肖靜,毛偉明,丁慧,丁晴,鸝璐,齊聰,徐仙,劉夢,包怡寧
1. 南通大學公共衛(wèi)生學院 職業(yè)衛(wèi)生與環(huán)境毒理學教研室,南通 226019 2. 新疆醫(yī)科大學公共衛(wèi)生學院,烏魯木齊 830054
?
內質網(wǎng)應激在PFOS致大鼠肝損傷中的作用
肖靜1,*,毛偉明1,丁慧1,丁晴1,鸝璐1,齊聰1,徐仙2,劉夢1,包怡寧1
1. 南通大學公共衛(wèi)生學院 職業(yè)衛(wèi)生與環(huán)境毒理學教研室,南通 226019 2. 新疆醫(yī)科大學公共衛(wèi)生學院,烏魯木齊 830054
通過全氟辛烷磺酸(PFOS) 28 d大鼠經(jīng)口染毒評價PFOS肝損傷效應,探討內質網(wǎng)應激在PFOS毒效應中的作用。Wistar大鼠隨機分組,分別以0 mg·kg-1、5 mg·kg-1和10 mg·kg-1PFOS 灌胃染毒28 d。HE染色觀察大鼠肝臟形態(tài)改變。ELISA法測定各組丙氨酸轉氨酶(ALT)、天門冬氨酸轉氨酶(AST)、堿性磷酸酶(ALP)和淀粉酶(AMY)含量變化。紫外分光光度法測定肝組織勻漿中丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽過氧化物酶(GSH-Px)活性變化。RT-PCR檢測肝臟內質網(wǎng)應激標志蛋白表達水平。結果表明,PFOS造成大鼠體重降低、肝重增高(P<0.05),組織切片顯示肝細胞出現(xiàn)脂質沉積。PFOS不同劑量組大鼠ALT隨暴露濃度增加,分別為(50.96±10.02) U·L-1、(71.73±11.55) U·L-1,顯著高于對照組(P<0.05),AST、ALP含量與對照組相比顯著上升(P<0.05),高劑量組AMY水平為(833.46±63.05) U·L-1,與對照組相比顯著降低(P<0.05)。GSH-Px和SOD水平隨PFOS濃度增加出現(xiàn)了顯著降低(P<0.05),而MDA水平顯著升高(P<0.05)。內質網(wǎng)應激標志蛋白表達均較對照組顯著上升(P<0.05)。以上結果說明PFOS可導致大鼠肝細胞損傷,其機制可能與內質網(wǎng)應激調控有關。
全氟辛烷磺酸(PFOS);大鼠;肝損傷;內質網(wǎng)應激
Received 9 November 2015 accepted 18 November 2015
全氟辛烷磺酸(perfluorooctane sulfonate, PFOS)是全氟有機化合物(perfluorinated compounds, PFCs)的一種,因其物理化學性質穩(wěn)定而在紡織、皮革制造、農(nóng)藥及個人消費領域廣泛應用,但同時PFOS所具有的疏水疏油特性使其難以降解并易在各環(huán)境介質間遷移,目前在大氣、水體和土壤中都已檢測到PFOS的廣泛存在[1-2]。環(huán)境中的PFOS可通過呼吸、飲食等方式進入機體,并在生物放大、生物濃縮等作用下在人體內富集產(chǎn)生毒性效應,代謝動力學實驗表明肝臟為PFOS主要蓄積和作用器官[3-4]。目前研究發(fā)現(xiàn)PFOS可導致實驗動物出現(xiàn)肝細胞通訊異常、引發(fā)線粒體腫脹、生物膜結構受損,造成肝細胞變性壞死和級聯(lián)炎性反應,影響肝臟正常功能及基因表達轉錄[5-6],有研究這認為PFOS的這種損害結局可能與過氧化物酶體增殖激活受體(peroxisome proliferators-activated receptor, PPAR)及其下游基因表達過度上調有關[6],但也有學者指出不同種屬動物及人體內PPAR在表達分布及功能調控上均存在一定差異,且不同全氟化合物對嚙齒類動物和人類PPAR各亞基激活能力各有不同,相對嚙齒類動物,PFOS對人類PPAR的作用較弱[7-9]。Rosen等[10]發(fā)現(xiàn)小鼠敲除PPAR基因后,肝臟腫大、脂質堆積及炎性反應并未消失,Jacquet等[11]和Takacs等[12]通過細胞轉染實驗也認為PFOS存在獨立于PPAR之外的損傷途徑。但截至目前,對PFOS所致肝臟損傷的具體機制尚未明了。
