• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Train Carbody’s Parameters on Vertical Bending Stiffness Performance

    2016-12-09 06:10:53YANGGuangwuWANGChangkeXIANGFutengandXIAOShoune

    YANG Guangwu, WANG Changke, XIANG Futeng, and XIAO Shoune

    ?

    Effect of Train Carbody’s Parameters on Vertical Bending Stiffness Performance

    YANG Guangwu*, WANG Changke, XIANG Futeng, and XIAO Shoune

    State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

    Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it’s stiffness is calculated with series principle, it’s cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody’s design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.

    train carbody, vertical bending, vibration frequency, analysis formula, sensitivity analysis

    1 Introduction

    The stiffness is an important technical index of the train’s carbody. The standard TB/T13351996[1]and EN12663: 2010[2]all have specific request for this index, and rationality of carbody’s stiffness distribution is an important reflection on it’s quality performance[3]. Currently, the speed, carrying space and riding comfort of train with lightweigh carbody will be greatly improved[4]. So getting a higher stiffness with a lower weight is the key point in the carbody structure optimization design, some studies shows that optimization design based on lightweigh can reduce the cost by 5% to 30%[5],reduce the force between wheel and rail to protect them[6], achieve energy saving and emission reduction[7]. The random vibration is generated at the structure because carbody is influenced by track irregularity and wind load during the vehicle traveling[8], and low carbody stiffness will reduce its natural frequency and result in the low order natural frequency to be located in the range of the excitation frequency of track[9]. In this case the vibration of the train will be larger, the fatigue life will be reduced, and the riding comfort will be lower. The operation quality of the train will be affected seriously.

    The carbody modal is an important embodiment of its stiffness, and the first-order vertical bending vibration frequency of full loading carbody should be higher than 10 Hz[10]. Presently finite element method and modal test are the main methods to get the carbody modal[11–15].The finite element method can get the modal precisely, but it will take much time to establish the finite element model. As a kind of vehicle performance test methods, modal test conduct on real vehicle and can not guide the carbody design in 3D model in design stage. YANG, et al[16],calculated the static strength and modal of the type B metro train. The first-order torsion and vertical bending frequency under normal and high vertical load were analyzed. CHEN[17]carried out modal test on the rolling-vibration rig for a carbody of motor train unit. The first-order vertical bending vibration frequency was 10.4 Hz. Based on the Timoshenko beam theory, combining the characteristics of carbody structure, YANG, et al[18], got a first-order vertical bending vibration frequency equation. The calculation results agreed with the results of finite element method and modal test. But the model ignores the influence of door-window height on the bending stiffness. TAKAMATSU, et al[19], analyzed the contribution of white body to the stiffness of the whole car, and shows that main contribution of car stiffness was the white body. With the finite element method, PAN[20], analyzed the carbody modal of motor train unit CRH3. The plate thickness of fifteen major components was taken as the design variable to analyze the sensitivity of the carbody. Structure optimization design was carried out with the variable which showed small impact on the carbody modal. Finally, 0.42 t of the mass was lost.

    With the Timoshenko beam theory and some coefficients related with carbody structure, we build the effective corrected first-order vertical bending vibration frequency equation. Base on the equation, a sensitivity analysis of a high-speed train is down to find the key parameters, which can avoid the ideas with the experience oriented design.

    2 Timoshenko Beam Theory

    Timoshenko beam mechanical model considers the beam bending deformation, shear deformation and moment of inertia. As shown in Fig. 1(a),(,) is the displacement of the beam, which is a function of two variables of the cross section locationand the time. In Fig. 1,is the section moment of inertia to the principal axis,is the density of the beam,is the cross section area of the beam,(,) is the force per unit length loading on the beam.

    Fig. 1. Timoshenko beam theory schematic diagram

    Taking the micro section of the beam in, shown in Fig. 1(b), the rotation angle of the beam axisconsists of rotation angleand, produced by the bending moment and the shear force, respectively[21].

    The stress of micro section dis shown in Fig. 1(c), whereis the bending moment,is the shear force.

