• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮摻雜碳層包覆金屬鈷顆粒與氮摻雜石墨烯納米復(fù)合材料作為高容量鋰離子電池負(fù)極材料

    2016-12-15 07:42:38耿凱明吳俊杰耿洪波胡亞云瞿根龍潘越鄭軍偉顧宏偉
    關(guān)鍵詞:碳層蘇州大學(xué)負(fù)極

    耿凱明 吳俊杰 耿洪波 胡亞云 瞿根龍 潘越 鄭軍偉 顧宏偉*,

    氮摻雜碳層包覆金屬鈷顆粒與氮摻雜石墨烯納米復(fù)合材料作為高容量鋰離子電池負(fù)極材料

    耿凱明1吳俊杰1耿洪波1胡亞云1瞿根龍1潘越1鄭軍偉2顧宏偉*,1

    (1蘇州大學(xué)材料與化學(xué)化工學(xué)部,江蘇省有機(jī)合成重點(diǎn)實(shí)驗(yàn)室;蘇州納米科學(xué)技術(shù)協(xié)同創(chuàng)新中心,蘇州215123)
    (2蘇州大學(xué)物理與光電·能源學(xué)部,蘇州215123)

    合成了一種石墨烯基納米復(fù)合材料即:由氮摻雜碳層包覆的金屬鈷納米顆粒,充分分散于氮摻雜的石墨烯表面。這種納米復(fù)合材料進(jìn)一步提高了石墨烯的導(dǎo)電性,增加了石墨烯的儲(chǔ)鋰容量。該材料被用作鋰離子電池負(fù)極材料,在性能測(cè)試中展現(xiàn)了良好的循環(huán)性能,在以100 mA·g-1的電流密度循環(huán)200圈后,放電容量高達(dá)950.1 mAh·g-1,庫倫效率約為98%。

    鈷納米顆粒;氮摻雜的石墨烯;負(fù)極材料;鋰離子電池

    (2College of Physics,Optoelectronics and Energy,Soochow University,Suzhou,Jiangsu 215123,China)

    0 Introduction

    Lithium-ion batteries(LIBs)have been applied in industrial production during the past three decades.It has drawn intensive attention due to its unique advantages,such as high energy density,high average output voltage,environmentally friendly,no memory effect,long service life[1].To a large extent,anodematerial is a crucial part of lithium-ion batteries and has significantinfluence on its performance[2].Graphite has been used as an anode material and gained commercialization due to its high Coulombic efficiency and cycling performance.However,the specific capacity ofgraphite is relatively low(theoretical value: 372 mAh·g-1).As the portable household appliances and electric vehicles are developing rapidly, alternative anode materials are urgently required to enhance the battery performance.

    In recent years,non-metallic heteroatom(N,S,P and B)doped carbon-based materials are proposed to be promising candidates anode substrate materials. Many studies show that the doped atoms play an important role on the electrical conductivity and the capacity of carbon materials in LIBs[3-6].Among them, N-doping carbon materials attract the most attention. Generally,the insertion of N atoms to the graphitic lattice can form C-N bond,modulate the band structure and lead to a metal-semiconductor transition, which could dramatically promote the electronic performance,offer more Li-storage sites and reduce Li diffusion barriers[7-12].The morphology of carbon material is also criticalfor the development of carbonbased anode.Among many types of carbon materials (e.g.nanotubes,nanofibers,C60,graphene)[13-16],graphene is one of the most desirable anode materials owing to its high surface area,outstanding electrical conductivity and stable mechanical properties[17].There are already several studies about graphene-based materials,which exhibits better performance than commercialgraphite[18-23].Meanwhile,to further improve the performance of carbon-based anode,many kinds of metal or alloy(e.g.Sn,Sb,Si)[24-26]with electrochemical capability were added onto carbon materials.According to previous reports,these composites can generate synergistic effect between metal and carbon materials, exhibiting a notable capacity increase of carbon-based anode[27-28].Thanks to the beneficial modification of N-doping,the superior electrochemical properties of graphene,and the advantage of metal/carbon composition effect,we consider metal/N-doped graphene-based composites to be very promising anode materials for the application in lithium-ion batteries.

    Hence,in this paper,we synthesized N-doped carbon-encapsulated Co nanoparticles on N-doped graphene(NC@Co@NG)and exploited its performance as anode materials in lithium-ion batteries.The composite has a unique structure,in which Co nanoparticles dispersed on N-doped graphene and wrapped by N-doped carbon layer.When evaluated as an anode material for LIBs,it shows outstanding cycling performance and high Coulombic efficiency. The capacity is up to about 950.1 mAh·g-1after 200 cycles,presenting an upward tendency in the consecutive cycles at the current rate of 100 mA·g-1. Compared to N-doped graphene and Co/graphene described in the literature[29-30,54],the NC@Co@NG delivers a superior electrochemical performance. These results demonstrate that the as-synthesized material is a very promising anode candidate for developing high efficiency lithium-ion batteries.

    1 Experimental

    1.1 Preparation of N-doped carbon-encapsulated Co nanoparticles on N-doped graphene nanosheets

    1.1.1 Synthesis ofgraphene oxide

    First of all,graphene oxide was prepared by graphite powders on the basis of the modified Hummersmethod[31].Briefly,graphite powders(5.0 g) and sodium nitrate(3.8 g)was added to concentrated sulfuric acid(169 mL)under magnetic stirring in an ice-water bath for 1 day.Afterwards,22.5 g of KMnO4was gradually added.As soon as it was mixed well, the ice bath was removed and the solution was stirred at 35℃until a highly viscous liquid was obtained. After adding 100 mL of pure water,the suspension was heated in a 98℃water bath for 15 minutes. Then,it was further treated with warm water and H2O2(30%)in sequence,followed by repeated washing with water and HCl.Finally,the resulting solids were obtained via centrifuging at 6 000 r·m-1and dried at 50℃for 24 h in a vacuum oven.The product was dispersed in water by sonication for 12 h at a concentration of10 mg·mL-1.