近年研究表明應激反應是肝損傷過程中的重要環(huán)節(jié)之一,其中內質網(wǎng)應激(endoplasmic reticulum stress, ERS)ERS作為獨立于細胞膜受體或線粒體途徑的第3條凋亡途徑參與了包括外源化學物、病毒、非酒精性脂肪肝等多種因素引起的肝損傷發(fā)生發(fā)展[13-14]。ERS作為細胞自我保護機制,正常情況下參與機體應對外在刺激的多重信號傳導及基因網(wǎng)絡調控,但當ERS過度時,可通過C/EBP同源蛋白(C/EBP homology protein, CHOP)、葡萄糖調節(jié)蛋白-78(glucose regulated protein-78, GRP78)、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)及半胱氨酸蛋白水解酶介導的多種方式促進細胞信號錯誤,導致疾病發(fā)生[15]。鑒于以上原因,我們擬通過動物實驗考察PFOS對大鼠肝臟損害效應表現(xiàn)及對ERS標志蛋白表達的影響,借此探討PFOS肝損傷的潛在機制與可能途徑,為PFOS生態(tài)毒理學研究提供基礎數(shù)據(jù)。
1.1 試劑與儀器
試劑:全氟辛烷磺酸(Assay LC-MS 98%,Sigma-Aldrich公司,美國);RT-PCR試劑及引物(TaKaRa大連寶生物公司,中國);丙氨酸轉氨酶試劑盒、谷草轉氨酶試劑盒、堿性磷酸酶試劑盒(Applied Biosystems公司,美國);單胺氧化酶、超氧化物歧化酶、谷胱甘肽、琥珀酸脫氫酶試劑盒(碧云天生物研究所,中國);其他試劑均為國產(chǎn)分析純。
儀器:5332型PCR儀(Eppendorf公司,德國)、MODEL550酶標儀(Bio-Rad公司,美國)、RM2126切片機(Leica公司,德國)、CK40顯微鏡(Olympus公司,日本)、CFI60數(shù)碼相機(Nikon, 日本);
1.2 試驗動物及染毒
考慮到文獻報道中PFOS對雄性大鼠具有較為明顯的毒性效應[16-17],本次實驗選用成年Wistar雄性大鼠48只,體重220~250 g,上海西普爾必凱實驗動物有限公司提供(SCXK滬2008-0016),實驗室馴養(yǎng)1周后隨機分為0 mg·kg-1PFOS(對照組)、5 mg·kg-1PFOS(低劑量組)和10 mg·kg-1PFOS(高劑量組)(n = 16),灌胃染毒28 d。期間每周稱重并于實驗結束頸椎脫臼處死動物,采集血清及肝臟樣本進行相關指標檢測。動物飼養(yǎng)室溫(18~23) ℃,相對濕度45%~55%。實驗期間自由飲水攝食。
1.3 指標檢測
1.3.1 臟器系數(shù)
大鼠處死前稱重,處死后用預冷生理鹽水漂洗肝臟,濾紙吸干稱取肝重計算臟器系數(shù):臟器系數(shù)(%)=臟器重量(g)/大鼠體重(g)×100%。
1.3.2 肝臟病理觀察
肝臟組織用10%中性福爾馬林溶液固定,常規(guī)脫水后石蠟包埋制備4 μm切片,HE染色后顯微鏡觀察其病理學變化。
1.3.3 血清中代謝酶測定
大鼠經(jīng)下腔靜脈取血后室溫3 000 r·min-1離心分離血清,ELISA試劑盒檢測血清中丙氨酸轉氨酶(ALT)、天門冬氨酸轉氨酶(AST)、堿性磷酸酶(ALP)和淀粉酶(AMY)水平。
1.3.4 氧化還原酶活力測定
