• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shear law of velocity boundary layer

    2016-12-12 02:50:52,
    關(guān)鍵詞:邊界層商事定律

    ,

    (College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)

    ?

    Shear law of velocity boundary layer

    LIMingjun,CAIZhenyu

    (College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)

    The theory of boundary layer has been known for many years since 1900’s due to Ludwig Prandtl’s contribution. However, solutions to the boundary layer equation does not properly describe high-Reynolds-number flows. In this paper, a generalized Blasius’s equation with fluctuation functionFis derived by using the Prindtl’s boundary equation of mean value and fluctuation, and a shear law of velocity in the inner boundary layer is built theoretically and numerically. The boundary thickness of the leading edge point is found to beδ0=c2/Reu, whereReu=U∞/ν,c=1.7208 as displacement constant orc=0.664 as momentum constant, respectively. Moreover, the Limit Value Theorem on the velocity boundary layer and numerical experiments show that the Newtonian linear shear law of velocity boundary layer is perfectly satisfied forF=0.1 andF=0.01, and the nonlinear shear law is presented forF=0.001 andF→0. Such a mechanism has never been demonstrated in the classical boundary layer theory.

    generalized Blasius’s equation; fluctuation function; boundary thickness; Newtonian linear shear law

    0 Introduction

    A central issue in the study of fluid dynamics is to determine the velocity profile and its valid thickness within a very thin layer in the neighborhood of the solid wall, i.e., the viscous boundary layer theory[1]. In 1904, the concept and basic equations of the laminar boundary layer theory were first formulated by Prandtl[1-2]. Then, this problem was solved numerically by Blasius[3]. If neglecting the stream direction pressure gradient of the Prandtl’s boundary layer equations, one can get the well-known Blasius's equation

    (1)

    The above equation is an autonomous, third order, nonlinear ordinary differential equation, which results from three similar boundary conditions as follows.

    (2)

    Conditionsf=0 andf′=0 on the solid wall are “no-slip” boundary conditions, which are fundamental elements in analyzing continuum fluid flow. The analytic evaluation of the Blasius’s equation is quite tedious, sometimes resorts to numerical tools. As Blasius has done, similarity transformation technique play a significant role in most studies in solving the boundary layer problem by transforming a partial differential equation (PDE) into an ordinary differential equation (ODE)[4-5]. However, the simulation of fluid flows with “no-slip” boundaries is plagued with difficulties of rough hydrophobic surfaces, so-called “superhydrophobic” surfaces, and molecular dynamics simulations with consideration of the “slip” conditions[6-8]are usually very time consuming. In 1968, Steinheuer[9]gave a systematic review of the solutions to Blasius's equation.

    In the boundary layer, the transition process from laminar to turbulent flow is a basic scientific problem in modern fluid mechanics, and different concepts have been developed to explain the transition mechanism[10]. Among these concepts, streaks and streamwise vorticity are two key features. Some recent works suggested the existence of a self-sustaining process between streamwise vortices and streaks at Reynolds numbers[10-13]. Duriez's study[12]shows that, for Reynolds numberReh=U∞h/v=900(h(h=6 mm)is the cylinder height), the instantaneous velocity field is very fluctuating, and a streamwise modulation exists. He suggested that the self sustaining mechanism through destabilization of the streamwise streaks is probably the reason for the fluctuating at the largest Reynolds numbers where the flow undergoes a transition toward a weakly turbulent state.

    As well known, the boundary layer flow takes place mainly parallel to the solid surface, and the inner boundary layer velocity varies rapidly normal to the surface and slowly along the stream direction. Thus the pressure in the boundary layer can be simply assumed as the pressurep(x). Despite all those features, there has not been a deliberate effort to design the structure of the inner boundary layer flow, which interferes with computation progress of fluid flows with solid walls. The present work is aiming for formulating a generalized Blasius's equation within the valid Prandtl's boundary layer by using a generalized similarity transformation and building the shear law of velocity in the inner boundary layer (velocity boundary layer, simply) both theoretically, and numerically.

    Let the leading edge of the plate flat be atx=0, the plate be parallel to thex-axis and infinitely long downstream. For simplicity, we here consider a steady flow with the main stream or outer flow velocityU∞, which is parallel to the flat plate. The most widely used boundary layer thickness is simply referred to the distancey=δ(x) from the solid boundary at which the local value of the velocity reaches 0.99 ofU∞. The scale factors foruandyappear quite naturally as the main stream velocityU∞and the boundary layer thicknessδ(x), respectively.

    1 Estimation of the boundary thickness of the leading edge point

    It is worth noting here that there are two representative thickness formulations, the displacement thicknessδ1and the momentum thicknessδ2in the Prandtl’s boundary layer theory[1]:

    (3)

    and

    (4)

    The consistent numerical estimation of the boundary layer has to work out two difficulties. First, the boundary layer approximation of the Blasius’s equation is not valid near the leading edge of the plate (δ>x) because the estimation of Eqs. (3) and (4) are not accurate. Second, according to the definition of the boundary layer thickness, the Prandtl’s boundary layer equations are only valid in the boundary layer satisfying 0≤y≤δwith the following actual boundary conditions

    (5)

    That is to say, in the inner region of boundary layer, the Prandtl’s boundary layer equations need to be transformed into an appropriate ODE as the Blasius’s equation, which should be dependent on Reynolds number.