    1.1.2 Synthesis of N-doped carbon-encapsulated Co nanoparticles on N-doped graphene nanosheets

    The nano-composite was synthesized according to the literature with some modifications[32].160 mg cobaltacetate and 10 mL cyanamide were dissolved in 30 mL of a distilled water-ethanol(1∶1,V/V)and underwent ultrasonication for about 15 minutes to form a homogeneous solution.Subsequently,the above solution was maintained at80℃for 1 h.After cooling down to room temperature naturally,50 mg graphene oxide was added into the resulting mixture with vigorous magnetic stirring for 24 h.The product was dried at 75℃for removing the most of the water and the ethanol,and then further dried under vacuum conditions at 60℃overnight.The treated samples were calcined at 450℃for 2 h,then at 700℃for 2 h under N2atmosphere.

    1.2 Material characterization

    The crystal structure of the obtained samples was characterized by X-ray diffraction(XRD)(Netherlands PANalytical)with Cu Kαradiation(λ=0.154 059 8 nm),which was carried out between 20°and 80°with a scanning current of 40 mA and a scanning voltage of 40 kV.The microstructural properties were obtained using transmission electron microscopy (TEM),scanning electron microscopy(SEM)and highresolution TEM(HRTEM).The EDS is attached to the SEM.SEM spectroscopy was performed on a Hitachi S-4700 cold field emission scanning electron microscope operated at 30 kV,and TEM(TecnaiG220, FEI,American))was obtained by a Gatan CCD794 camera operated at 200 kV.HRTEM was taken on a Tecnai G2 F20 S-TWIN microscope with an accelerating voltage of 200 kV.The data of XPS are acquired through a KRATOS Axis ultra-DLD X-ray photoelectron spectrometer with monochromatic Mg Kα X-rays(1 283.3 eV).Nitrogen adsorption/desorption isotherms at 77 K were detected by means of an ASAP 2020 V3.03 H instrument.The total specific surface area is inspected relying on the multipoint BrunauerEmmettTeller(BET)method.

    1.3 Electrochemical characterization

    The electrochemical experiments were performed using two electrode coin-type cells with lithium foil serving as both counter and reference electrodes.The working electrodes were made as follows:80%(w/w)of active materials powder(1 mg·cm-2),10%(w/w)of acetylene black(The capacity is about 145 mAh·g-1, shown in Fig.S1 in the Supporting Information),and 10%(w/w)of polyvinylidene fluoride(PVDF)were mixed in an N-methyl-2-pyrrolidone(NMP)solvent to form a homogeneous slurry,followed by spreading onto a copper foil.Finally,the copper foil was dried overnight under vacuum at 100℃.The electrolyte was 1 mol·L-1LiPF6in a 1∶1(V/V)mixture of ethylene carbonate(EC)and diethyl carbonate(DEC). The cell assembly was performed in an argon-filled glove box in which moisture and oxygen were both below 1×10-7(V/V).The cells were charged and discharged between 3.00 and 0.01 V using Land CT2001A tester.Electrochemical impedance spectral measurements of cells before cycling were conducted in the frequency range from 100 kHz to 10 mHz with an alternating currentamplitude of 5 mV.

    Fig.1 Synthetic protocol for NC@Co@NG

    2 Results and discussion

    Fig.1 illustrates the fabrication procedure of N-doped carbon-encapsulated Co nanoparticles on N-doped graphene nanosheets.Briefly,the Co2+-cyanamide (DCDA)complexes were adsorbed on graphene oxide by electrostatic attraction.By virtue of annealing under N2,the cyanamide decomposed into carbon and the Co2+species reduced to Co0which catalyzed the synthesis of carbon layer.As a result,N-dopedcarbon-encapsulated Co nanoparticles on N-doped graphene nanosheets(abbreviated as NC@Co@NG) were successfully fabricated.

    Fig.2A and B shows typical low-magnification scanning electron microscopy images of the NC@Co@NG.Obviously,the surface becomes crude and plicate as compared with graphene oxide(SEM and TEM images were shown in Fig.S2).TEM images of NC@Co@NG(Fig.2C and D)affirm that Co nanoparticles are firmly anchored on the graphene nanosheets.And the N-doped carbon layerderived from the cyanamide,surrounding Co nanoparticles is also clearly observed(high resolution TEM,Fig.S3).In addition,on the basis ofenergy dispersive X-ray(EDS) analysis,the elemental composition in the as-prepared sample comprises of C,N and Co(Fig.S4).

    Fig.2 SEM images of the NC@Co@NG(A,B)and TEM images of the NC@Co@NG(C,D)

    To illustrate the crystalstructure ofthe as-prepared material,XRD measurementswere carried out.Asshown in Fig.3 the characteristic peaks at44.20°(plane(111)), 51.54°(plane(200))and 75.89°(plane(220))coincide well with pure Co(JCPDS No.15-0806).In the XRD pattern,there also is a distinct peak at 25.5°,owing to (002)crystalplanesofgraphene.

    Fig.3 X-ray diffraction(XRD)pattern ofthe NC@Co@NG

    X-ray photoelectron spectroscopy(XPS)is a powerful and accurate technology to analyze the elemental composition and valence states of the samples.So,XPS was used to determine the content and the valence states ofthe carbon,nitrogen and Co atoms in NC@Co@NG.As depicted in Fig.4A,the XPS survey scan of NC@Co@NG,carbon,cobalt,nitrogen and oxygen can be ascribed to C1s,Co3p,Co3s,N1s, and O1s,respectively.Fig.4B shows the spectrum ofN-doped carbon,in which a peak at 285.4 eV is attributed to C-N bonds for C1s.Based on the deconvolution curve(Fig.4C),the two peaks at 398.5 and 400.5 eV for N1s electrons should be assigned to pyridinic and pyrrolic nitrogen,respectively, indicating that the incorporation of N heteroatoms in graphene and carbon layer are successful[33].The broad and asymmetric Co2p XPS high-resolution scan reveals that Co0is synthesized,along with a pair of characteristic peaks at 778.3 and 793.7 eV(Fig.4D).