取大鼠肝臟組織1 g,按重量體積比加生理鹽水制備10%組織勻漿,2 000 r·min-1離心5 min取上清。硫代巴比妥酸(TBA)法測定丙二醛(MDA)含量,黃嘌呤氧化酶法測定超氧化物歧化酶(SOD)含量,DTNB直接法測定谷胱甘肽過氧化物酶(GSH-Px)含量,具體操作按試劑盒說明書進行。
1.3.5 內質網(wǎng)應激蛋白表達水平檢測
大鼠處死后迅速剖腹摘取肝臟,稱取100 mg肝組織,Trizol抽提總RNA,紫外分光光度計測定OD260/OD280比值以檢驗純度,兩步法進行反轉錄和實時PCR。擴增所用引物如下:GRP78-F:AACCCAGATGAGGCTGTAGCA,GRP78-R:ACATCAAGCAGAACCAGGTCA;CHOP-F:CCAGCAGAGGTCACAAGCAC,CHOP-R:CGCACTGACCACTCTGTTTC;管家基因?-Actin-F:CAGTGTGGGTGACCCCGT,?-Actin-R:CCCAGCCATGTACGTTGCTA。反應體系為10 μg·μL-1cDNA模板2 μL、10 μmol·L-1引物各0.4 μL、2×SYBR 10 μL、ddH2O補充總體積為20 μL。反應條件為95 ℃ 5 s,退火溫度65 ℃ 30 s,72 ℃ 30 s,反應40個循環(huán)計算相對表達量。
1.4 統(tǒng)計學分析
2.1 PFOS暴露對大鼠一般狀況的影響
隨實驗周期進展,PFOS暴露組大鼠出現(xiàn)活動遲緩、被毛暗淡、毛發(fā)豎直現(xiàn)象,其中以10 mg·kg-1組大鼠更為明顯,偶有大鼠出現(xiàn)輕微腹瀉、鼻出血,個別實驗動物出現(xiàn)脫毛、蜷臥。隨染毒時間延長、劑量增加,暴露組大鼠出現(xiàn)不同程度體型消瘦。
如表1所示,實驗第3周時,10 mg·kg-1暴露組大鼠體重(288.4±20.6) g與0 mg·kg-1組(344.4±24.9) g相比出現(xiàn)顯著降低(P<0.05),5 mg·kg-1暴露組大鼠雖也出現(xiàn)了體重減少(318.5±19.5) g,但與0 mg·kg-1組相比差異并不顯著。第4周時5 mg·kg-1和10 mg·kg-1PFOS暴露組大鼠體重分別為(339.2±14.7) g和(304.4±19.7) g,相比0 mg·kg-1組(387.1±19.3) g均出現(xiàn)顯著降低(P<0.05),但不同劑量組間無顯著差異。如表2所示,與此同時,PFOS暴露造成大鼠肝重的增加,不同劑量組大鼠肝臟系數(shù)與0 mg·kg-1組相比均顯著增加(P<0.05)。
2.2 PFOS暴露對大鼠肝臟形態(tài)影響
對各組大鼠肝臟形態(tài)進行比較,大體觀察可見0 mg·kg-1組大鼠肝臟色澤鮮紅,質地柔軟且表面光滑,邊緣銳利,光鏡下HE染色顯示肝細胞排列整齊,細胞中央有大而圓的核,細胞質均勻。而在PFOS暴露組大體可見明顯的肝臟體積增大,肝臟表面出現(xiàn)黃色點狀分布的脂肪沉著,肝臟邊緣變鈍,HE染色鏡下觀察染毒組肝細胞腫脹,胞質內可見大小不等的脂滴空泡并將細胞核擠向一側,在10 mg·kg-1組改變更為明顯。
GroupDay0Day7Day14Day21Day280mg·kg-1215.5±15.6287.9±14.8319.1±19.9344.4±24.9387.1±19.35mg·kg-1238.6±17.2290.6±19.1311.5±18.1318.5±19.5339.2±14.710mg·kg-1229.4±15.7268.9±20.0284.7±13.8288.4±20.6*304.4±19.7*
注:*表示與0 mg·kg-1組相比P<0.05。
Note:* P<0.05 compared with 0 mg·kg-1group.
