 亚洲乱码一区二区免费版| 国产真实乱freesex| 国产伦在线观看视频一区| 一进一出好大好爽视频| 中文字幕精品亚洲无线码一区| 亚洲人成网站在线播放欧美日韩| 十八禁网站免费在线| 欧美3d第一页| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 亚洲三级黄色毛片| 97人妻精品一区二区三区麻豆| 日韩高清综合在线| 亚洲丝袜综合中文字幕| 婷婷色综合大香蕉| 国产片特级美女逼逼视频| .国产精品久久| 少妇的逼好多水| 精品午夜福利视频在线观看一区| 色哟哟哟哟哟哟| 一区二区三区免费毛片| 亚洲人成网站在线观看播放| 久久中文看片网| 人妻久久中文字幕网| 精品熟女少妇av免费看| 一夜夜www| 国产大屁股一区二区在线视频| www日本黄色视频网| 禁无遮挡网站| 久久久久免费精品人妻一区二区| a级毛片免费高清观看在线播放| 欧洲精品卡2卡3卡4卡5卡区| 成人av一区二区三区在线看| 欧美在线一区亚洲| 日韩欧美在线乱码| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 国产精品电影一区二区三区| 搡老岳熟女国产| 69av精品久久久久久| 亚洲欧美精品综合久久99| 日本黄大片高清| 一区二区三区四区激情视频 | 99久久久亚洲精品蜜臀av| 亚洲av第一区精品v没综合| 国产又黄又爽又无遮挡在线| 亚洲乱码一区二区免费版| 51国产日韩欧美| 色综合色国产| 欧美性猛交黑人性爽| 欧美潮喷喷水| 亚洲欧美成人综合另类久久久 | 中文字幕熟女人妻在线| 国产老妇女一区| 国产精品精品国产色婷婷| 免费人成在线观看视频色| 亚洲av美国av| 精品一区二区三区av网在线观看| 国产精品免费一区二区三区在线| 成年av动漫网址| 深夜a级毛片| 久久精品国产亚洲网站| 人人妻,人人澡人人爽秒播| 在线免费十八禁| 国产精品一区二区性色av| 日本爱情动作片www.在线观看 | 18禁在线播放成人免费| 男人狂女人下面高潮的视频| 三级国产精品欧美在线观看| 毛片女人毛片| 免费av不卡在线播放| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添av毛片| 天堂动漫精品| 可以在线观看的亚洲视频| 蜜桃亚洲精品一区二区三区| а√天堂www在线а√下载| 国产亚洲av嫩草精品影院| 老司机福利观看| 欧美绝顶高潮抽搐喷水| 美女黄网站色视频| 色视频www国产| 99视频精品全部免费 在线| 欧美一区二区亚洲| 日韩 亚洲 欧美在线| 校园春色视频在线观看| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看| 国产精品一二三区在线看| av在线亚洲专区| 久久久久国产网址| 99国产极品粉嫩在线观看| 深夜精品福利| 99国产精品一区二区蜜桃av| 成人综合一区亚洲| 精品一区二区免费观看| 成年免费大片在线观看| av在线蜜桃| 精品一区二区三区视频在线| 99视频精品全部免费 在线| 一级毛片我不卡| 搞女人的毛片| 日韩强制内射视频| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 亚洲第一电影网av| 99热网站在线观看| 色av中文字幕| 久久婷婷人人爽人人干人人爱| 干丝袜人妻中文字幕| 亚洲精品日韩av片在线观看| 欧美xxxx性猛交bbbb| 亚洲精品亚洲一区二区| 精品欧美国产一区二区三| 国产成人精品久久久久久| 免费人成视频x8x8入口观看| 九九在线视频观看精品| 久久韩国三级中文字幕| 久久精品国产亚洲av涩爱 | 亚洲内射少妇av| 免费人成在线观看视频色| 久久久久久伊人网av| 男人狂女人下面高潮的视频| 亚洲美女视频黄频| 夜夜夜夜夜久久久久| 久久精品人妻少妇| 男人和女人高潮做爰伦理| 色综合色国产| 美女cb高潮喷水在线观看| 老熟妇乱子伦视频在线观看| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 99九九线精品视频在线观看视频| 免费av观看视频| 少妇裸体淫交视频免费看高清| 国产av麻豆久久久久久久| 久久中文看片网| 中文字幕久久专区| 国产精品国产三级国产av玫瑰| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区| 老司机午夜福利在线观看视频| 久久欧美精品欧美久久欧美| 国产精品久久久久久久久免| 国产 一区精品| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 国产日本99.