    Fig.4(A)XPS spectra of NC@Co@NG and high-resolution scans spectra of C1s(B),N1s(C),and Co2p(D)of NC@Co@NG

    Fig.5A shows a typical discharge-charge voltage profile of NC@Co@NG ata currentdensity of100 mA· g-1on the voltage from 0.05 to 3.00 V.During the initial discharge process,the sample provides a very high storage capacity of1 287 mAh·g-1and delivers relative low reversible capacity of 559.7 mAh·g-1,giving rise to an initial Coulombic efficiency of approximately 43%. Itis the Co nanoparticles and N-doped carbon structure that contributes to the remarkable enhancement of the capacity as compared to the theoretical capacity of graphene(372 mAh·g-1)[34-45].However,it is being known that most of the anode materials would inevitably form solid electrode interface(SEI)film with electrolyte decomposition,which results in irreversible capacity loss and poor Coulombic efficiency[46-51]. Nevertheless,starting from the second cycle,the capacities gradually improve.For example,the discharge and charge capacities of 10th,50th,100th and 200th cycle are 530.1,517.9,596.6,586.3, 730.7,716.8,950.1 and 935.1 mAh·g-1,respectively, corresponding to the excellent and stable Coulombic efficiency of 98%(Fig.S5),which indicates that NC@Co@NG composition is activated slowly as anode in LIBs.The resultis to keep a fairly high retention of the enhanced capacity.

    In Fig.5B,we also could see apparently that the NC@Co@NG has a much better cyclic retention and acquires a rather higher reversible capacity than graphene.The capacity of NC@Co@NG increases dramatically from 559 to 950.1 mAh·g-1after 200 cycles,exhibiting improved capacities with respect to prolong cycling.Firstly,nitrogen doping in graphene alters the charge capacity and electric conductivity of LIBs,this is because thatthe nitrogen has the strongerelectronegativity than carbon,and nitrogen p electrons can form the hybridization(pyridinic N,pyrrolic N) with grapheneπsystem:(1)pyridinic N(N-6)can contribute one p electron to theπsystem and bond with two C atoms at the edges or defects of graphene; (2)pyrrolic N(N-5)can contribute two p electrons to theπsystem and make up a five-membered ring.As a result,nitrogen doping promotes the electronic performance,offers more active sites and reduces Li diffusion barriers,which is beneficial to enhance the conductivity and capacity of the graphene[52-56]. Secondly,each Co nanoparticle on the surface of the N-doped graphene acts as micro current collector to improve the efficiency of the electronic connection between the active material and the current collector (Cu foil)through a favorable electrical contact,thus effectively promoting the electron transfer rate of the graphene(non-mental materials).And the reversible conversion reactions of alloying and dealloying between Co and Li(discharge process:Co+Li++e-→LiCo;charge process:LiCo→Co+Li++e-),also elevate lithium storage[40].More importantly,the catalysis property of Co nanoparticles can effectively facilitate the decomposition of the SEI layer[57-61],which commands structuralintegrity of the electrode material and guarantees the insertion and extraction of lithium ion.Thirdly,the N-doped carbon layer can alleviate the degrading of the electrode,which not only provides a lot of diffusion mesoporous for Li-ion insertion and extraction and suppresses the volume change to a certain extent,but also protects the Co nanoparticles from exposing to the electrolyte and inhibits the aggregation and pulverization.Finally,the NC@Co@NG nanocomposites vastly weaken the mechanical strain generated by the volume expansion/ contraction owing to mesoporous structure that is demonstrated by the testing of nitrogen adsorption/ desorption.The specific surface area is 178 m2·g-1, and the diameter distributions of most of pores are 5~20 nm.(Fig.S6).

    Fig.5 Electrochemical properties the NC@Co@NG electrode:(A)Voltage profiles plotted for 1st,10th,50th,100th and 200th cycles at a current density of 100 mA·g-1;(B)Charge/discharge capacities versus cycle number plots at a current density of 100 mA·g-1;(C)Rate capability at various current densities from 100 to 1 000 mA·g-1;(D)Nyquist plots of the NC@Co@NG(red)and graphene(black)

    The rate performance of the NC@Co@NG composite material as electrode of Li-ion batteries was tested at various current densities ranging from 100 to 1 000 mA·g-1(Fig.5C).After 10 cycles of charge-discharge at 100 mA·g-1,the current rate is raised stepwise to 1 000 mA·g-1for 10 or 5 cycles at each rate.Notably,the capacity has a small fluctuation, keeping a fairly high reversible capacity of 511.9, 471.3,394.9 and 336.9 mAh·g-1,at the current rates of 100,200,500 and 1 000 mA·g-1,respectively.In addition,when the rate goes back to 100 mA·g-1,the capacity exhibits a steady-state growth once again.We owe the stable rate stability and good electrochemical performance to the synergistic effect of the Co nanoparticles and N-doping,endowing the nanocomposite electrode high reversible lithium storage,superior electrical conductivity,more diffusion paths for Li-ions and very low volume change.The cyclic voltammogram(CV)curves of the NC@Co@NG also prove that it possesses excellent electrochemical performance(Fig.S7).

    Electrochemical impedance analyses(EIS)was further performed to verify the crucial factors of high lithium-ion storage capacity,rate performance and cycling stability of the NC@Co@NG electrodes compared with graphene electrodes.Fig.5D illustrates the Nyquist plots of NC@Co@NG(red line)and graphene(black line),respectively,using coin cells cycled for 100 cycles.It is obvious that the diameters of the semicircles in the high-medium frequency region and the sloping line in the low-frequency region for the electrodes composed of NC@Co@NG are much smaller than those of the graphene electrode,which indicates that the charge-transfer resistances(Rct)and solid-state diffusion resistance (Zw)of the NC@Co@NG electrodes are smaller than that of the graphene electrode.This result further confirms that Co nanoparticles and N-doping serve as a large number of conductive nodes,thus improving the whole conductivity of NC@Co@NG nanocomposite and leading to a high electrochemical performance for the NC@Co@NG electrodes as anode materials for LIBs.