    In the following, we suppose that the boundary layer thicknessδ(x) is the function of positionx. As well known, one can deal with a singularity similar to the that of moving contact line where the Navier-Stokes equations break down near the stagnation point with a few molecular free pathγ0≈0. Letδ0=δ(γ0) be the boundary thickness of the leading edge point, we will estimateδ0≈1/Reufor largeReuin the following. For each position x in the plate flat, one can get the exact boundary layer thickness as defined by

    numerically, wherecis a displacement(or momentum) thickness coefficient,νis the viscous coefficient, a predicted exponent. According to the Prandtl’s boundary layer theory[1], the principle of similarity of the velocity profiles in the boundary layer can be written asu/U∞=φ(y/δ), where the functionφmust be the same for a given distance x from the leading edge. Actually, experience shows that, the velocity is 0 for a suddenly accelerated plate at the stagnation point.

    Tab.1 The functionf′(η) for the boundary layer along a flat plate at zero incidence based on Eq.(1).

    ηf'Hf'L0.00.00000000.00000000.10.03222100.10050120.20.06444090.20098840.30.09665150.30136560.40.12884010.40160420.50.16098910.50204400.60.19307780.6013393ηf'Hf'L0.70.22507800.70124570.80.25695230.79842810.90.28867210.89313981.00.32019080.99000001.10.3112793??5.00.9915702

    Substituting the Blasius’s boundary conditions of Eq. (2) or actual boundary conditions of Eq. (5) into the Blasius’s Eq. (1), we get the values off′, the similar solutions to those of Howarth[4], and both solutions are listed in Table 1. However, there are some physical differences between two solutions. Howwarth’s results show that in the case of Blasius’s boundary conditions (Eq. (2)), in the actual boundaryη=1.0,f′(1.0)=0.320 190 8, it is not consistent with the definition of the Prandtl’s boundary layer thickness. In fact, the boundary conditions of Eq. (2) do not involve the viscosity. This means that the solutions of the Blasius’s equation are independent of the Reynolds number, thus the whole flow pattern in the boundary layer simply undergoes a similarity transformation, longitudinal distances and velocities remaining unchanged. Therefore, it is difficult to investigate the feature of the fluid flow with different Reynolds numbers based on these solutions. In addition, atη=5.0,f′(η)=0.99, which can not be used as the boundary conditions for the outlet flow. Even though we have used actual boundary conditions (5), the Blasius's Eq. (1) is not dependent on Reynolds number and streamline coordination, their solutions are also independent of the Reynolds number. From the view point of fluid dynamics, it is desirable to get a generalized similarity transformation which involves the viscosity.

    ( 6)

    wherec=1.720 8isthedisplacementthicknesscoefficientorc=0.664themomentumthicknesscoefficient,respectively.Approximatinglinearly, δ0≈γ0,andformulation(6)isestimatedasthemolecularfreepathnearthestagnationpointfortheflowsoflargeReynoldsnumber.ItiseasytoshowthatiftheunitReynoldsnumberReu→∞,thenδ0→0.Thereforetheclassicalboundarylayerthicknessisjustalimitoftheaboveboundarylayerthickness.

    2 The generalized Blasius's equation

    (7a)

    (7b)

    Using the dimensionless stream functionf(η), the equation of continuity (7a) can be integrated by introducing the following stream function

    Thus the velocity components become

    (8a)

    (8b)

    where the prime denoting differentiation with respect toη. Inserting Eqs. (8) into Eq. (6), we have

    (9)

    In order to obtain the generalized Blasius's equation in the boundary layer, some suitable assumptions are necessary. In order to disclose some relations between the high-Reynolds-number flows and turbulent flow from (9), we take a generalized Blasius's equation as follows

    (10)

    where fluctuation function

    The above equation is derived out with fluctuation, but the third term of the left side includes more physical meaning like surface tension, energy dissipation, et al.. In the case ofF=0, the generalized Blasius's equation is degenerated into the Blasius's Eq. (1). That is to say, the Blasius’s equation can describe inviscid supersonic flow. IfF=+∞, the Navier Stokes equations are degenerated into the reaction-diffusion equations, and the boundary layer becomes the heat diffusion boundary layer.

    To check the change of the thickness with different Reynolds number, we plot the numerical value ofδ0,δ(1) andf″ forF=0.1,0.01,0.001 and 0. As shown in Table 2, the decrease of the fluctuation function suggests an increasedf″.