免费观看| 久久人人精品亚洲av| 亚洲国产精品成人久久小说 | 免费av毛片视频| 一级av片app| 国产三级中文精品| 国产单亲对白刺激| 色在线成人网| 如何舔出高潮| 国产精品久久久久久亚洲av鲁大| 亚洲欧美日韩卡通动漫| 久久精品影院6| 露出奶头的视频| 日本黄色片子视频| 午夜免费男女啪啪视频观看 | 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 国产三级在线视频| 99在线视频只有这里精品首页| 天堂网av新在线| 老女人水多毛片| 欧美又色又爽又黄视频| 51国产日韩欧美| 久久久久久九九精品二区国产| 国产淫片久久久久久久久| 天堂av国产一区二区熟女人妻| 精品国内亚洲2022精品成人| 成人特级黄色片久久久久久久| 久久精品人妻少妇| 一个人免费在线观看电影| a级一级毛片免费在线观看| 一进一出好大好爽视频| 性色avwww在线观看| 成人精品一区二区免费| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 国内久久婷婷六月综合欲色啪| 中文字幕av成人在线电影| 天美传媒精品一区二区| 国内精品久久久久精免费| 国产不卡一卡二| 99在线视频只有这里精品首页| 欧美人与善性xxx| 免费不卡的大黄色大毛片视频在线观看 | 少妇丰满av| 最近手机中文字幕大全| 亚洲在线自拍视频| 久久精品国产自在天天线| 午夜激情欧美在线| 国产探花极品一区二区| 在线免费观看的www视频| av女优亚洲男人天堂| 看片在线看免费视频| 香蕉av资源在线| 韩国av在线不卡| 三级国产精品欧美在线观看| 听说在线观看完整版免费高清| 中文在线观看免费www的网站| 午夜福利在线在线| 最近手机中文字幕大全| 国语自产精品视频在线第100页| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 草草在线视频免费看| 国产69精品久久久久777片| 中文亚洲av片在线观看爽| 久久韩国三级中文字幕| 中文字幕av在线有码专区| 免费电影在线观看免费观看| 成年女人毛片免费观看观看9| 午夜福利高清视频| 99久久无色码亚洲精品果冻| 欧美高清成人免费视频www| 久久精品国产清高在天天线| 欧美丝袜亚洲另类| 又黄又爽又免费观看的视频| 亚洲国产欧美人成| 亚洲人成网站在线播| 色在线成人网| 一级av片app| 国产精品久久久久久亚洲av鲁大| 亚洲四区av| 久久久久国产精品人妻aⅴ院| 天堂动漫精品| 国产淫片久久久久久久久| 全区人妻精品视频| 亚洲av熟女| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 午夜精品一区二区三区免费看| 亚洲国产欧洲综合997久久,| 亚洲图色成人| 国产精品久久久久久精品电影| 久久99热6这里只有精品| 欧美又色又爽又黄视频| 久久九九热精品免费| 精品一区二区三区视频在线观看免费| 国产精品久久视频播放| av天堂中文字幕网| 精品免费久久久久久久清纯| 国产色婷婷99| 久久精品国产亚洲av香蕉五月| 色尼玛亚洲综合影院| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 欧美性猛交╳xxx乱大交人| 成人永久免费在线观看视频| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| 精品人妻熟女av久视频| 日韩精品有码人妻一区| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 麻豆一二三区av精品| 舔av片在线| 国产老妇女一区| 老司机影院成人| 精品人妻偷拍中文字幕| 直男gayav资源| 深夜精品福利| 日韩,欧美,国产一区二区三区 | 伦理电影大哥的女人| 久久午夜亚洲精品久久| 午夜福利高清视频| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 欧美3d第一页| 国产一区二区三区av在线 | 最近2019中文字幕mv第一页| 人妻制服诱惑在线中文字幕| АⅤ资源中文在线天堂| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩精品成人综合77777| 成人av在线播放网站| 99久久久亚洲精品蜜臀av| 99久久精品国产国产毛片| 三级男女做爰猛烈吃奶摸视频| 中国美女看黄片| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 插逼视频在线观看| 成人无遮挡网站| 欧美三级亚洲精品| 欧美xxxx黑人xx丫x性爽| 欧美人与善性xxx| 99国产精品一区二区蜜桃av| 久久久久国产精品人妻aⅴ院| 亚洲精品影视一区二区三区av| 看免费成人av毛片| 国产麻豆成人av免费视频| 国产 一区精品| 可以在线观看毛片的网站| 偷拍熟女少妇极品色| 色哟哟哟哟哟哟| 欧美xxxx性猛交bbbb| 国产精品一及| 国产精品乱码一区二三区的特点| 午夜福利在线观看吧| 亚洲真实伦在线观看| 内地一区二区视频在线| 听说在线观看完整版免费高清| 国内精品一区二区在线观看| 国产人妻一区二区三区在| 亚洲美女视频黄频| av专区在线播放| 日韩欧美精品免费久久| 国产老妇女一区| 美女高潮的动态| 日韩制服骚丝袜av| 看片在线看免费视频| 最近视频中文字幕2019在线8| 精品熟女少妇av免费看| 99热全是精品| 波多野结衣高清作品| 国产综合懂色| 精品国产三级普通话版| 岛国在线免费视频观看| 欧美高清性xxxxhd video| av在线观看视频网站免费| 秋霞在线观看毛片| 亚洲av五月六月丁香网| 欧美成人一区二区免费高清观看| 一个人看的www免费观看视频| 久久综合国产亚洲精品| 国产成人一区二区在线| 亚洲国产精品成人久久小说 | 精品熟女少妇av免费看| 欧美色欧美亚洲另类二区| 男人舔女人下体高潮全视频|