    3 Conclusions

    In summary,we demonstrate a facile synthesis of N-doped carbon-encapsulated cobalt nanoparticles on N-doped graphene nanosheets(NC@Co@NG)with unique structure.When applied as electrodes in LIBs, the as-prepared NC@Co@NG exhibits excellent electrochemicalper for mance.And the results display a steadily rising specific capacity of 559 to 950.1 mAh· g-1over 200 cycles ata currentdensity of100 mA·g-1, superior to commercial graphite electrode.Meanwhile, a stable rate performance is simultaneously observed, at different current densities ranging from 100 to 1 000 mA·g-1,which indicates a promising anode materialfor Lithium-ion batteries.

    Supporting information is available athttp://www.wjhxxb.cn

    [1]Kang K,Meng Y S,Bréger J,et al.Science,2006,311 (5763):977-980

    [2]Lee J,Urban A,Li X,et al.Science,2014,343(6170):519 -522

    [3]Sun Y,Ning G,Qi C,et al.Electrochim.Acta,2016,190: 141-149

    [4]Reddy A L M,Srivastava A,Ajayan P M,et al.ACS Nano, 2010,4:6337-6342

    [5]Wang Z,Li P,Chen Y,et al.J.Power Sources,2014,263: 246-251

    [6]Wang C,Guo Z,Shen W,et al.Adv.Funct.Mater.,2014,24 (35):5511-5521

    [7]Wu Z S,Winter A,Chen L,et al.Adv.Mater.,2012,24(37): 5130-5135

    [8]Ling Z,Wang Z Y,Qiu J S,et al.Adv.Funct.Mater., 2016,26(1):111-119

    [9]Liu R L,Wan L,Zhao D Y,et al.Adv.Funct.Mater., 2015,25(4):526-533

    [10]Tang J,Wang T,Yamauchi Y,et al.Chem.Eur.J.,2015,21 (48):17293-17298

    [11]Yu X,Kang Y B,Park H S.Carbon,2016,101:49-56

    [12]Wu G,Hu Y,Chen W,et al.Nat.Commun.,2015,6:7258

    [13]Endo M,Kim C,Nishimura K,et al.Carbon,2000,38(2): 183-197

    [14]Wu Y P,Rahm E,Holze R.J.Power Sources,2003,114(2): 228-236

    [15]Casas C D L,Li W Z.J.Power Sources,2012,208:74-85

    [16]Moradi B,Botte G G.J.Appl.Electrochem.,2016,46(2): 123-148

    [17]Bari C D,Go?i-Urtiaga A,Pita M,et al.Electrochim.Acta,2016,191:500-509

    [18]Liu R L,Pan L X,Wu D Q,et al.Phys.Chem.Chem. Phys.,2015,17(6):4724-4729

    [19]Deng Y F,Xie Y,Ji X L,et al.J.Mater.Chem.A,2016,4 (4):1144-1173

    [20]Hao P,Zhao Z H,Yang B,et al.Nano Energy,2015,15:9-23

    [21]Wang D W,Min Y G,Peng B,et al.J.Colloid Interface Sci.,2014,417:270-277

    [22]Liang J Y,Wang C C,Lu S Y.J.Mater.Chem.A,2015,3 (48):24453-24462

    [23]Wu Z S,Ren W C,Cheng H M,et al.ACS Nano,2011,5(7): 5463-5471

    [24]Youn D H,Heller A,Mullins C B.Chem.Mater.,2016,28 (5):1343-1347

    [25]Domi Y,Usui H,Sakaguchi H,et al.ACS Appl.Mater. Interfaces,2016,8(11):7125-7132

    [26]Ding Y L,Wu C,Yu Y,et al.Small,2015,11(45):6026 -6035

    [27]Zhang G,Lu W,Cao F,et al.J.Power Sources,2016,302: 114-125

    [28]Zou X,Huang X,Goswami A,et al.Angew.Chem.,2014, 126(17):4461-4465

    [29]Li X F,Geng D S,Zhang Y,et al.Electrochem.Commun., 2011,13(8):822-825

    [30]Zhu J S,Wang D L,Liu T F,et al.Electrochim.Acta, 2014,125(10):347-353

    [31]Li C,Yang X,Zhao Y,et al.Org.Electron.,2014,15(11): 2868-2875.

    [32]Zhou W J,Zhou J,Zhou Y C,et al.Chem.Mater.,2015,27 (6):2026-2032

    [33]Qu L T,Liu Y,Baek J B,et al.ACS Nano,2010,4(3):1321 -1326

    [34]Wang L X,Li J C,Mao C S,et al.Dalton Trans.,2013,42 (4):8070-8077

    [35]González J R,Alcántara R,Nacimiento F,et al.Electrochim. Acta,2011,56:9808-9817

    [36]Zhang J,Liang Y H,Zhou Q,et al.J.Power Sources, 2015,290:71-79

    [37]Yang S B,Cui G L,Pang S P,et al.ChemSusChem,2010,3: 236-239

    [38]Yue H Y,Shi Z P,Wang Q X,et al.ACS Appl.Mater. Interfaces,2014,6(19):17067-17074

    [39]Mei L,Li C C,Qu B H,et al.Nanoscale,2012,4(18):5731 -5737

    [40]Yue H Y,Shi Z P,Wang Q X,et al.RSC Adv.,2015,5(92): 75653-75658

    [41]Chen C J,Hu X L,Jiang Y,et al.Chem.Eur.J.,2014,20 (5):1383-1388

    [42]Lightcap L V,Kosel T H,Kamat P V.Nano Lett.,2010,10 (2):577-583

    [43]Yang S B,Feng X L,Lvanovici S,et al.Angew.Chem.Int. Ed.,2010,49:8408-8411

    [44]He G Y,Li J H,Chen H Q,et al.Mater.Lett.,2012,82:61 -63

    [45]Liang Y Y,Li Y G,Wang H L,et al.Nat.Mater.,2011,10: 780-786.