    Tab.2 The change of the displacement thickness δ0 and δ(1) with different values of fluctuation function, and the boundary condition f″

    In order to analyze the feature of the boundary layer numerically, the generalized Blasius's Eq. (10) is solved with the real boundary conditions. According to the definition of the original boundary layer thickness,η≥1.0 denotes the outlet flow region of the classical boundary layer, thenf′(1)=0.99, and we get the real boundary conditions as

    (11)

    Fig.1 Shear law of the boundary layer velocity for different values of fluctuation function

    We now focus on the velocity profile in the boundary layer with various values of fluctuation function using the new boundary conditions of Eq. (11).

    Fig.1 shows the velocity profile of boundary layer. To achieve a clean velocity profile of boundary layer, a coordinates change is used for u/U in x streamline. It is seen that the Newtonian linear shear rate is perfectly satisfied for large values of fluctuation function,F=0.1 and 0.01, and the nonlinear shear law is presented for the smaller value of fluctuation function,F=0.001, or for the Blasius’s equation (corresponding toF=0). In order to show the figure clearly, the values off′ forF=0.1 and 0.01 are substituted byf′(η-0.02) andf′(η-0.01), respectively; the valuesf′ forF=0.001,or Blasius’s equation (corresponding toF=0) are substituted by that off′(η+0.02) andf′(η+0.01), respectively.

    To day, it has been well known that a boundary layer flow can switch to turbulence with incresing Reynolds number. According to the Blasius’s work as shown in Fig. 7.7 of [1]and Fig. 2(b) of [15], the velocity distribution is always nonlinear in the boundary layer for higher Reynolds number. The Blasius’s equation is independent with Reynolds number, its numerical results can not explain this feature. Our numerical results show that, with the fluctuation function decreasing, the Newtonian linear shear rate is replaced by the smaller values of fluctuation function, and there is a critical value of fluctuation function where the flow undergoes a transition toward a turbulent state, and to some extent verifying the self sustaining mechanism through destabilization of the streamwise streaks.

    明確中國(guó)有構(gòu)建國(guó)際商事法庭的必要性之后,在設(shè)計(jì)國(guó)際商事法庭的具體規(guī)則之前,我們需要考慮的是中國(guó)國(guó)際商事法庭的定位問(wèn)題,或者說(shuō)是中國(guó)國(guó)際商事法庭的管轄標(biāo)準(zhǔn)問(wèn)題。該問(wèn)題直接決定了中國(guó)國(guó)際商事法庭如何建設(shè)。

    3 the Limit Value Theorem on the velocity boundary layer

    Moreover, the Limit Value Theorem on the velocity boundary layer[17]can be straightforwardly built. By using the extended domain of definition, 0<η<3, the solution of the generalized Blasius's Eq. (10) can be expended into Taylor’s series as follows

    (12)

    Based on the boundary conditions of Eq. (10) (for a given Reynolds number,f″(0) is also given by TABLE 2, 0.9

    Sinceηwas arbitrarily chosen, the only way in which the above equation can be satisfied for all coefficients to be zero. Then

    Combining above values with Eq. (12), we have

    Then

    Letτ0=10, 0.9

    4 Conclusions and summary

    In summary, in the solution of generalized Blasius's equations, we have seen that the new boundary equation (5) is more suitable for the computation of flat plate flow. Furthermore, we show that a transition occurs from laminar to turbulent between fluctuation functionF=0.01 andF=0.001. This transition is associated with the separation point and the nonlinear shear law for different values of fluctuation function. Further, the Limit Value Theorem on the velocity boundary layer[17]is built. In conjunction with experimental measurements, the Limit Value Theorem can help to understand the mechanisms of the transition to turbulence.

    The present study can be supported by a large amount of classical experiment data published in the literature[13,15-20]. It is noted that Eq. (10) is obtained by the pressure gradient of the main stream. At point of separation,μ(?2u/?y2)|y=0=dp/dx, which is in accordance with Eq. (10) of reference[15], letF=τ/Reuwhich decreases with increasingReu. Specially, one can validate the nonlinear shear law in Fig.5 of reference[13]. Recently, Zhou et al. declared that a linear fitting is made toux(z,t) close the plate[18-24], which is opposite with our nonlinear law of boundary layer velocity of higher Reynolds number. In fact, one can find thatux(z,t)is actually nonlinear close the plate in their work (Figs 1(b) of reference[17]), and there exists an extreme value point in the boundary layer.

    [1]SCHLICHTING H, GERSTEN K. Boundary Layer Theory[M]. New York: Springer-Verlag, 2004.

    [2]YAMAGUCHI H. Engineering fluid mechanics[M]. New York: Springer-Verlag, 2009.

    [3]MEIER G E A, SREENIVASAN K R. One hundred years of boundary layer research. IUTAM Symposium[M]. Berlin: Springer-Verlag, 2004.

    [4]HOWARTH L. On the solution of the lamilar boundary-layer equations[J]. Proc R Soc London, Ser A, 1951,5:49-62.

    [5]SCHROLL R D, JOSSERAND C, ZALESKI S, et al. Impact of a viscous liquid drop[J]. Phys Rev Lett, 2009,104(3):338-346.