組別Group肝重/gLiverweight/g肝臟臟器系數(shù)/%Organcoefficien/%0mg·kg-112.14±1.193.15±0.165mg·kg-115.75±1.814.63±0.29*10mg·kg-117.07±1.10*5.61±0.42*
注:*表示與0 mg·kg-1組相比P<0.05。
Note:* P<0.05 compared with 0 mg·kg-1group.
2.3 PFOS暴露對大鼠血清中肝臟代謝酶水平影響
對PFOS暴露后大鼠血清中肝功能相關酶活性進行了檢測,結果如表3所示。PFOS暴露造成ALT、AST、ALP含量顯著上升(P<0.05),其中ALT水平隨暴露濃度增高顯著上升(P<0.05),AST和ALP水平在PFOS各暴露組中均顯著高于0 mg·kg-1組(P<0.05),但各暴露組間差異并不顯著。AMY在5 mg·kg-1PFOS組改變并不明顯,但在10 mg·kg-1組中較對照組出現(xiàn)了顯著降低(P<0.05)。
2.4 PFOS暴露對大鼠氧化還原指標的影響
對各組大鼠肝細胞勻漿中氧化還原酶水平的檢測發(fā)現(xiàn),5 mg·kg-1PFOS暴露組大鼠肝臟SOD活性相比對照組略有增高,但差異并不顯著,而在10 mg·kg-1組SOD水平隨PFOS濃度增加出現(xiàn)了顯著的降低(P<0.05)。與此同時如表4所示,GSH-Px活性同樣受到PFOS暴露的影響,與0 mg·kg-1組相比在各暴露組出現(xiàn)了顯著降低(P<0.05),且隨PFOS濃度增高受影響程度更為顯著(P<0.05),與GSH-Px趨勢類似,在暴露組中隨PFOS濃度增加MDA水平也隨之顯著升高(P<0.05)。
圖1 PFOS對大鼠肝臟組織病理的影響(HE×100) 注:A,0 mg·kg-1;B,5 mg·kg-1;C,10 mg·kg-1。Fig. 1 Effect of PFOS on liver tissue morphology (HE×100) Note: A, 0 mg·kg-1; B, 5 mg·kg-1; C, 10 mg·kg-1.
表3 PFOS暴露對大鼠血清肝代謝酶的影響
注:*表示與0 mg·kg-1組相比P<0.05,#表示與5 mg·kg-1相比P<0.05。
Note:* P<0.05 compared with 0 mg·kg-1group; # P<0.05 compared with 5 mg·kg-1group.
表4 PFOS暴露對大鼠肝組織中氧化還原酶的影響± s,n=16)
注:*表示與0 mg·kg-1組相比P<0.05,#表示與5 mg·kg-1相比P<0.05。
Note:* P<0.05 compared with 0 mg·kg-1group; # P<0.05 compared with 5 mg·kg-1group.