    According to

    one can obtain

    According to

    one can obtain

    With the basic formula of the beam in material mechanics[22], the vibration partial differential equation of the Timoshenko can be gotten as follows:

    whereis the cross section shear shape coefficient,is the shear modulus, andis the elasticity modulus.

    In Eq. (5), the item 1 is caused by the bending deformation, item 2 is caused by the rotational inertia, item 3 is caused by the shear deformation, and item 4 is caused by the shear deformation and the rotational inertia.

    With the initial conditions and the boundary conditions of the free vibration beam, the Timoshenko circular frequency of the free beam can be gotten as follows:

    whereis the length of the beam.

    Eq. (6) is the circular frequency of the standard beam. But some windows and doors on the carbody can break the closure, and the shear effect will fail. So referring to the cross section shear shape coefficient, an effective shear coefficient of cross sectionlis introduced[18]:

    whereeis the length of all closed cross section.

    According to=1, the first-order vertical bending circular frequency equation of the free beam can be gotten:

    In Eq. (8), the numerator is the solution of the first- order bending circular frequency0of Euler-Bernoulli beam; denominator is the Timoshenko coefficient.

    3 Equivalent and Application of Vibration Equation of Carbody

    The equivalent deformation of numerator of Eq. (8) is as follows:

    Set=/for stiffness,=for mass,0can be gotten as in Eq. (10):

    In the application of Eq. (10), the carbody can be set as a beam with different cross section, the beam can be divided intosegments with the same length, and the stiffness of theth cross section isK:

    whereIis the inertia moment ofth cross section of carbody.

    Due to the irregular of the carbody structure in longitudinal direction, the centroids of the cross sections lie in different height. So when calculating, parallel axis formula is used to get an equivalent inertia moment. Parallel axis formula is as follows[23]:

    whereIcis the inertia moment of theth cross section,ais the distance between the centroids of theth cross section and that of the whole carbody.

    So the equivalent stiffnesscand the equivalent masscof the beam can be gotten as follows:

    whereMis the mass of theth cross section;Ais the area of theth cross section.

    The first-order bending circular frequencyof Euler- Bernoulli beam can be gotten as follows:

    Parameters,andin the denominators of Eq. (8) can be equivalent by the length:

    wherekis the shear deformation coefficient of theth cross section.

    4 Example Verification of The Formula

    4.1 Example verification based on uniform beam

    In order to verify the accuracy of Eq. (19), the hollow beam is built, whose size was similar to the actual train carbody by using 3D software, as shown in Fig. 2. Basic parameters of the beam are shown in Table 1.

    Fig. 2. 3D model of the hollow beam

    Table 1. Basic parameters of the beam

    The beam shown in Fig. 2 has only one form of cross section, as shown in Fig. 3, and the parameters of the cross section are shown in Table 2.

    Fig. 3. Cross section of the hollow beam

    Table 2. Basic parameters of the cross section

    The corresponding finite element model is built with finite element software for modal analysis, and the first-order vertical bending vibration mode of the hollow beam is shown as the Fig. 4, and the vibration frequency is 36.31 Hz. The result is 36.43 Hz by using Timoshenko average segmentation method of Eq. (19) , and error is 0.33%.

    Fig. 4. Result of finite element analysis

    4.2 Examples verification based on none-uniform cross section beam

    In order to continue to verify the analytical method, based on the hollow beam, 3D models of simple carbody are built with headwall, side wall with different number of doors and windows, as shown in Fig. 5(a). For getting the average segmentation sections of carbody, the carbody is firstly divided into uneven coarse segmentations according to different profile such as the headwall, doors, windows and closed cross section. Then, these uneven coarse segmentations are again divided into average segmentation sections with the common divisor of different cross section length. The analytical results and the finite element results are as shown in Table 3.

    Fig. 5. Simple carbodys based on hollow beam

    Table 3. Calculation results of different carbody models

    From the result ofTable 3, the results of the analytic method are accurate, so the method can be used to calculate a real carbody.

    5 Verification of a Certain Type of High-speed Train Body

    The carbody of a certain type of high-speed train was used as prototype to verify the analytical method. The 3Dmodel of carbody is shown in Fig. 6(a), and the coarse subsection of the model is shown in Fig. 6(b).