    [6]SIROVICH L, KARLSSON S. Turbulent drag reduction by passive mechanisms[J]. Nature, 1997,388:753-755.

    [7]CIEPLAK M, KOPLIK J, BANAVAR J R. Boundary conditions at a fluid-solid interface[J]. Phys Rev Lett, 2001,86(5):803-806.

    [8]CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Phys Rev Lett, 2006,96(6):66001-66100.

    [9]STEINHEUER J. Die Losungen der Blasiuss chen Grenzschicht differential gleichung[J]. Proc Wiss Ges, 1968,20:96-125.

    [10]WALEFFE F. On a self-sustaining process in shear flows[J]. Phys Fluids, 1997,9(4):883-900.

    [11]DURIEZ T, AIDER J L, WESFREID J E. Self-sustaining process through streak generation in a flat-plate boundary layer[J]. Phys Rev Lett, 2009,103(14):144502.

    [12]POPE S B. Turbulent Flows[M]. Cambridge: Cambridge University Press, 2000.

    [13]VINOD N, GOVINGARAJAN R. Pattern of breakdown of laminar flow into turbulent spots[J]. Phys Rev Lett, 2004,93(11):114501.

    [14]SEDOV L I. Continuum mechanics (Chinese, translation from the Russian)[M]. Beijing: Higher Education Press, 2009.

    [15]REEUWIJK M V, HARM J J, HANJALIC K. Wind and boundary layers in Rayleigh-Benard convection[J]. Phys Rev E, 2008,77(3):257-260.

    [16]REPIK E U. Turbulent to laminar transition of a boundary layer under large negative pressure gradients[J]. J Eng Phys, 1973,24(2):196-200.

    [17]ZHOU Q, XIA K Q. Measured instantaneous viscous boundary layer in turbulent Rayleigh-Benard convection[J]. Phys Rev Lett, 2010,104(10):104301.

    [18]QIU X L, XIA K Q. Viscous boundary layers at the sidewall of a convection cell[J]. Phys Rev E, 1998,58(1):486-491.

    [19]LAM S, SHANG X D, ZHOU S Q, et al. Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Benard convection[J]. Phys Rev E, 2002,65(2):066306.

    [20]SOLOMON T H, GOLLUB J P. Sheared boundary layers in turbulent Rayleigh-Benard convection[J]. Phys Rev Lett, 1990,64(20):2382-2385.

    [21]AITCHISON I J, AO P, THOULESS D J, et al. Effective Lagrangians for BCS superconductors atT=0[J]. Phys Rev Lett B, 1994,51(10):6531-6535.

    [22]VERZICCO R, CAMUSSI R. Structure function exponents and probability density function of the velocity difference in turbulence[J]. Phys Fluids, 2002,14(2):906-909.

    [23]XU X , BAJAJ K M, AHLERS G. Heat Transport in Turbulent Rayleigh-Benard Convection [J]. Phys Rev Lett, 2000,84(19):4357-4360.

    [24]ZHONG J Q, STEVENS R, CLERCX H, et al. Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Benard Convection[J]. Phys Rev Lett, 2009,102:044502.

    1673-5862(2016)04-0419-07

    速度邊界層剪切定律

    李明軍, 蔡振宇

    (沈陽(yáng)師范大學(xué) 數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院, 沈陽(yáng) 110034)

    自20C初,路德維?!て绽侍靥岢鱿嚓P(guān)理論以來(lái),邊界層理論被人們所熟知。然而,邊界層方程的解并不能恰當(dāng)?shù)孛枋龈呃字Z數(shù)流體。通過(guò)普朗特邊界層方程的平均值和脈動(dòng)值推導(dǎo)出帶有脈動(dòng)函數(shù)F的廣義的Blasius方程,并且通過(guò)理論推導(dǎo)和數(shù)值模擬建立內(nèi)邊界層的速度剪切定律。前緣處邊界厚度δ0=c2/Reu,其中Reu=U∞/ν,當(dāng)求位移厚度時(shí),c=1.720 8,求動(dòng)量損失厚度時(shí),c=0.664。此外,速度邊界層上的極值定理和數(shù)值實(shí)驗(yàn)表明速度邊界層的牛頓線(xiàn)性剪切定律完全滿(mǎn)足于F=0.1 和F=0.01,對(duì)于非線(xiàn)性剪切定律滿(mǎn)足于F=0.001和F→0。這樣的機(jī)制在傳統(tǒng)的邊界層理論中從未被討論過(guò)。

    廣義的Blasius方程; 波動(dòng)函數(shù); 邊界厚度; 牛頓線(xiàn)性剪切定律

    計(jì)算數(shù)學(xué)

    O242 Document code: A

    10.3969/ j.issn.1673-5862.2016.04.008

    Received date: 2016-06-20.

    Supported: Supported by National Natural Science Foundation of China(11171281).

    Biography: LI Mingjun(1968-), male, was born in Yiyang city of Hunan Province,professor of Shenyang Normal University, doctor, doctor supervisor of Xiangtan University.

