陳潔 曾慶磊 李晶晶 胡秋月 余炎 余祖江
?
·綜 述·
精氨酸剝奪治療在肝細(xì)胞癌中的研究進(jìn)展
陳潔 曾慶磊 李晶晶 胡秋月 余炎 余祖江
肝細(xì)胞癌是全球第六常見(jiàn)的惡性腫瘤,占惡性腫瘤死因的第三位[1]。據(jù)統(tǒng)計(jì):中國(guó)每年新患肝癌人數(shù)為46.61萬(wàn),每年死亡人數(shù)為42.21萬(wàn)[2]。肝癌的主要病因有病毒性肝炎、肝硬化、黃曲霉素、化學(xué)致癌物和環(huán)境因素等[1]。治療方法主要是肝切除術(shù)、經(jīng)導(dǎo)管動(dòng)脈化療栓塞、射頻消融術(shù)(transcatheter arterial chemoembolization,TACE)和肝移植。索拉非尼是晚期肝癌患者全身化療的一線用藥,只能延長(zhǎng)患者生存時(shí)間3個(gè)月左右。
隨著腫瘤分子生物學(xué)研究的深入,發(fā)現(xiàn)腫瘤有其特殊的生理學(xué)特性。譬如,精氨酸是半必需氨基酸,正常細(xì)胞可攝取外源性精氨酸,也可從頭合成精氨酸。一些腫瘤,特別是肝細(xì)胞癌,精氨酸琥珀酸合成酶(ASS1)是缺陷的,使得精氨酸代謝障礙,而完全依賴于外源性精氨酸來(lái)支持必需的生物過(guò)程,即精氨酸營(yíng)養(yǎng)缺陷型。研究發(fā)現(xiàn)精氨酸剝奪治療在肝癌中有一定效果,本文就精氨酸剝奪治療在肝細(xì)胞癌中的研究進(jìn)展進(jìn)行如下綜述。
精氨酸是尿素循環(huán)中鳥(niǎo)氨酸的上游產(chǎn)物。經(jīng)鳥(niǎo)氨酸氨甲酰氨基轉(zhuǎn)移酶(OTC)催化,鳥(niǎo)氨酸轉(zhuǎn)化為瓜氨酸。瓜氨酸由ASS1和精氨酸琥珀酸裂解酶(ASL)催化而生成精氨酸。精氨酸酶水解精氨酸為鳥(niǎo)氨酸和尿素,鳥(niǎo)氨酸再次進(jìn)入尿素循環(huán)。精氨酸也可在一氧化氮合酶催化下產(chǎn)生一氧化氮(NO)和瓜氨酸,還可由鳥(niǎo)氨酸生成多胺類(圖1)。
精氨酸參與多種細(xì)胞代謝過(guò)程,可促進(jìn)傷口愈合,促進(jìn)多種激素釋放,并有免疫調(diào)節(jié)活性等。1930年,ESM1R等發(fā)現(xiàn)了精氨酸促進(jìn)腫瘤生長(zhǎng)的作用。無(wú)論對(duì)于原發(fā)還是種植產(chǎn)生腫瘤的小鼠,精氨酸喂養(yǎng)都促進(jìn)其腫瘤生長(zhǎng)[3]。同時(shí),精氨酸是多胺類的前體,這被證明促進(jìn)了腫瘤的生長(zhǎng)、轉(zhuǎn)移、侵襲[4]。另外,精氨酸是NO的唯一底物,NO可通過(guò)血管內(nèi)皮生長(zhǎng)因子促進(jìn)腫瘤血管生成,并可調(diào)控腫瘤細(xì)胞DNA的破壞及修復(fù),還可通過(guò)caveolin-1來(lái)調(diào)控腫瘤細(xì)胞侵襲行為等[5]。
注:①OTC;②ASS1;③ASL;④精氨酸酶。Ⅰ氨基甲酰磷酸合成酶2;Ⅱ門(mén)冬氨酸氨基甲酰轉(zhuǎn)移酶;Ⅲ二氫乳清酸酶。
圖1 尿素循環(huán)和嘧啶從頭合成的關(guān)系及精氨酸剝奪治療途徑
注:[1]未提供,[2]陽(yáng)性相關(guān),[3]陰性不相關(guān)
肝癌中缺乏ASS1[6](表1)。ASS1缺失由ASS1基因啟動(dòng)子甲基化造成,并被認(rèn)為促進(jìn)了腫瘤增殖、侵襲、遷移[11][15]。例如檢測(cè)149位乳腺癌患者腫瘤組織中ASS1表達(dá)情況時(shí)發(fā)現(xiàn),ASS1陰性占63.8%(95/149)[16]。用shASS1敲除ASS1基因則促進(jìn)了乳腺癌細(xì)胞增殖和侵襲[16]。體外實(shí)驗(yàn)重新引入ASS1抑制了腫瘤血管生成、腫瘤增殖和遷移,表明ASS1可能是一種新型的腫瘤抑制因子[22]。