    The elasticity modulus of the carbody is 69 GPa, the material density is 2.7′10–9t/mm3, and the Poisson ratio is 0.34. The free mode of the carbody was calculated by ANSYS, and the first-order vertical bending vibration frequency was obtained which is 16.988 Hz, shown in Fig. 7.

    Fig.6. 3Dmodel of a certain type of high-speed train carbody and subsection

    Fig. 7. Result of finite element analysis

    The identical method described in section 4.2 was used to divide carbody, four kinds of cross section were obtained which are shown in Fig. 8, and the main parameters of cross section are listed in Table4.

    Fig. 8. Cross section of the high speed train carbody

    Table 4. Main parameters of the cross section

    The modal test is carried out for the carbody, four points coordinating motivations being act on the experimental system, and the motivating method of the four exciters is determined according to the required vibration modes of the carbody. The experiment field is shown in Fig. 9(a), and the vibrationexciters is shown in Fig.9(b).

    (a) Experiment field

    (b) Vibrationexciters

    Fig. 9. Experiment field and exciters in modal test of the carbody

    The modal test data is shown in Fig.10, the first-order vertical bending vibration frequency of the carbody is 17.38Hz.

    Fig. 10. Modal frequency and vibration mode of high-speed train carbody

    The result of the Timoshenko average segmentation method is 17.51Hz, the error compared with the finite element method is 3.07%, and with the experiment method is 0.75%. Simple and real train models both show that Timoshenko average segmentation method is accurate on the first-order vertical bending vibration frequency analysis, which provides theoretical basis for the rapid optimization design of the train carbody.

    6 Sensitivity Analysis of Train Carbody

    The modification process on the first-order vertical bending vibration frequency analytical formula of carbody is the analysis process of the key parameters which affect its first-order vertical bending vibration frequency. To determine the effect extent of key parameters(design variable) on the carbody’s first-order vertical bending vibration frequency (objective function), sensitivity analysis is necessary.

    The factors that can influence the first-order vertical bending frequency of carbody include the length of carbody, the width of the doors, the width of the windows, cross section area, vertical height of the gravity of the carbody, inertia moment of cross section, etc. Relative sensitivity[24]analysis method is used for the sensitivity analysis of the first-order vertical bending vibration frequency:

    Whereis relative sensitivity,is the change of dependent variable,is the initial dependent variable,is the change of independent variable, andis the initial independent variable.

    Using the parameters of high-speed carbody as shown in section 5, sensitivity is analyzed with downward adjustment of 10 percent. Assuming the design variable is, which shows up as 0.9after downward adjustment of 10%, then the relative change can be expressed as (0.9)/=10%.Taking the length of the high-speed carbody as an example, making it change fromto 0.9, the changes of frequency over the length are shown in Fig. 11.

    Fig. 11. Trends of variations in vertical bending vibration frequency with the length of carbody

    The changes of the objective function value over design variables and sensitivities are shown in Table5.

    Table 5. Changes of objective function and sensitivity

    The negative relative sensitivity in Tab. 5 means that with the decrease(or increase) of the design variable, the objective function value increase(or decrease) correspondingly. The positive value means that with the decrease(or increase) of the design variable, the objective function value decrease(or increase) correspondingly. The absolute value of the relative sensitivity means the sensitive degree of objective function to design variable. The sensitivities of the key parameter of carbody are shown in Fig. 12.

    Fig. 12. Sensitivities of carbody parameters

    7 Conclusions

    (1) Based on Timoshenko beam theory, combining with the train carbody characteristics, the analytical formula for calculating first-order vertical bending vibration frequency of carbody is obtained. Meanwhile, the analytical results are verified by the finite element results and modal experiment result.

    (2) Based on analytical formula, the parameter sensitivity analysis is carried out on the high speed train carbody, and the effective degree of carbody’s parameters on the first-order vertical bending vibration frequency is given.