    猜你喜歡
    邊界層商事定律
    基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
    多一盎司定律和多一圈定律
    歡迎登錄中國(guó)商事仲裁網(wǎng)
    仲裁研究(2019年3期)2019-07-24 07:38:54
    倒霉定律
    論國(guó)際民事訴訟中《國(guó)際商事合同通則》的明示選擇適用
    萬(wàn)有引力定律
    一類(lèi)具有邊界層性質(zhì)的二次奇攝動(dòng)邊值問(wèn)題
    公司資本制度改革與商事登記制度——登記的考察日本商事
    商事法論集(2015年2期)2015-06-27 01:19:22
    商事信托的新發(fā)展與法律應(yīng)對(duì)
    商事法論集(2015年1期)2015-06-27 01:17:12
    非特征邊界的MHD方程的邊界層
    亚洲精品成人av观看孕妇| av黄色大香蕉| 极品教师在线视频| 亚洲国产色片| 一区二区三区四区激情视频| 国产精品三级大全| 日本免费在线观看一区| 男人舔奶头视频| 2021天堂中文幕一二区在线观| 男女边摸边吃奶| 欧美亚洲 丝袜 人妻 在线| 国产永久视频网站| 久久久久久九九精品二区国产| 婷婷色麻豆天堂久久| 国产av码专区亚洲av| 熟女电影av网| 男女啪啪激烈高潮av片| 欧美bdsm另类| 亚洲怡红院男人天堂| 亚洲欧美日韩无卡精品| 26uuu在线亚洲综合色| 亚洲国产欧美在线一区| 国产成人精品婷婷| 精品久久久久久久久av| 少妇裸体淫交视频免费看高清| 欧美成人一区二区免费高清观看| 国产 精品1| 在线亚洲精品国产二区图片欧美 | 丝瓜视频免费看黄片| 亚洲三级黄色毛片| 久久亚洲国产成人精品v| 夫妻性生交免费视频一级片| 国产免费福利视频在线观看| 久久国产乱子免费精品| 久久久久精品久久久久真实原创| 爱豆传媒免费全集在线观看| 国产成人freesex在线| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久丰满| av在线app专区| 国产亚洲一区二区精品| 日本av手机在线免费观看| 精品国产乱码久久久久久小说| 亚洲精品aⅴ在线观看| 成人高潮视频无遮挡免费网站| 国产探花在线观看一区二区| 极品教师在线视频| 免费av不卡在线播放| 欧美老熟妇乱子伦牲交| 国产一区二区三区av在线| 插逼视频在线观看| 国产一区二区三区综合在线观看 | 美女cb高潮喷水在线观看| 国产国拍精品亚洲av在线观看| 欧美精品国产亚洲| 99热网站在线观看| 最新中文字幕久久久久| 欧美高清成人免费视频www| 人人妻人人爽人人添夜夜欢视频 | 精华霜和精华液先用哪个| 国产91av在线免费观看| 国产人妻一区二区三区在| 国产一级毛片在线| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品有码人妻一区| 男女那种视频在线观看| 毛片一级片免费看久久久久| 国产亚洲最大av| 免费不卡的大黄色大毛片视频在线观看| 日韩成人伦理影院| 男女那种视频在线观看| 成人亚洲精品av一区二区| 狂野欧美激情性bbbbbb| 中文精品一卡2卡3卡4更新| 亚洲欧美一区二区三区黑人 | 观看免费一级毛片| 亚洲av在线观看美女高潮| 天堂俺去俺来也www色官网| 国产亚洲91精品色在线| 亚洲精品成人久久久久久| 丰满少妇做爰视频| 超碰av人人做人人爽久久| 三级国产精品欧美在线观看| 丝袜美腿在线中文| 国产精品无大码| 精品国产乱码久久久久久小说| 亚洲精品亚洲一区二区| 97人妻精品一区二区三区麻豆| 精品人妻视频免费看| 欧美激情久久久久久爽电影| 男人狂女人下面高潮的视频| 夫妻午夜视频| 日日啪夜夜爽| 国产综合精华液| 亚洲一级一片aⅴ在线观看| 久久影院123| 午夜亚洲福利在线播放| 视频区图区小说| 国产黄色免费在线视频| 亚洲av中文av极速乱| 熟女电影av网| 人妻少妇偷人精品九色| 视频区图区小说| 精品久久久久久久人妻蜜臀av| 99热这里只有精品一区| 午夜爱爱视频在线播放| 在线免费观看不下载黄p国产| 欧美丝袜亚洲另类| av线在线观看网站| 午夜福利在线观看免费完整高清在| 黄色视频在线播放观看不卡| 麻豆精品久久久久久蜜桃| 少妇熟女欧美另类| 国内精品宾馆在线| 卡戴珊不雅视频在线播放| 欧美激情在线99| av免费观看日本| 五月玫瑰六月丁香| 一级片'在线观看视频| 国产黄片视频在线免费观看| 18禁在线播放成人免费| 天天躁夜夜躁狠狠久久av| 国产黄色免费在线视频| av在线观看视频网站免费| 国产 一区精品| 亚洲激情五月婷婷啪啪| 欧美日韩综合久久久久久| 免费av观看视频| 亚洲精华国产精华液的使用体验| 亚洲国产成人一精品久久久| 一级黄片播放器| 自拍欧美九色日韩亚洲蝌蚪91 | 成人特级av手机在线观看| 最近中文字幕高清免费大全6| 日韩大片免费观看网站| 亚洲精品日韩av片在线观看| 精品久久久久久久末码| 