機(jī)制尚不明確。研究發(fā)現(xiàn)精氨酸剝奪抑制多種腫瘤細(xì)胞生長(zhǎng),可能機(jī)制總結(jié)如下:(1)直接影響蛋白質(zhì)合成,特別是富精氨酸核組蛋白合成。(2)誘導(dǎo)細(xì)胞凋亡。精氨酸剝奪通過(guò)調(diào)節(jié)Cyclin和CDK導(dǎo)致了肝癌細(xì)胞G2/M期停滯和caspase依賴的凋亡[23]。(3)誘導(dǎo)細(xì)胞自噬。精氨酸剝奪可通過(guò)溶酶體氨基酸轉(zhuǎn)運(yùn)體SLC38A9抑制mTORC1途徑而誘導(dǎo)自噬[24]。前列腺癌中精氨酸剝奪抑制mTOR信號(hào)通路,說(shuō)明它也可能誘導(dǎo)自噬。(4)抑制血管生成。ADI在體外實(shí)驗(yàn)中抑制人臍靜脈內(nèi)皮細(xì)胞增殖、遷移,體內(nèi)實(shí)驗(yàn)中抑制腎癌腫瘤血管生成[17],這可能與ADI調(diào)控細(xì)胞外精氨酸水平來(lái)抑制NO合酶而導(dǎo)致NO下調(diào)有關(guān)(圖2)。
基于上述機(jī)制,精氨酸剝奪治療肝癌取得一定成果,并處于研究活躍領(lǐng)域(表2、3)。實(shí)際上,早在1953年BACH等就發(fā)現(xiàn)精氨酸酶通過(guò)破壞精氨酸而抑制Jensen肉瘤細(xì)胞的有絲分裂[25]。由于Km值、適宜pH要求和底物特異性等限制,精氨酸脫亞胺酶(ADI)和精氨酸酶現(xiàn)為精氨酸剝奪最常用的酶(圖2)。
(一)ADI 聚乙二醇修飾的精氨酸脫亞胺酶(ADI-PEG20)抗原性減弱,半衰期增加至7天,可將精氨酸濃度從130 μmol/L降至可檢測(cè)水平 (2 μmol/L)以下[23, 26]。
在轉(zhuǎn)移性肝細(xì)胞癌的Ⅰ/Ⅱ期臨床試驗(yàn)中,患者每周肌肉注射ADI-PEG20 160 IU/m2。47%(9/19)的患者顯示出臨床應(yīng)答,其中2人為完全應(yīng)答。所有患者的中位生存期延長(zhǎng)到至少410 d,其中4人存活至680 d[23]。在另一個(gè)臨床Ⅱ期試驗(yàn)中,76位轉(zhuǎn)移性肝細(xì)胞癌患者隨機(jī)接受80或160 IU/m2每周的ADI-PEG 20治療共6個(gè)月,所有患者的中位生存期大于15.8個(gè)月[27]。試驗(yàn)中,患者耐受良好。另有一個(gè)全球的臨床Ⅲ期實(shí)驗(yàn)正在進(jìn)行中,以進(jìn)一步確定ADI-PEG在肝癌中的有效性(表2)。
(二)精氨酸酶 經(jīng)修飾的聚乙二醇重組人精氨酸酶(Peg-rhArg)延長(zhǎng)半衰期至6 d,降低對(duì)精氨酸的Km值至2.9 mM[28]。
Peg-rhArg的臨床Ⅰ期試驗(yàn)在晚期肝癌中進(jìn)行。試驗(yàn)中單次靜脈注射劑量從 500 U/kg 到 2500 U/kg,在1 600~2 500 U/kg時(shí)可實(shí)現(xiàn)充分的精氨酸耗竭(血清精氨酸水平<8 uM)。在2 500 U/kg時(shí)1位患者出現(xiàn)了劑量限制性毒性。試驗(yàn)中最好的應(yīng)答僅是病情穩(wěn)定(>8周),占26.7%(4/15),且有7位患者因疾病進(jìn)展太快未納入結(jié)果評(píng)估,如納入,病情穩(wěn)定率將更低[29]。
圖2 精氨酸剝奪的機(jī)制及耐藥機(jī)制
圖3 干預(yù)肝癌細(xì)胞中嘧啶從頭合成