2.5 PFOS暴露對大鼠肝臟內質網(wǎng)應激蛋白表達水平影響
為了解PFOS是否造成內質網(wǎng)應激的出現(xiàn),對肝臟中ERS標志蛋白GRP78和CHOP表達水平進行了檢測。GRP78 mRNA水平在PFOS暴露后,相較對照組均出現(xiàn)了顯著上升,分別為對照組的1.87倍和2.75倍,并隨著暴露濃度增加表達水平顯著升高。實驗中同樣發(fā)現(xiàn)PFOS導致了CHOP mRNA相對表達量的顯著增高,分別為對照組1.30和1.53倍,但不同劑量組間CHOP表達差異并不顯著。
PFOS作為全氟化合物的典型代表,是目前繼多氯聯(lián)苯、有機氯農(nóng)藥和二噁英之后的一種新型持久性有機污染物,PFOS眾多毒效應中以肝臟損害較為明顯[18]。本實驗中發(fā)現(xiàn)PFOS暴露組大鼠血清ALT、AST、ALP和AMY水平隨PFOS染毒劑量增加改變顯著。ALT、AST為分布于肝細胞胞質及線粒體中的非特異性功能酶,在肝細胞破壞時釋放入血。ALP通常由肝臟排泄,肝損傷時可經(jīng)淋巴道和肝竇反流入血出現(xiàn)增高。AMY是催化淀粉和糖原水解的淀粉酶,有研究發(fā)現(xiàn)AMY與肝炎、肝纖維化進程有關[19-20],在輕中度肝損害時可能出現(xiàn)降低[21],與此同時,代謝性疾病患者如胰島素抵抗人群也常伴隨AMY活性減退,證實與肝功能受損直接或間接影響胰腺細胞結構或功能有關[19, 22]。本實驗中發(fā)現(xiàn)除AMY僅在高劑量組出現(xiàn)降低外,其余指標均表現(xiàn)為隨PFOS暴露劑量增加而改變顯著,這與動物和人群實驗中觀察到現(xiàn)象一致[6, 23],表明PFOS可能已造成肝細胞破壞及肝臟代謝紊亂,提示肝臟損害出現(xiàn)。
GroupGRP78mRNACHOPmRNA0mg·kg-10.28±0.050.30±0.055mg·kg-10.53±0.10*0.39±0.11*10mg·kg-10.77±0.19*#0.46±0.08*
注:*表示與0 mg·kg-1組相比P<0.05,#表示與5 mg·kg-1相比P<0.05。
Note:* P<0.05 compared with 0 mg·kg-1group; # P<0.05 compared with 5 mg·kg-1group.
ERS是由鈣失衡、中毒、氧化應激、代謝障礙等引起錯誤折疊蛋白質累積而出現(xiàn)的內質網(wǎng)結構和功能破壞,GRP78和CHOP作為ERS關鍵應激分子在其未折疊蛋白響應調控中發(fā)揮重要作用。實驗中我們發(fā)現(xiàn)PFOS組大鼠肝臟中以上蛋白表達出現(xiàn)顯著增高,提示PFOS可能損害內質網(wǎng)功能、誘導ERS出現(xiàn)。Butenhoff等[24-25]在小鼠實驗中也觀察到PFOS慢性暴露后肝臟內質網(wǎng)形態(tài)異常并推測可能導致功能改變,魚類實驗也證實PFOS能造成ERS蛋白二硫鍵異構酶A3表達增高。近年研究認為ERS在多因素引起的肝損害中均發(fā)揮作用,一方面ERS能通過損害線粒體功能間接誘發(fā)能量衰竭造成氧化容量受損,抑制AMP依賴蛋白激酶而激活內質網(wǎng)膜連接分子固醇調節(jié)元件結合蛋白入核參與轉錄,引起脂代謝相關基因如脂肪酸合成酶和乙酰輔酶A羧化酶等過度表達,并通過JNK途徑激活糖原合成酶激酶3表達干擾膽固醇和甘油三酯攝取,造成脂代謝紊亂、通過中間產(chǎn)物積聚引起肝細胞損傷[26-28]。本次實驗中發(fā)現(xiàn)暴露組大鼠出現(xiàn)不同程度肝臟重量增加和肝細胞內脂滴出現(xiàn)說明PFOS的損害效應可能與脂肪代謝異常有關,以上ERS調節(jié)方式在其中可能發(fā)揮作用。這和Curran等[23]報道結果一致,Curran等以50~100 mg·kg-1PFOS對雄性大鼠進行連續(xù)28 d染毒,結果發(fā)現(xiàn)肝細胞腫大、脂滴增多,肝臟總飽和脂肪酸和硬脂酸水平顯著下降,Rosen等[10, 23]也證實PFOS能夠誘導SREBP2和PPAR輔助活化因子1表達改變造成肝臟脂肪堆積和炎性浸潤。此外,本實驗中PFOS組胞內SOD和GSH-px活性顯著降低,脂質過氧化產(chǎn)物MDA的水平則隨暴露劑量增加出現(xiàn)升高,說明PFOS能引起機體過氧化通路的容量改變,這與他人等研究結果一致[29]。Huang等[25]認為PFOS可顯著改變Mn-SOD等氧化還原反應分子水平,并可能通過CCAAT/增強子結合蛋白β或等不同亞基的作用參與ERS調控。這可能因為ERS可上調細胞氧化酶胞漿亞基直接導致活性氧堆積[30-31],也可在CHOP調控下誘導凋亡抑制基因、促凋亡因子及胱天蛋白酶-3表達引起細胞內還原物質如谷胱甘肽耗損觸發(fā)活性氧級聯(lián)瀑布反應[32-33],通過啟動細胞因子如白介素2、腫瘤壞死因子炎性反應通路造成肝細胞凋亡壞死,同時這種氧化應激級聯(lián)反應可通過磷酸化真核翻譯起始因子2上調酵母菌轉錄因子的表達持續(xù)激活巰基基因表達程序,參與內質網(wǎng)整合應激反應途徑從而進一步加重ERS,造成肝臟細胞持續(xù)損傷[34-35]。
綜上所述,PFOS具有明顯的肝毒性作用,可導致肝臟形態(tài)異常并影響肝代謝酶水平,同時導致過氧化反應分子的顯著改變,這可能與GRP78和CHOP所參與的ERS調控途徑有關。
[1] Liu B, Zhang H, Xie L, et al. Spatial distribution and partition of perfluoroalkyl acids (PFAAs) in rivers of the Pearl River Delta, southern China [J]. Science of the Total Environment, 2015, 524(8): 1-7
[2] Miralles-Marco A, Harrad S. Perfluorooctane sulfonate: A review of human exposure, biomonitoring and the environmental forensics utility of its chirality and isomer distribution [J]. Environment International, 2015, 77(4): 148-159
[3] Butenhoff J L, Olsen G W, Pfahles-Hutchens A. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum [J]. Environmental Health Perspectives, 2006, 114(11): 1776-1782