    [46]Mai Y J,Tu J P,Gu C D,et al.J.Power Sources,2012,209: 1-6

    [47]Guo W,Li X,Xu J T,et al.Electrochim.Acta,2016,188: 414-420

    [48]Reddy A L M,Srivastava A,Gowda S R,et al.ACS Nano, 2010,4(11):6337-6342

    [49]Liu R L,Pan L X,Wan L,et al.Phys.Chem.Chem.Phys., 2015,17(6):4724-4729

    [50]Deng Y F,Xie Y,Zou K X,et al.J.Mater.Chem.A, 2016,4(4):1144-1173

    [51]Hao P,Zhao Z H,Leng Y H,et al.Nano Energy,2015,15: 9-23

    [52]Wang H B,Zhang C J,Liu Z H,et al.J.Mater.Chem., 2011,21(14):5430-5434

    [53]Hu T,Sun X,Sun H T,et al.Phys.Chem.Chem.Phys., 2014,16(3):1060-1066

    [54]He C Y,Wang R H,Fu H G,et al.J.Mater.Chem.A, 2013,1(46):14586-14591

    [55]LIU Mei-Pin(劉美玭),HU Yu-Xiang(胡宇翔),DU Hong-Bin (杜紅賓).Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31 (12):2425-2431

    [56]LI Yan-Bing(李嚴(yán)冰),DUAN Xiao-Bo(段曉波),HAN Ya-Miao(韓亞苗),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2015,31(4):641-648

    [57]He Y S,Bai D W,Yang X W,et al.Electrochem.Commun., 2010,12(4):570-573

    [58]Park G D,Lee J H,Kang Y C.Carbon,2015,84:14-23

    [59]Lancelot C,Ordomsky V V,Stéphan O,et al.ACS Catal., 2014,4(12):4510-4515

    [60]Xiao Q Q,Zhang Y X,Guo X,et al.Chem.Commun., 2014,50(86):13019-13022

    [61]Beaumont S K,Alayoglu S,Specht C,et al.J.Am.Chem. Soc.,2014,136(28):9898-9901

    N-Doped Carbon-Encapsulated Cobalt Nanoparticles on N-Doped Graphene Nanosheets as a High-Capacity Anode Material for Lithium-Ion Storage

    GENG Kai-Ming1WU Jun-Jie1GENG Hong-Bo1HU Ya-Yun1QU Gen-Long1PAN Yue1ZHENG Jun-Wei2GU Hong-Wei*,1

    (1Key Laboratory of Organic Synthesis of Jiangsu Province;College of Chemistry,Chemical Engineering and Materials Science& Collaborative Innovation Center of Suzhou Nano Science and Technology,Soochow University,Suzhou,Jiangsu 215123,China)

    A graphene-based anode material is demonstrated:N-doped carbon-encapsulated cobalt nanoparticles on N-doped graphene nanosheets(NC@Co@NG),in which cobalt nanoparticles encapsulated by N-doped carbon layer are highly dispersed on the N-doped graphene nanosheets,forming multiple sites for electrical conductivity enhancement and lithium insertion.When used as anode materials in lithium-ion batteries,the nanocomposites exhibitoutstanding electrochemicalperformance,including a considerably large reversible capacity of950.1 mAh·g-1after 200 cycles at a current density of 100 mA·g-1and Coulombic efficiency of98%.

    cobalt nanoparticles;N-doping graphene;anodes;lithium-ion batteries

    TB333

    A

    1001-4861(2016)09-1495-08

    10.11862/CJIC.2016.173

    2016-03-18。收修改稿日期:2016-05-23。

    國家自然科學(xué)基金(No.21373006)、江蘇省省屬高校自然科學(xué)基金(No.14KJB430021)和江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程(PAPD)資助項(xiàng)目。