NTC編號(hào)分期治療方案對(duì)照入選人數(shù)地區(qū)起始時(shí)間(預(yù)計(jì))完成時(shí)間NCT02101593*[2]ⅠADI-PEG20+索拉菲尼NA[3]8美國(guó)2014.112016.2NCT02006030ⅡADI-PEG20+TACETACE40中國(guó)臺(tái)灣2014.62016.9NCT01287585ⅢADI-PEG20安慰劑636美國(guó)、中國(guó)、韓國(guó)、中國(guó)臺(tái)灣、英國(guó)、意大利2011.72016.6NCT00056992*ⅡADI-PEGNA34美國(guó)2002.92003.10NCT02029690ⅠADI-PEG20+順鉑+培美曲塞NA88英國(guó)2014.42018.8NCT02102022ⅠADI-PEG20+奧沙利鉑NA148美國(guó)2014.112017.10NCT00988195*ⅠPeg-rhArg阿霉素15中國(guó)香港2008.52009.5NCT02089633ⅡPeg-rhArg+奧沙利鉑+卡培他濱NA73中國(guó)香港2014.42018.3NCT01092091*Ⅰ/ⅡPeg-rhArgNA20中國(guó)香港2010.32012.2NCT02089763ⅡPeg-rhArgNA35中國(guó)香港2014.42017.4NCT02285101ⅠPeg-rhArgNA36美國(guó)2014.112016.6
注:[1]來(lái)自https://clinicaltrials.gov/,[2]*表示臨床試驗(yàn)已完成,[3]未提供
表3 精氨酸剝奪治療肝細(xì)胞癌臨床試驗(yàn)的結(jié)果匯總
精氨酸剝奪在治療肝細(xì)胞癌中取得了一定成效,但仍有一定局限性。(一)有效率低(表3)。原因可能如下:(1)ASS1陰性可能存在精氨酸非依賴的其他效應(yīng);(2)循環(huán)來(lái)自ADI的瓜氨酸需要ASS1和ASL,而循環(huán)來(lái)自精氨酸酶的鳥(niǎo)氨酸除了ASS1和ASL外還需要OTC(圖1)。OTC缺陷的肝癌細(xì)胞對(duì)ADI天然耐受。故應(yīng)根據(jù)病人基因表達(dá)不同而選擇ADI-PEG20和Peg-rhArg[28]。(3)病人選擇、劑量和用藥頻率影響了精氨酸剝奪治療的有效性。(二)耐藥。通過(guò)研究耐ADI的黑素瘤變異株,發(fā)現(xiàn)其產(chǎn)生了一些變化[32],這可能與耐藥相關(guān)。(1)ASS1再表達(dá)。33%(7/21)ASS1陰性的黑素瘤細(xì)胞在ADI治療后,重新表達(dá)ASS1而對(duì)ADI耐受。ADI激活Ras/PI3K/ERK信號(hào)通路,c-Myc持續(xù)穩(wěn)定表達(dá),結(jié)合到ASS1啟動(dòng)子上而增加了ASS1表達(dá)。(2)耐藥變異體顯示出增強(qiáng)的AKT信號(hào)通路和減弱的mTOR信號(hào)通路,而對(duì)PI3K/AKT抑制劑敏感和對(duì)mTOR抑制劑耐受。(3)ADI耐藥細(xì)胞葡萄糖轉(zhuǎn)運(yùn)體1、乳酸脫氫酶A、谷氨酸脫氫酶、谷氨酰胺酶表達(dá)增加,同時(shí)丙酮酸脫氫酶表達(dá)下降,說(shuō)明糖酵解增強(qiáng)。(4)耐藥變異體谷氨酰胺脫氫酶和谷氨酰胺酶表達(dá)增加,對(duì)谷氨酰胺抑制劑敏感。另外,抗ADI抗體出現(xiàn)。治療肝癌的2期臨床試驗(yàn)中,應(yīng)用 ADI-PEG20后肝癌細(xì)胞中發(fā)現(xiàn)了抗ADI抗體,且精氨酸水平出現(xiàn)反彈[30],抗ADI抗體可能會(huì)促進(jìn)抵抗精氨酸剝奪。(三)精氨酸和NO都有免疫調(diào)節(jié)作用,精氨酸耗竭方案存在爭(zhēng)議。 Rodríguez等[33]發(fā)現(xiàn)Peg-rhArg可間接抑制T細(xì)胞應(yīng)答而促進(jìn)腫瘤生長(zhǎng)。Peg-rhArg誘導(dǎo)髓源性抑制細(xì)胞增加而抑制小鼠T細(xì)胞增殖,并促進(jìn)了髓源性抑制細(xì)胞數(shù)量增多的小鼠中腫瘤的生長(zhǎng)。Rodríguez等指出精氨酸剝奪治療有風(fēng)險(xiǎn)。