    (3) The analytical calculation method and the conclusion have some reference value in engineering, and are able to provide a design reference for related work in designing the carbody. However, the study in current phase is only for the large hollow aluminum alloy carbody, and the adaptability of this method for more complex carbodys still needs further evaluation.

    [1] Ministry of Railways of the People’s Republic of China.[S]. Beijing: China Standard Publishing House, 1997. (in Chinese)

    [2] Deutsches Institut für Normung. EN12663: 2010 Railway applications-Structural requirements of railway vehicle bodies[S]. Berlin: Berlin Beuth Verlag GmbH, 2000.

    [3] ZHANG Guoqing. E[D]. Dalian: Dalian Jiaotong University, 2010. (in Chinese)

    [4] WENNBERG D.[M]. Stockholm: KTH Royal Institute of Technology, 2010.

    [5] YUAN Yanling.[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese)

    [6] WU Pingbo, XUE Shihai, YANG Chenhui. Dynamic response of high-speed passenger car based on flexible car body model[J]., 2005, 5(2): 5–8. (in Chinese)

    [7] ZOU Wengen. Discussions on railway energy saving[J]., 2010, 9: 1–6. (in Chinese)

    [8] MEI Xiang, MIAO Bingrong, ZHANG Ying, et al. Comparative study of the high-speed train sleeper between FEA and experimental modal[J]., 2013, 51(590): 63–66. (in Chinese)

    [9] GAN Yuwen.[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)

    [10] Locomotive & Car Research Institute of China Ministry of Railway Sciences.[S]. Beijing: China Standard Publishing House,1995.(in Chinese)

    [11] WU Huichao, WU Pingbo, WU Na. Matching relations between equipment suspension parameters and a carbody structure[J]., 2013, 32(3): 124–128. (in Chinese)

    [12] ZHANG Zhihua.[D]. Beijing: Beijing Jiaotong University, 2007. (in Chinese)

    [13] BAI Yanchao, HU Zhen, HUANG Liewei. FEM Analysis and structure optimization for Ghana exports EMU[J]., 2009, 47(12): 17–21. (in Chinese)

    [14] SHEN Caiyu, MI Caiying. The strength and stiffness study for overloading electric locomotive carbody[J].. 2014, 31(2): 230–234. (in Chinese)

    [15] WANG Hepeng.[D]. Dalian: Dalian Jiaotong University, 2005. (in Chinese)

    [16] YANG Bin, SUN Qinghong, HUANG Wenjie. Static strength and mode analysis of B-type Subway body[J]., 2006, 6(2): 1–5. (in Chinese)

    [17] CHEN Lin.[D]. Chengdu: Southwest Jiaotong University,2009. (in Chinese)

    [18] YANG Guangwu, GAO Yiding, WAN Bo. Parse analyzing the first-order bending vibration frequency of the carbody[J]., 2015, 53(1): 1–6. (in Chinese)

    [19] TAKAMATSU M, FUJITA H, INOUE H, et al. Development of lighter-weight, higher-stiffness body for new RX–7[J]., 1992, 101(6): 288–296.

    [20] PAN Ting.[D]. Dalian: Dalian Jiaotong University, 2013. (in Chinese)

    [21] GAO Shuying, SHEN Huoming.[M]. Beijing: China Railway Publishing House, 2011. (in Chinese)

    [22] FANG Tong, XUE Pu.[M]. Xi’an: Northwestern Polytechnical University Press, 1998. (in Chinese)

    [23] SHAN Huizu.[M]. Beijing: Higher Education Press, 2000. (in Chinese)

    [24] LAN Haolun.[D]. Dalian: Dalian Jiaotong University, 2011. (in Chinese)

    Biographical notes

    YANG Guangwu, born in 1977, is currently a professor atHe received his PhD degree from, in 2005. His research interests include vehicle dynamics, vibration, and fatigue reliability.

    Tel: +86-28-86466543; E-mail: gwyang@swjtu.edu.cn

    WANG Changke, born in 1989, is currently a master candidate at

    E-mail: 1450972997@qq.com

    XIANG Futeng, born in 1992, is currently a master candidate at

    E-mail: 292713712@qq.com

    XIAO Shoune, born in 1964, is currently a professor atHe received his master degree from, in 1988. His research interests include vehicle dynamics, collision,structural strength and fatigue reliability.