[4] Shan G, Ye M, Zhu B, et al. Enhanced cytotoxicity of pentachlorophenol by perfluorooctane sulfonate or perfluorooctanoic acid in HepG2 cells [J]. Chemosphere, 2013, 93(9): 2101-2107
[5] Wan H T, Zhao Y G, Wei X, et al. PFOS-induced hepatic steatosis, the mechanistic actions on beta-oxidation and lipid transport [J]. Biochimica et Biophysica Acta, 2012, 1820(7): 1092-1101
[6] Elcombe C R, Elcombe B M, Foster J R, et al. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPAR alpha and CAR/PXR [J]. Toxicology, 2012, 293(1-3): 16-29
[7] Qazi M R, Xia Z L, Bogdanska J, et al. The atrophy and changes in the cellular compositions of the thymus and spleen observed in mice subjected to short-term exposure to perfluorooctanesulfonate are high-dose phenomena mediated in part by peroxisome proliferator-activated receptor-alpha (PPAR alpha) [J]. Toxicology, 2009, 260(1-3): 68-76
[8] Abbott B D, Wolf C J, Das K P, et al. Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse [J]. Reproductive Toxicology, 2009, 27(4): 258-265
[9] Vanden Heuvel J P, Thompson J T, Frame S R, et al. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: A comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha [J]. Toxicological Sciences, 2006, 92(2): 476-489
[10] Rosen M B, Schmid J R, Corton J C, et al. Gene expression profiling in wild-type and PPARalpha-null mice exposed to perfluorooctane sulfonate reveals PPARalpha-independent effects [J]. PPAR Research, 2010(2010): 23
[11] Jacquet N, Maire M A, Landkocz Y, et al. Carcinogenic potency of perfluorooctane sulfonate (PFOS) on Syrian hamster embryo (SHE) cells [J]. Archives of Toxicology, 2012, 86(2): 305-314
[12] Takacs M L, Abbott B D. Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate [J]. Toxicolgy Sciences, 2007, 95(1): 108-117
[13] Afrin R, Arumugam S, Soetikno V, et al. Curcumin ameliorates streptozotocin-induced liver damage through modulation of endoplasmic reticulum stress-mediated apoptosis in diabetic rats [J]. Free Radical Research, 2015, 49(3): 279-289
[14] Zhu X, Zhang X, Yu L, et al. Hepatic overexpression of GRP94 in a rabbit model of parenteral nutrition-associated liver disease [J]. Gastroenterol Research Practice, 2015, 2015(1): 1-8
[15] Xu X, Liu T, Zhang A, et al. Reactive oxygen species-triggered trophoblast apoptosis is initiated by endoplasmic reticulum stress via activation of caspase-12, CHOP, and the JNK pathway in Toxoplasma gondii infection in mice [J]. Infection Immunty, 2012, 80(6): 2121-2132
[16] Butenhoff J L, Ehresman D J, Chang S C, et al. Gestational and lactational exposure to potassium perfluorooctanesulfonate (K+PFOS) in rats: Developmental neurotoxicity [J]. Reproductive Toxicology, 2009, 27(3-4): 319-330
[17] Lv Z, Li G, Li Y, et al. Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate [J]. Environmental Toxicology, 2011, 28(9): 532-542
[18] Fabrega F, Kumar V, Schuhmacher M, et al. PBPK modeling for PFOS and PFOA: Validation with human experimental data [J]. Toxicolgy Letter, 2014, 230(2): 244-251