久久精品夜色国产| 国产精品99久久99久久久不卡 | 午夜福利高清视频| 男女边摸边吃奶| 亚洲成人中文字幕在线播放| 丰满乱子伦码专区| 国产精品嫩草影院av在线观看| 成人亚洲欧美一区二区av| 成人亚洲精品一区在线观看 | 国产乱来视频区| 九九爱精品视频在线观看| 国产成人一区二区在线| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 我要看日韩黄色一级片| 一区二区三区免费毛片| 成人二区视频| 亚洲国产精品999| 男人舔奶头视频| 亚洲一级一片aⅴ在线观看| 久久午夜福利片| 高清毛片免费看| 国产精品一区二区三区四区免费观看| 欧美日韩视频精品一区| 国产精品爽爽va在线观看网站| 精品久久久久久久末码| 午夜精品国产一区二区电影 | 视频区图区小说| 国产av国产精品国产| 少妇熟女欧美另类| 国产又色又爽无遮挡免| 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| 亚洲欧美日韩卡通动漫| 欧美成人精品欧美一级黄| 日韩一区二区视频免费看| 制服丝袜香蕉在线| 国产成人免费观看mmmm| 国产成人a∨麻豆精品| 国产精品伦人一区二区| 在线精品无人区一区二区三 | 久久99热这里只有精品18| 一区二区三区四区激情视频| 欧美丝袜亚洲另类| 成年免费大片在线观看| 中文字幕久久专区| 国产熟女欧美一区二区| 神马国产精品三级电影在线观看| 国产成人福利小说| 一级毛片我不卡| 亚洲国产成人一精品久久久| 国产精品99久久久久久久久| 汤姆久久久久久久影院中文字幕| 精品久久久久久久久av| 男人和女人高潮做爰伦理| 欧美丝袜亚洲另类| 国产精品一区www在线观看| 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| 精品人妻视频免费看| 日韩三级伦理在线观看| 午夜福利视频精品| 美女视频免费永久观看网站| 欧美潮喷喷水| 1000部很黄的大片| 国产精品秋霞免费鲁丝片| 18禁在线播放成人免费| 啦啦啦啦在线视频资源| 久久久精品免费免费高清| 国产熟女欧美一区二区| 久久久久久久久大av| 免费大片18禁| 在现免费观看毛片| 成年免费大片在线观看| 91精品一卡2卡3卡4卡| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 亚洲人与动物交配视频| kizo精华| 国产极品天堂在线| 亚洲自偷自拍三级| 黄色视频在线播放观看不卡| 久久久a久久爽久久v久久| 看黄色毛片网站| 亚洲激情五月婷婷啪啪| 亚洲最大成人av| 男人爽女人下面视频在线观看| 联通29元200g的流量卡| 大陆偷拍与自拍| 国产一区二区三区av在线| 日本av手机在线免费观看| 99热这里只有精品一区| 亚洲av二区三区四区| 国产成人91sexporn| 欧美xxxx黑人xx丫x性爽| 免费黄网站久久成人精品| 少妇高潮的动态图| 少妇人妻一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 国产片特级美女逼逼视频| 美女被艹到高潮喷水动态| 1000部很黄的大片| 男女边吃奶边做爰视频| 熟女人妻精品中文字幕| 国产欧美日韩精品一区二区| 三级男女做爰猛烈吃奶摸视频| 看非洲黑人一级黄片| 日本爱情动作片www.在线观看| 亚洲精品国产av蜜桃| 日韩国内少妇激情av| 精品国产三级普通话版| 性插视频无遮挡在线免费观看| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人精品一二三区| 久久韩国三级中文字幕| 国产精品伦人一区二区| 九草在线视频观看| 最新中文字幕久久久久| 嫩草影院新地址| 成人亚洲精品av一区二区| 黄色日韩在线| 97人妻精品一区二区三区麻豆| 一级毛片我不卡| 国产探花在线观看一区二区| 国产爱豆传媒在线观看| 激情五月婷婷亚洲| 美女高潮的动态| 新久久久久国产一级毛片| 久久久欧美国产精品| 午夜福利网站1000一区二区三区| 久久精品综合一区二区三区| 麻豆乱淫一区二区| 国产大屁股一区二区在线视频| 身体一侧抽搐| 亚洲综合色惰| 午夜福利视频精品| 老师上课跳d突然被开到最大视频| 人妻夜夜爽99麻豆av| 精品一区在线观看国产| 国产v大片淫在线免费观看| 国产精品一区二区在线观看99| 亚洲一级一片aⅴ在线观看| 最近2019中文字幕mv第一页| 91狼人影院| 男女下面进入的视频免费午夜| 日韩免费高清中文字幕av| 久久精品熟女亚洲av麻豆精品| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 高清毛片免费看| 永久免费av网站大全| 久久影院123| 国产精品蜜桃在线观看| 久久精品国产亚洲av涩爱| 免费av毛片视频| 在线 av 中文字幕| 免费黄频网站在线观看国产| 久久鲁丝午夜福利片| 国产极品天堂在线| 免费观看无遮挡的男女| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级专区第一集| 