近來(lái),Robinovich等[34]將尿素循環(huán)與嘧啶從頭合成相聯(lián)系,發(fā)現(xiàn)了ASS1缺乏的精氨酸非依賴效應(yīng)。細(xì)胞質(zhì)中門(mén)冬氨酸是ASS1和嘧啶從頭合成中CAD(氨基甲酰磷酸合成酶Ⅱ,門(mén)冬氨酸氨基甲酰轉(zhuǎn)移酶和二氫乳清酸酶的總稱)的共同底物(圖1)。肝癌等細(xì)胞缺乏ASS1,細(xì)胞質(zhì)內(nèi)門(mén)冬氨酸水平增高,這使得CAD活性因底物可利用度和mTOR途徑的S6K1磷酸化而增高,促進(jìn)了嘧啶從頭合成,從而促進(jìn)了癌細(xì)胞增殖。
結(jié)合上述發(fā)現(xiàn),干預(yù)嘧啶合成可用于治療肝細(xì)胞癌。一是抑制citrin,減少嘧啶合成原料,抑制腫瘤增殖。citrin是將線粒體內(nèi)門(mén)冬氨酸運(yùn)至細(xì)胞質(zhì)的轉(zhuǎn)運(yùn)體,對(duì)于為嘧啶合成提供底物十分重要。二是降低CAD活性。應(yīng)用mTOR抑制劑雷帕霉素或胸苷酸合成酶抑制劑5-氟尿嘧啶治療后,細(xì)胞增殖受到抑制(圖3)。綜上,精氨酸剝奪在治療肝細(xì)胞癌上很有前景,但也有一定局限性。干擾嘧啶從頭合成與精氨酸剝奪治療有共通之處,為攻克肝癌提供了新思路。
[ 1 ] Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet, 2012, 9822: 1245-1255.
[ 2 ] Chen WQ,Zheng QS,Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 2: 115-132.
[ 3 ] Gilroy E. The influence of arginine upon the growth rate of a transplantable tumour in the mouse. Biochem J, 1930, 3: 589-595.
[ 4 ] Gerner EW, Meyskens FL Jr. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer, 2004. 10: 781-792.
[ 5 ] Wada S, Matsushita Y, Tazawa H, et al. Loss of p53 in stromal fibroblasts enhances tumor cell proliferation through nitric-oxide-mediated cyclooxygenase 2 activation. Free Radic Res, 2015, 3: 269-278.
[ 6 ] Dillon BJ, Prieto VG, Curley SA, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying comcers sensitive to arginine deprivation. Cancer, 2004, 4: 826-833.
[ 7 ] Feun LG, Marini A, Walker G, et al. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br J Cancer, 2012, 9: 1481-1485.