[19] Tian Y F, He C T, Chen Y T, et al. Lipoic acid suppresses portal endotoxemia-induced steatohepatitis and pancreatic inflammation in rats [J]. World Journal of Gastroenterology, 2013, 19(18): 2761-2771
[20] Yao J, Zhao Y, Zhang J, et al. Serum amylase levels are decreased in Chinese non-alcoholic fatty liver disease patients [J]. Lipids Health Disease, 2014, 13(4): 185-189
[21] 劉慧通, 謝亞男, 楊艷麗, 等. 電流損傷后大鼠血清淀粉酶水平的變化及法醫(yī)學意義[J]. 西安交通大學學報: 醫(yī)學版, 2011, 32(2): 264-265
Liu H T, Xie Y N, Yang Y L, et al. The medico-legal significance of serum amylase changes in rats' serum after electrical injury [J]. Journal of Xi'an Jiaotong University: Medical Sciences, 2011, 32(2): 264-265 (in Chinese).
[22] Nakajima K, Oshida H, Muneyuki T, et al. Independent association between low serum amylase and non-alcoholic fatty liver disease in asymptomatic adults: A cross-sectional observational study [J]. BMJ Open, 2013, 3(1): 1-25
[23] Curran I, Hierlihy S L, Liston V, et al. Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS) [J]. Journal of Toxicology and Environmental Health-Part A, 2008, 71(23): 1526-1541
[24] Butenhoff J L, Chang S C, Olsen G W, et al. Chronic dietary toxicity and carcinogenicity study with potassium perfluorooctanesulfonate in Sprague Dawley rats [J]. Toxicology, 2012, 293(1-3): 1-15
[25] Huang T S, Olsvik P A, Krovel A, et al. Stress-induced expression of protein disulfide isomerase associated 3 (PDIA3) in Atlantic salmon (Salmo salar L.) [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2009, 154(4): 435-442
[26] Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction [J]. Journal of Molecular and Cellular Cardiology, 2015, 86(6): 62-74
[27] Olivares S, Henkel A S. Hepatic Xbp1 deletion promotes endoplasmic reticulum stress-induced liver injury and apoptosis [J]. Journal of Biological Chemistry, 2015, doi: 10.1074/jbc.M115.676239jbc.M115.676239.(2015.10.26)
[28] Zhang N, Lu Y, Shen X, et al. Fenofibrate treatment attenuated chronic endoplasmic reticulum stress in the liver of nonalcoholic fatty liver disease mice [J]. Pharmacology, 2015, 95(4): 173-180
[29] Wielsoe M, Long M, Ghisari M, et al. Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro [J]. Chemosphere, 2015, 129(3): 239-245
[30] Treton X, Pedruzzi E, Guichard C, et al. Combined NADPH oxidase 1 and interleukin 10 deficiency induces chronic endoplasmic reticulum stress and causes ulcerative colitis-like disease in mice [J]. PLoS One, 2014, 9(7): 357-364
[31] Li B, Tian J, Sun Y, et al. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits [J]. Biochimica et Biophysica Acta, 2015, 1852(5): 805-815
[32] Chen Y J, Su J H, Tsao C Y, et al. Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial-related apoptotic and PERK/eIF2alpha/ATF4/CHOP pathway [J]. Molecules, 2013, 18(9): 10146-10161
[33] Thepparit C, Khakpoor A, Khongwichit S, et al. Dengue 2 infection of HepG2 liver cells results in endoplasmic reticulum stress and induction of multiple pathways of cell death [J]. BMC Research Notes, 2013, 6(3): 372-377