    *通信聯(lián)系人。E-mail:hongwei@suda.edu.cn;會(huì)員登記號(hào):S06N8847S1505。

    猜你喜歡
    碳層蘇州大學(xué)負(fù)極
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    國家藝術(shù)基金“基礎(chǔ)美術(shù)教育百年文獻(xiàn)展”首站在蘇州大學(xué)開幕
    蘇州大學(xué)藏《吳中葉氏族譜》考述
    尋根(2022年2期)2022-04-17 11:01:38
    Shifting of the Agent of Disciplinary Power in J. M.Coetzee’s Foe
    三維多孔復(fù)合碳層對(duì)電極的制備及其光伏性能研究?
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    低密度防熱材料燒蝕性能研究
    載人航天(2016年3期)2016-06-04 06:08:42
    乙醇為燃料的SOFC陽極Ru抗積碳層的制備及研究
    韓國三星開發(fā)出新型鋰離子電池負(fù)極
    视频区欧美日本亚洲| 久久精品国产亚洲av香蕉五月| 亚洲熟女毛片儿| 一区二区三区高清视频在线| 嫩草影视91久久| 99视频精品全部免费 在线 | 免费人成视频x8x8入口观看| 桃红色精品国产亚洲av| 午夜激情福利司机影院| www国产在线视频色| 中出人妻视频一区二区| 久久久久久久久免费视频了| 国产伦精品一区二区三区四那| 亚洲自偷自拍图片 自拍| 国产爱豆传媒在线观看| 久久精品国产亚洲av香蕉五月| 免费大片18禁| 国产亚洲av嫩草精品影院| 女人被狂操c到高潮| 天堂网av新在线| 久久久久久久久中文| 啦啦啦韩国在线观看视频| 99精品在免费线老司机午夜| 99国产精品一区二区蜜桃av| 中文亚洲av片在线观看爽| 国产亚洲精品av在线| 国产视频一区二区在线看| 婷婷精品国产亚洲av| 日本成人三级电影网站| 日韩国内少妇激情av| 免费观看精品视频网站| av黄色大香蕉| 国产又黄又爽又无遮挡在线| 啦啦啦韩国在线观看视频| 啦啦啦观看免费观看视频高清| 99国产精品99久久久久| 亚洲专区字幕在线| 欧美激情久久久久久爽电影| 国产精品一区二区三区四区免费观看 | 村上凉子中文字幕在线| 国产午夜精品久久久久久| 日本一二三区视频观看| 久久热在线av| 成人特级黄色片久久久久久久| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放| 欧美中文日本在线观看视频| 国产免费男女视频| 亚洲国产精品sss在线观看| 黄色视频,在线免费观看| 狂野欧美白嫩少妇大欣赏| 脱女人内裤的视频| 亚洲熟女毛片儿| 亚洲自拍偷在线| 99国产极品粉嫩在线观看| 老熟妇仑乱视频hdxx| 亚洲中文字幕日韩| 亚洲 欧美 日韩 在线 免费| 日韩中文字幕欧美一区二区| 亚洲成人久久性| 婷婷精品国产亚洲av在线| 亚洲中文字幕日韩| 波多野结衣高清无吗| 啦啦啦免费观看视频1| www日本黄色视频网| 1024香蕉在线观看| 久久久水蜜桃国产精品网| 99国产综合亚洲精品| 搡老妇女老女人老熟妇| 色综合欧美亚洲国产小说| 熟妇人妻久久中文字幕3abv| 亚洲成人久久性| www日本黄色视频网| 丁香欧美五月| 全区人妻精品视频| 欧美绝顶高潮抽搐喷水| 亚洲 欧美一区二区三区| 亚洲专区字幕在线| 国产毛片a区久久久久| 亚洲中文字幕一区二区三区有码在线看 | 在线视频色国产色| 午夜免费观看网址| 91麻豆精品激情在线观看国产| 90打野战视频偷拍视频| 欧美日韩乱码在线| 又大又爽又粗| 色综合亚洲欧美另类图片| 九九热线精品视视频播放| 热99re8久久精品国产| 99热精品在线国产| 中文字幕av在线有码专区| 脱女人内裤的视频| 欧美最黄视频在线播放免费| 国产aⅴ精品一区二区三区波| 国产精品永久免费网站| 怎么达到女性高潮| 熟妇人妻久久中文字幕3abv| 又黄又爽又免费观看的视频| 亚洲精品在线美女| 日韩精品青青久久久久久| av欧美777| 国产精品免费一区二区三区在线| 美女高潮喷水抽搐中文字幕| 亚洲狠狠婷婷综合久久图片| 日本 欧美在线| 观看免费一级毛片| 97碰自拍视频| 欧美日韩乱码在线| 99久久成人亚洲精品观看| 日本成人三级电影网站| 国产午夜精品久久久久久| 亚洲人成伊人成综合网2020| 老司机深夜福利视频在线观看| 18禁黄网站禁片免费观看直播| 亚洲欧美日韩卡通动漫| 欧美中文综合在线视频| 国产视频一区二区在线看| 亚洲熟妇中文字幕五十中出| 午夜激情欧美在线| 日韩国内少妇激情av| 亚洲美女视频黄频| 免费观看的影片在线观看| 久久国产精品人妻蜜桃| 午夜福利高清视频| 精品国产乱码久久久久久男人| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人伦免费视频| 在线永久观看黄色视频| 一级作爱视频免费观看| 熟妇人妻久久中文字幕3abv| 色吧在线观看| 国产美女午夜福利| 激情在线观看视频在线高清| 欧美黄色片欧美黄色片| 国产视频内射| 国产精品99久久99久久久不卡| 久久精品国产清高在天天线| 国产麻豆成人av免费视频| netflix在线观看网站| 在线视频色国产色| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看 | 国产精品av久久久久免费| 成人鲁丝片一二三区免费| 欧美日韩瑟瑟在线播放| 欧美黄色片欧美黄色片| 亚洲成a人片在线一区二区| 天天一区二区日本电影三级| 国产精品免费一区二区三区在线| 在线看三级毛片| 日本熟妇午夜| 97超视频在线观看视频| 免费在线观看成人毛片| 在线a可以看的网站| 亚洲熟妇中文字幕五十中出| 在线看三级毛片| 成年版毛片免费区| 一二三四社区在线视频社区8| 99热6这里只有精品| 岛国在线观看网站| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产 | 嫁个100分男人电影在线观看| 99热精品在线国产| 国产又色又爽无遮挡免费看| 一级作爱视频免费观看| 国产精品国产高清国产av| 久久中文看片网| 亚洲人成伊人成综合网2020| 亚洲色图av天堂| 国产精品99久久99久久久不卡| 精品久久久久久久末码| 最近最新免费中文字幕在线| 人妻久久中文字幕网| 操出白浆在线播放| 欧美3d第一页| 男女那种视频在线观看| 