久久韩国三级中文字幕| 午夜精品一区二区三区免费看| 神马国产精品三级电影在线观看| 嫩草影院入口| 天堂网av新在线| 国产乱人视频| 日日摸夜夜添夜夜爱| 国产一区有黄有色的免费视频| 久久久午夜欧美精品| 国产精品精品国产色婷婷| 高清毛片免费看| 日韩欧美 国产精品| 我要看日韩黄色一级片| 日本三级黄在线观看| 精品熟女少妇av免费看| 国产精品国产三级国产av玫瑰| 51国产日韩欧美| 国产伦理片在线播放av一区| 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 久久久久久久久久成人| 99热网站在线观看| videos熟女内射| 搞女人的毛片| 一级毛片 在线播放| 五月天丁香电影| 国产精品99久久久久久久久| 一级毛片 在线播放| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 精品久久久久久电影网| 国国产精品蜜臀av免费| 久久久久久久大尺度免费视频| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 国产精品国产三级国产av玫瑰| 久久久久性生活片| 亚洲在久久综合| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| videos熟女内射| 3wmmmm亚洲av在线观看| 美女cb高潮喷水在线观看| 国产免费又黄又爽又色| 国产黄色免费在线视频| 亚洲国产精品成人综合色| 毛片一级片免费看久久久久| 在现免费观看毛片| kizo精华| 国产黄色免费在线视频| 亚洲一级一片aⅴ在线观看| 少妇人妻精品综合一区二区| 欧美激情久久久久久爽电影| 国产男人的电影天堂91| 嘟嘟电影网在线观看| 老司机影院毛片| 久久久国产一区二区| 国产精品国产三级国产专区5o| 欧美日韩一区二区视频在线观看视频在线 | 久久久精品94久久精品| 中文字幕制服av| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 美女被艹到高潮喷水动态| 亚洲美女视频黄频| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 久久久久久久精品精品| 国产免费又黄又爽又色| 成人黄色视频免费在线看| 插阴视频在线观看视频| 麻豆成人av视频| 国产精品国产三级国产av玫瑰| 青春草国产在线视频| 人人妻人人澡人人爽人人夜夜| 日韩强制内射视频| 国产亚洲av片在线观看秒播厂| 中文欧美无线码| 色视频在线一区二区三区| 可以在线观看毛片的网站| 亚洲国产精品专区欧美| 女人被狂操c到高潮| 欧美精品人与动牲交sv欧美| 91久久精品国产一区二区成人| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 丝袜脚勾引网站| 人人妻人人澡人人爽人人夜夜| 欧美少妇被猛烈插入视频| 日日啪夜夜爽| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 精品国产一区二区三区久久久樱花 | 99热这里只有是精品在线观看| 一个人看的www免费观看视频| 国产精品爽爽va在线观看网站| 国产精品麻豆人妻色哟哟久久| 成人黄色视频免费在线看| 简卡轻食公司| 人人妻人人澡人人爽人人夜夜| 亚洲最大成人av| 真实男女啪啪啪动态图| av免费观看日本| 久久人人爽人人片av| 国产精品一区二区性色av| 在线观看免费高清a一片| 亚洲精华国产精华液的使用体验| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦精品一区二区三区四那| 日本wwww免费看| 性色av一级| 国产乱人视频| 男人和女人高潮做爰伦理| 波野结衣二区三区在线| 视频中文字幕在线观看| av专区在线播放| 欧美日韩精品成人综合77777| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 美女xxoo啪啪120秒动态图| 久久久久久久久久久丰满| 免费观看a级毛片全部| 国产片特级美女逼逼视频| 免费av不卡在线播放| 精品少妇久久久久久888优播| 亚洲人成网站在线观看播放| 一级毛片 在线播放| 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 国产精品久久久久久精品电影小说 | 最近的中文字幕免费完整| 夫妻性生交免费视频一级片| 97超碰精品成人国产| 婷婷色综合大香蕉| 国产精品一二三区在线看| 在线观看av片永久免费下载| 国精品久久久久久国模美| 特级一级黄色大片| 综合色av麻豆| 中文字幕制服av| 看非洲黑人一级黄片| 三级国产精品片| 男女啪啪激烈高潮av片| 亚洲精品日本国产第一区| 免费观看av网站的网址| av卡一久久| 日韩成人伦理影院| 91久久精品国产一区二区三区| 国产淫语在线视频| 免费av毛片视频| 在线观看人妻少妇| 