[ 8 ] Szlosarek PW, Klabatsa A, Pallaska A, et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res, 2006, 23: 7126-7131.
[ 9 ] Szlosarek PW, Fennell DA, Rudd RM, et al. 221 A randomized phase II trial of pegylated arginine deaminase (ADI-PEG 20) in patients with malignant pleural mesothelioma. Lung Cancer, 2006: S54.
[10] Delage B, Luong P, Maharaj L, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis, 2012,7: e342.
[11] Lan J, Tai HC, Lee SW, et al. Deficiency in expression and epigenetic DNA Methylation of ASS1 gene in nasopharyngeal carcinoma: negative prognostic impact and therapeutic relevance. Tumor Biol, 2014, 1: 161-169.
[12] Kim RH, Coates JM, Bowles TL, et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res, 2009, 2: 700-708.
[13] Syed N, Langer J, Janczar K, et al. Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis, 2013,1: e458.
[14] Nicholson LJ, Smith PR, Hiller L, et al. Epigenetic silencing of argininosuccinate synthetase confers resistance to platinum‐induced cell death but collateral sensitivity to arginine auxotrophy in ovarian cancer. Int J Cancer, 2009, 6: 1454-1463.
[15] Allen MD, Luong P, Hudson C, et al. Prognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging. Cancer Res, 2014, 3: 896-907.
[16] Qiu F, Chen YR, Liu X, et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal, 2014, 319: ra31.
[17] Yoon CY, Shim YJ, Kim EH, et al. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer, 2007, 4: 897-905.
[18] Lagarde SM, Ver Loren van Themaat PE, Moerland PD, et al. Analysis of gene expression identifies differentially expressed genes and pathways associated with lymphatic dissemination in patients with adenocarcinoma of the esophagus. Ann Surg Oncol, 2008, 12: 3459-3470.
[19] Tsai WB, Aiba I, Lee S, et al. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1α/Sp4. Mol Cancer Ther, 2009, 12: 3223-3233.
[20] Kelly MP, Jungbluth AA, Wu BW, et al. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br j Cancer, 2012, 2: 324-332.
[21] Bowles TL, Kim R, Galante J, et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer, 2008, 8: 1950-1955.
[22] Huang HY, Wu WR, Wang YH, et al. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res, 2013, 11: 2861-2872.
[23] Izzo F, Marra P, Beneduce G, et al. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clin Oncol, 2004,10:1815-1822.
[24] Wang S, Tsun ZY, Wolfson RL, et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 6218: 188-194.
[25] Bach SJ, Simon-Reuss I. Arginase, an antimitotic agent in tissue culture. Biochim Biophys Acta, 1953, 953: 396-402.
[26] Holtsberg FW, Ensor CM, Steiner MR, et al. Poly (ethylene glycol)(PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties. J Control Release, 2002, 1: 259-271.
[27] Lam TL, Wong GK, Chong HC, et al. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. Cancer Lett, 2009, 1: 91-100.
[28] Cheng PN, Lam TL, Lam WM, et al. Pegylated recombinant human arginase (rhArg-peg5, 000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res, 2007, 1: 309-317.
[29] Yau T, Cheng PN, Chan P, et al. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest New Drugs, 2013, 1: 99-107.
[30] Glazer ES, Piccirillo M, Albino V, et al. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol, 2010, 13: 2220-2226.
[31] Yang TS, Lu SN, Chao Y, et al. A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. Br j Cancer, 2010, 7: 954-960.
[32] Long Y, Tsai WB, Wangpaichitr M, et al. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction. Mol Cancer Ther, 2013, 11: 2581-2590.
[33] Rodríguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev, 2008, 1: 180-191.
[34] Rabinovich S, Adler L, Yizhak K, et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature, 2015, 7578: 379-383.
(本文編輯:張苗)
國(guó)家自然科學(xué)基金(81302593);河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(15A320083)
450000 河南 鄭州大學(xué)第一附屬醫(yī)院感染病科(陳潔,曾慶磊,胡秋月,余炎,余祖江),重點(diǎn)實(shí)驗(yàn)室(李晶晶)
余祖江,Email: johnyuem@zzu.edu.cn
2016-09-03)