久久午夜综合久久蜜桃| 亚洲成a人片在线一区二区| 一级作爱视频免费观看| 毛片女人毛片| 国内毛片毛片毛片毛片毛片| 久99久视频精品免费| 日日夜夜操网爽| 国产一区二区三区视频了| 88av欧美| av在线天堂中文字幕| 色噜噜av男人的天堂激情| 国产高潮美女av| 国产伦一二天堂av在线观看| 亚洲人成电影免费在线| 国产成人av教育| 日韩欧美免费精品| 美女大奶头视频| 国产高清视频在线播放一区| 日本熟妇午夜| 久久久久久久久中文| 亚洲 欧美 日韩 在线 免费| 国产又色又爽无遮挡免费看| 日韩av在线大香蕉| 色视频www国产| 日日摸夜夜添夜夜添小说| 神马国产精品三级电影在线观看| www.999成人在线观看| 久久精品91无色码中文字幕| 在线看三级毛片| 男女那种视频在线观看| 免费看光身美女| 99久久无色码亚洲精品果冻| 亚洲国产欧洲综合997久久,| 69av精品久久久久久| 中国美女看黄片| 观看美女的网站| 亚洲国产欧美人成| 巨乳人妻的诱惑在线观看| 免费看光身美女| 中文字幕精品亚洲无线码一区| 天堂网av新在线| 高潮久久久久久久久久久不卡| 精品日产1卡2卡| www日本在线高清视频| 搡老岳熟女国产| 男女视频在线观看网站免费| 国产精品 欧美亚洲| 女人被狂操c到高潮| 高清毛片免费观看视频网站| 偷拍熟女少妇极品色| 免费看a级黄色片| ponron亚洲| 成年版毛片免费区| 欧美日韩瑟瑟在线播放| 日韩欧美 国产精品| 亚洲,欧美精品.| 男女之事视频高清在线观看| 国产高清有码在线观看视频| 国产高清有码在线观看视频| 亚洲人成电影免费在线| 制服人妻中文乱码| 国产精品亚洲一级av第二区| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人看人人澡| 国产伦在线观看视频一区| 亚洲va日本ⅴa欧美va伊人久久| 在线观看舔阴道视频| 久久人人精品亚洲av| 精华霜和精华液先用哪个| 免费看a级黄色片| 一级a爱片免费观看的视频| 久久久久久人人人人人| 老熟妇仑乱视频hdxx| 黄色成人免费大全| 国产伦在线观看视频一区| 亚洲国产欧美网| 欧美乱色亚洲激情| 国产av在哪里看| 两个人视频免费观看高清| 国产成年人精品一区二区| 成年女人永久免费观看视频| 成人av在线播放网站| 99热精品在线国产| 又紧又爽又黄一区二区| 国产爱豆传媒在线观看| 免费无遮挡裸体视频| 啦啦啦免费观看视频1| 日日干狠狠操夜夜爽| 亚洲人成伊人成综合网2020| 国产又黄又爽又无遮挡在线| netflix在线观看网站| 黄色日韩在线| 午夜影院日韩av| 国产精品av视频在线免费观看| 久久国产乱子伦精品免费另类| 最新中文字幕久久久久 | 免费高清视频大片| 黄色女人牲交| 久久九九热精品免费| 国产激情偷乱视频一区二区| 久久久国产欧美日韩av| 91久久精品国产一区二区成人 | 免费人成视频x8x8入口观看| 午夜免费激情av| 一级作爱视频免费观看| 青草久久国产| 亚洲人成电影免费在线| 欧美3d第一页| 亚洲男人的天堂狠狠| 久久人妻av系列| 中文字幕av在线有码专区| 99国产精品一区二区三区| 高潮久久久久久久久久久不卡| 又黄又爽又免费观看的视频| 国产主播在线观看一区二区| 亚洲精品中文字幕一二三四区| 男人的好看免费观看在线视频| 中出人妻视频一区二区| 看片在线看免费视频| 岛国在线观看网站| 又黄又爽又免费观看的视频| 黄色成人免费大全| 欧美一区二区精品小视频在线| 国产一区在线观看成人免费| 美女午夜性视频免费| 一本久久中文字幕| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 熟女人妻精品中文字幕| 丰满人妻熟妇乱又伦精品不卡| 精品国内亚洲2022精品成人| 欧美乱码精品一区二区三区| 黄色日韩在线| 日韩精品青青久久久久久| 国产又色又爽无遮挡免费看| 床上黄色一级片| 亚洲中文av在线| 亚洲成人久久性| 亚洲精品一卡2卡三卡4卡5卡| 国产视频一区二区在线看| 老熟妇仑乱视频hdxx| 99re在线观看精品视频| 欧美日韩中文字幕国产精品一区二区三区| 国产黄a三级三级三级人| 男女视频在线观看网站免费| 美女高潮的动态| 99热精品在线国产| 国内精品美女久久久久久| 午夜福利在线在线| 久久婷婷人人爽人人干人人爱| 听说在线观看完整版免费高清| 久久九九热精品免费| 国产日本99.免费观看| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 成年免费大片在线观看| 精品不卡国产一区二区三区| 亚洲中文av在线| 校园春色视频在线观看| 一级毛片精品| 女同久久另类99精品国产91| 国产男靠女视频免费网站| 长腿黑丝高跟| 色精品久久人妻99蜜桃| 两人在一起打扑克的视频| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 成人国产一区最新在线观看| 99热只有精品国产| 十八禁人妻一区二区| 成人三级做爰电影| 免费av不卡在线播放| 国产精品av视频在线免费观看| 国产精品女同一区二区软件 | 一个人观看的视频www高清免费观看 | 狠狠狠狠99中文字幕| 欧美色视频一区免费| 精品99又大又爽又粗少妇毛片 | 国产精品乱码一区二三区的特点| 999久久久国产精品视频| 久久天堂一区二区三区四区| 我要搜黄色片| 精品一区二区三区四区五区乱码| 日本一本二区三区精品| 白带黄色成豆腐渣| 国产野战对白在线观看| 国产私拍福利视频在线观看| 亚洲精品美女久久久久99蜜臀| a在线观看视频网站| 欧美一级a爱片免费观看看| 又紧又爽又黄一区二区| 88av欧美| 久久久久九九精品影院| 亚洲人成伊人成综合网2020| 超碰成人久久| 亚洲国产色片| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 久久精品人妻少妇| 亚洲av美国av| 亚洲成av人片免费观看| 成人精品一区二区免费| 村上凉子中文字幕在线| 精品熟女少妇八av免费久了| 国产黄片美女视频| 嫩草影院精品99| 国产激情久久老熟女| 日韩欧美 国产精品| 国产精华一区二区三区| 小蜜桃在线观看免费完整版高清| 国产又色又爽无遮挡免费看| 久久这里只有精品19| 亚洲色图av天堂| 亚洲,欧美精品.