大码成人一级视频| 大又大粗又爽又黄少妇毛片口| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品久久久久久婷婷小说| 国产老妇伦熟女老妇高清| 99精国产麻豆久久婷婷| 六月丁香七月| 国产伦理片在线播放av一区| 深爱激情五月婷婷| 免费看光身美女| 丰满乱子伦码专区| 亚洲国产精品999| 国产精品精品国产色婷婷| 80岁老熟妇乱子伦牲交| 激情 狠狠 欧美| 男女那种视频在线观看| 啦啦啦在线观看免费高清www| 国产精品国产三级国产专区5o| 黄色一级大片看看| 免费大片18禁| 免费av观看视频| 一边亲一边摸免费视频| 国产高清三级在线| 高清av免费在线| 可以在线观看毛片的网站| 久久精品综合一区二区三区| 欧美老熟妇乱子伦牲交| 久久精品综合一区二区三区| 另类亚洲欧美激情| 日韩三级伦理在线观看| 国产人妻一区二区三区在| 亚洲精品亚洲一区二区| 少妇熟女欧美另类| 日日啪夜夜撸| 三级国产精品片| 亚洲精品日韩在线中文字幕| 最新中文字幕久久久久| 国产精品久久久久久精品电影小说 | 插阴视频在线观看视频| 美女脱内裤让男人舔精品视频| 久久影院123| 成人一区二区视频在线观看| 午夜激情久久久久久久| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 日本黄色片子视频| 久久99精品国语久久久| 成人鲁丝片一二三区免费| 婷婷色麻豆天堂久久| 国产乱来视频区| 亚洲精品乱码久久久久久按摩| 亚洲欧美一区二区三区国产| 亚洲精品自拍成人| 最近2019中文字幕mv第一页| 久久精品人妻少妇| 亚洲欧美日韩另类电影网站 | 五月开心婷婷网| 啦啦啦中文免费视频观看日本| 在线精品无人区一区二区三 | 777米奇影视久久| 一级毛片aaaaaa免费看小| 亚洲国产欧美在线一区| 免费看日本二区| 免费看a级黄色片| 高清欧美精品videossex| 午夜福利网站1000一区二区三区| 亚洲国产色片| 亚洲av日韩在线播放| 亚洲av免费高清在线观看| 天堂中文最新版在线下载 | 欧美变态另类bdsm刘玥| 成人漫画全彩无遮挡| av在线亚洲专区| 久久6这里有精品| 久久精品国产亚洲av涩爱| 欧美激情在线99| av天堂中文字幕网| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 婷婷色综合大香蕉| 久久精品久久久久久久性| 哪个播放器可以免费观看大片| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 一级毛片我不卡| 女人久久www免费人成看片| 国产精品秋霞免费鲁丝片| 丝袜脚勾引网站| 纵有疾风起免费观看全集完整版| 性色avwww在线观看| 伦精品一区二区三区| 欧美激情在线99| 大陆偷拍与自拍| 男人和女人高潮做爰伦理| 国产乱人视频| 欧美3d第一页| 精品国产三级普通话版| videos熟女内射| 2018国产大陆天天弄谢| 国产91av在线免费观看| 日日撸夜夜添| 国产淫语在线视频| 在线观看国产h片| 日韩电影二区| 欧美另类一区| 中国美白少妇内射xxxbb| 中国国产av一级| 人人妻人人澡人人爽人人夜夜| 五月天丁香电影| 黄片无遮挡物在线观看| 麻豆精品久久久久久蜜桃| 26uuu在线亚洲综合色| 亚洲在线观看片| 偷拍熟女少妇极品色| 大香蕉久久网| 能在线免费看毛片的网站| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站| 97精品久久久久久久久久精品| 国产黄片美女视频| 美女cb高潮喷水在线观看| 久久久亚洲精品成人影院| 99热6这里只有精品| freevideosex欧美| 国产精品伦人一区二区| 日本wwww免费看| 欧美一级a爱片免费观看看| 丰满乱子伦码专区| 亚洲欧美日韩东京热| 噜噜噜噜噜久久久久久91| 国产成人午夜福利电影在线观看| 色视频在线一区二区三区| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频 | 蜜桃久久精品国产亚洲av| 国产成人午夜福利电影在线观看| 丝袜美腿在线中文| 成年女人看的毛片在线观看| 韩国高清视频一区二区三区| 日韩不卡一区二区三区视频在线| 国产淫语在线视频| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 三级国产精品欧美在线观看| 免费电影在线观看免费观看| 国产 一区 欧美 日韩| 亚洲欧美一区二区三区国产| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 成人免费观看视频高清| 久久人人爽人人爽人人片va| 久久久久久久大尺度免费视频| av福利片在线观看| 91午夜精品亚洲一区二区三区| 建设人人有责人人尽责人人享有的 | 亚洲精品国产成人久久av| 日韩国内少妇激情av| 日本一二三区视频观看| 身体一侧抽搐| 亚洲精品国产av成人精品| 久久久午夜欧美精品|