[34] Gentz S H, Bertollo C M, Souza-Fagundes E M, et al. Implication of eIF2alpha kinase GCN2 in induction of apoptosis and endoplasmic reticulum stress-responsive genes by sodium salicylate [J]. Journal of Pharmacy and Pharmacology, 2013, 65(3): 430-440
[35] Li J, Wang Y, Wang Y, et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction [J]. Journal of Molecular and Cellular Cardiology, 2015, 86(12): 62-74
◆
Effects of Endoplasmic Reticulum Stress on Perfluorooctane Sulfonate Induced Liver Damage in Rat
Xiao Jing1,*, Mao Weiming1, Din Hui1, Din Qing1, Li Lu1, Qi Cong1, Xu Xian2, Liu Meng1, Bao Yining1
1. Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China 2. School of Public Health, Xinjiang Medical University, Urumqi 830054, China
Effect of endoplasmic reticulum stress on perfluorooctane sulfonate induced liver damage in rat was investigated. Male rats were exposed by gavage with 0 mg·kg-1, 5 mg·kg-1and 10 mg·kg-1PFOS for 28 days. Rats were sacrificed and histological changes of the liver tissue were examined. The contents including ALT, AST, ALP and AMY in serum were determined by ELISA kits. MDA, SOD and GSH-Px were detected by the colorimetric method. Besides, expression of endoplasmic reticulum stress related genes was measured using real-time PCR.The present study showed that PFOS produced significant reductions in body weight gain in male rats. Liver/body weight value was significantly elevated relative to control in male rats. PFOS exposure resulted in a significant hepatic injury with cell edema and hypertrophy in both groups (P<0.05). ALT concentration was highest in 10 mg·kg-1group ((50.96±10.02) U·L-1, (71.73±11.55) U·L-1, respectively) while the content of AMY was lowest in 10 mg·kg-1group ((833.46±63.05) U·L-1). Furthermore, compared with the control, ALP and AST increased significantly (P<0.05). Moreover, PFOS exposure reduced the levels of SOD and GSH-Px while increased the levels of MDA (P<0.05). Furthermore, results from RT-PCR revealed that PFOS up-regulated the expression level of GRP78 and CHOP. In conclusion, exposure to PFOS disturbed the liver homeostasis of male rats, and the mechanism of action is related to endoplasmic reticulum stress.
PFOS; rat; hepatic injury; endoplasmic reticulum stress
10.7524/AJE.1673-5897.20151109004
國家自然科學基金(81202228);江蘇省大學生創(chuàng)新創(chuàng)業(yè)訓練項目(201410304050Z);南通大學教學改革課題(2013S03)
肖靜(1980-),女,博士,研究方向為環(huán)境毒理學,E-mail: xiaoj_1980@163.com;
2015-11-09 錄用日期:2015-11-18
1673-5897(2016)2-380-07
X171.5
A
簡介:肖靜(1980—),女,環(huán)境衛(wèi)生專業(yè)博士,副教授,主要研究方向為環(huán)境內分泌干擾物。
肖靜, 毛偉明, 丁慧, 等. 內質網(wǎng)應激在PFOS致大鼠肝損傷中的作用[J]. 生態(tài)毒理學報,2016, 11(2): 380-386
Xiao J, Mao W M, Ding H, et al. Effects of endoplasmic reticulum stress on perfluorooctane sulfonate induced liver damage in rat [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 380-386 (in Chinese)