| 国产成人一区二区三区免费视频网站| 国语自产精品视频在线第100页| 欧美黄色片欧美黄色片| 精品熟女少妇八av免费久了| 天天一区二区日本电影三级| 亚洲国产欧洲综合997久久,| 国产成人aa在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av免费在线观看| 成人av在线播放网站| 超碰成人久久| 国产黄a三级三级三级人| 国产精品久久电影中文字幕| 99久久久亚洲精品蜜臀av| 国产精品爽爽va在线观看网站| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲| 国内精品久久久久精免费| 在线观看一区二区三区| 国产美女午夜福利| 中文字幕高清在线视频| 人人妻人人澡欧美一区二区| 一本久久中文字幕| 国产亚洲精品综合一区在线观看| 欧美在线黄色| 性色avwww在线观看| 欧美高清成人免费视频www| 国产不卡一卡二| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 国产高清激情床上av| 美女 人体艺术 gogo| 亚洲成人免费电影在线观看| 国产精品久久久久久精品电影| 又爽又黄无遮挡网站| 国产精品亚洲一级av第二区| 91在线精品国自产拍蜜月 | 欧美另类亚洲清纯唯美| 好男人电影高清在线观看| 久久久久九九精品影院| 母亲3免费完整高清在线观看| 日韩精品中文字幕看吧| 又大又爽又粗| 999久久久国产精品视频| 亚洲成a人片在线一区二区| 欧美在线黄色| 两个人看的免费小视频| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 69av精品久久久久久| 99视频精品全部免费 在线 | 美女免费视频网站| 亚洲国产精品久久男人天堂| 亚洲av成人av| 国产伦在线观看视频一区| 91久久精品国产一区二区成人 | 99国产极品粉嫩在线观看| 亚洲第一欧美日韩一区二区三区| 一区福利在线观看| 法律面前人人平等表现在哪些方面| 国产私拍福利视频在线观看| 国产伦精品一区二区三区四那| 久久中文字幕人妻熟女| 国产精品99久久99久久久不卡| 青草久久国产| 国产av在哪里看| 精品99又大又爽又粗少妇毛片 | 韩国av一区二区三区四区| av视频在线观看入口| 99视频精品全部免费 在线 | 一区福利在线观看| 两个人看的免费小视频| 久久久精品欧美日韩精品| 99国产精品一区二区三区| 免费看十八禁软件| 国产乱人视频| 欧美日韩亚洲国产一区二区在线观看| 精品国产美女av久久久久小说| 看免费av毛片| 偷拍熟女少妇极品色| 国语自产精品视频在线第100页| 成年人黄色毛片网站| 成人国产一区最新在线观看| 校园春色视频在线观看| www.999成人在线观看| 欧美日本视频| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月| 一级毛片女人18水好多| 久久中文字幕一级| 国产亚洲av高清不卡| 女警被强在线播放| 少妇丰满av| 夜夜躁狠狠躁天天躁| 亚洲九九香蕉| 亚洲专区国产一区二区| 18禁黄网站禁片午夜丰满| 美女免费视频网站| 精品一区二区三区av网在线观看| 久久中文字幕一级| 午夜两性在线视频| 日本撒尿小便嘘嘘汇集6| 久久这里只有精品中国| 国产精品野战在线观看| cao死你这个sao货| 国产高潮美女av| 亚洲精品456在线播放app | 啦啦啦韩国在线观看视频| 免费观看人在逋| 久久香蕉精品热| 亚洲人成伊人成综合网2020| 国产蜜桃级精品一区二区三区| 丁香六月欧美| 免费搜索国产男女视频| 免费在线观看影片大全网站| 亚洲欧美精品综合久久99| 五月玫瑰六月丁香| 欧美绝顶高潮抽搐喷水| 一本一本综合久久| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| 国产精品爽爽va在线观看网站| 亚洲色图av天堂| 精品熟女少妇八av免费久了| 男人舔女人下体高潮全视频| 成人欧美大片| 啪啪无遮挡十八禁网站| 国产高潮美女av| 老司机福利观看| 天堂√8在线中文| 国产精品乱码一区二三区的特点| 亚洲欧美日韩高清专用| 国产一区在线观看成人免费| 99精品在免费线老司机午夜| cao死你这个sao货| 老熟妇仑乱视频hdxx| 亚洲av电影不卡..在线观看| 亚洲精品粉嫩美女一区| 757午夜福利合集在线观看| 亚洲欧美日韩高清专用| 国产一区二区在线观看日韩 | 成人永久免费在线观看视频| 毛片女人毛片| 巨乳人妻的诱惑在线观看| 一级毛片女人18水好多| 69av精品久久久久久| 久久久久久九九精品二区国产| 亚洲avbb在线观看| 国产成人福利小说| 老司机在亚洲福利影院| 国产成人一区二区三区免费视频网站| 国产精品久久久人人做人人爽| 亚洲国产欧美网| www.www免费av| 欧美日本亚洲视频在线播放| 91老司机精品| av视频在线观看入口| 久久久久久人人人人人| 日韩欧美在线二视频| 综合色av麻豆| 九九在线视频观看精品| 欧美3d第一页| 久久精品影院6| 激情在线观看视频在线高清| 狂野欧美白嫩少妇大欣赏| 色综合亚洲欧美另类图片| 国产亚洲精品av在线| 欧美成人一区二区免费高清观看 | svipshipincom国产片| 淫秽高清视频在线观看| 亚洲熟女毛片儿| 国产成人欧美在线观看| 久久久水蜜桃国产精品网| 网址你懂的国产日韩在线| 亚洲成人久久爱视频| 国产精品久久久人人做人人爽| 中文资源天堂在线| 嫁个100分男人电影在线观看| 亚洲欧美日韩无卡精品| 日日夜夜操网爽| 中亚洲国语对白在线视频| 久久欧美精品欧美久久欧美| 级片在线观看| 偷拍熟女少妇极品色| 国内精品美女久久久久久| 熟女少妇亚洲综合色aaa.| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 99久国产av精品| 久久精品综合一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产97色在线日韩免费| 国产成年人精品一区二区| 国产精品国产高清国产av| 精品无人区乱码1区二区| 亚洲av美国av| 亚洲午夜精品一区,二区,三区| 久久这里只有精品19| 亚洲av美国av| 白带黄色成豆腐渣| 国产视频内射| 亚洲精品美女久久av网站| av福利片在线观看| 在线看三级毛片| 亚洲熟妇中文字幕五十中出| 国产精品99久久99久久久不卡| 两人在一起打扑克的视频| 久久精品影院6| 久久国产精品影院| 成年女人毛片免费观看观看9| 亚洲中文av在线| 夜夜看夜夜爽夜夜摸| 亚洲av电影不卡..在线观看| 嫩草影院精品99| 我的老师免费观看完整版| 亚洲第一电影网av| 国产伦人伦偷精品视频| 亚洲 国产 在线| 99热这里只有是精品50| 男女视频在线观看网站免费| 亚洲乱码一区二区免费版|