    E-mail: snxiao@swjtu.edu.cn

    Received May 20, 2016; revised August 4, 2016; accepted August 9, 2016

    Supported by National Natural Science Foundation of China(Grant No. 51505390), and Independent research project of TPL(Grant No. TPL1501)

    ? Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2016

    10.3901/CJME.2016.0809.090, available online at www.springerlink.com; www.cjmenet.com

    E-mail: gwyang@swjtu.edu.cn

    日韩欧美国产在线观看| 人妻丰满熟妇av一区二区三区| 真人做人爱边吃奶动态| 777久久人妻少妇嫩草av网站| 好男人电影高清在线观看| 国产免费av片在线观看野外av| 免费高清在线观看日韩| 麻豆成人午夜福利视频| 91大片在线观看| 亚洲自偷自拍图片 自拍| 一进一出抽搐gif免费好疼| 久久狼人影院| 免费女性裸体啪啪无遮挡网站| 久久久国产成人免费| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本视频| 此物有八面人人有两片| 久久精品国产清高在天天线| 久久精品影院6| 中文字幕人妻丝袜一区二区| 男女床上黄色一级片免费看| 国产精品久久久久久精品电影 | 久久99热这里只有精品18| 男女下面进入的视频免费午夜 | 在线免费观看的www视频| 日韩欧美一区视频在线观看| av欧美777| 在线免费观看的www视频| 天天添夜夜摸| 亚洲黑人精品在线| 桃红色精品国产亚洲av| 波多野结衣高清无吗| 老熟妇仑乱视频hdxx| 亚洲精品在线观看二区| 亚洲av成人不卡在线观看播放网| 亚洲成人免费电影在线观看| 日韩中文字幕欧美一区二区| 免费无遮挡裸体视频| 国产黄片美女视频| 日本成人三级电影网站| 在线观看66精品国产| 一进一出抽搐gif免费好疼| av在线播放免费不卡| 精品国产乱码久久久久久男人| 一进一出抽搐动态| 99国产精品99久久久久| 老汉色∧v一级毛片| 国产私拍福利视频在线观看| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 天堂动漫精品| 精品欧美国产一区二区三| 九色国产91popny在线| 老司机在亚洲福利影院| 久热这里只有精品99| 男女之事视频高清在线观看| 欧美成人免费av一区二区三区| 91在线观看av| 久久人人精品亚洲av| 老汉色av国产亚洲站长工具| 久久久国产成人免费| 91老司机精品| 成人av一区二区三区在线看| 亚洲精品国产精品久久久不卡| 91国产中文字幕| 中文字幕最新亚洲高清| 欧美三级亚洲精品| 亚洲男人天堂网一区| 国产成人影院久久av| 久久伊人香网站| 手机成人av网站| 一a级毛片在线观看| 亚洲av第一区精品v没综合| 最新在线观看一区二区三区| 日韩国内少妇激情av| 男女午夜视频在线观看| 亚洲七黄色美女视频| 免费看日本二区| 国产精品亚洲美女久久久| 亚洲精品一区av在线观看| 亚洲无线在线观看| 老鸭窝网址在线观看| 精品欧美国产一区二区三| 热99re8久久精品国产| 欧美中文日本在线观看视频| 国内久久婷婷六月综合欲色啪| 我的亚洲天堂| 日韩大尺度精品在线看网址| 黄色丝袜av网址大全| 人人澡人人妻人| 美国免费a级毛片| 国产精品亚洲美女久久久| 久久久久久久久中文| 法律面前人人平等表现在哪些方面| 男人操女人黄网站| 啪啪无遮挡十八禁网站| 美女高潮到喷水免费观看| 亚洲国产看品久久| 国产精品一区二区精品视频观看| 特大巨黑吊av在线直播 | 亚洲一码二码三码区别大吗| 美女高潮喷水抽搐中文字幕| 国产精品久久久人人做人人爽| 日韩成人在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲国产高清在线一区二区三 | 亚洲人成网站在线播放欧美日韩| 国语自产精品视频在线第100页| 欧美性长视频在线观看| 欧美成人午夜精品| 男女下面进入的视频免费午夜 | 成熟少妇高潮喷水视频| 免费在线观看日本一区| 淫妇啪啪啪对白视频| 黑人操中国人逼视频| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 国产激情偷乱视频一区二区| 黄网站色视频无遮挡免费观看| 日韩精品免费视频一区二区三区| 制服丝袜大香蕉在线| 无人区码免费观看不卡| 国产激情偷乱视频一区二区| 国产精品综合久久久久久久免费| 亚洲av成人av| 男人操女人黄网站| 日本一本二区三区精品| 久久香蕉精品热| 欧美av亚洲av综合av国产av| 长腿黑丝高跟| 久久精品91无色码中文字幕| 法律面前人人平等表现在哪些方面| 日韩国内少妇激情av| 亚洲美女黄片视频| 国产一区二区三区在线臀色熟女| 99riav亚洲国产免费| 青草久久国产| 最新美女视频免费是黄的| 亚洲午夜精品一区,二区,三区| 久久性视频一级片| 成年女人毛片免费观看观看9| 啦啦啦观看免费观看视频高清| 黑人巨大精品欧美一区二区mp4| 日本 av在线| 亚洲七黄色美女视频| 免费看日本二区| 可以在线观看毛片的网站| 国产免费男女视频| 变态另类成人亚洲欧美熟女| 亚洲国产精品999在线| 99在线人妻在线中文字幕| 女生性感内裤真人,穿戴方法视频| 久久精品国产亚洲av高清一级| 1024手机看黄色片| 天堂影院成人在线观看| 国产av一区在线观看免费| 黑人操中国人逼视频| 国产伦一二天堂av在线观看| 身体一侧抽搐| 精华霜和精华液先用哪个| 中文字幕另类日韩欧美亚洲嫩草| 久久午夜亚洲精品久久| 九色国产91popny在线| 激情在线观看视频在线高清| av天堂在线播放| 欧美激情 高清一区二区三区| 国产精品自产拍在线观看55亚洲| 这个男人来自地球电影免费观看| 欧美黄色淫秽网站| 日日爽夜夜爽网站| 在线观看免费视频日本深夜| 日韩成人在线观看一区二区三区| 亚洲七黄色美女视频| 日韩欧美国产在线观看| 日韩欧美 国产精品| 久久久精品欧美日韩精品| 色av中文字幕| 久久久久久人人人人人| 国产高清有码在线观看视频 | 久久性视频一级片| 9191精品国产免费久久| 色综合亚洲欧美另类图片| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 免费在线观看黄色视频的| 国产免费男女视频| 黄片小视频在线播放| 99久久国产精品久久久| 国产亚洲av高清不卡| 亚洲精品国产精品久久久不卡| 桃色一区二区三区在线观看| 妹子高潮喷水视频| 久久精品国产亚洲av高清一级| 九色国产91popny在线| 欧美又色又爽又黄视频| 国产成人影院久久av| 国产精品野战在线观看| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 757午夜福利合集在线观看| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 国产亚洲av高清不卡| 成人亚洲精品一区在线观看| 欧美大码av| 国产精品久久久久久亚洲av鲁大| 99riav亚洲国产免费| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 午夜老司机福利片| 午夜两性在线视频| 国产亚洲精品久久久久5区| 国产又黄又爽又无遮挡在线| 此物有八面人人有两片| 91国产中文字幕| 亚洲一区二区三区不卡视频| 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 人人妻,人人澡人人爽秒播| 国产精品 国内视频| 国产激情欧美一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 国产97色在线日韩免费| 亚洲精品中文字幕在线视频| 免费人成视频x8x8入口观看| 好看av亚洲va欧美ⅴa在| 国产私拍福利视频在线观看| 国产97色在线日韩免费| 国产精品综合久久久久久久免费| 视频在线观看一区二区三区| 久久精品国产综合久久久| 日韩欧美一区二区三区在线观看| www国产在线视频色| 亚洲中文字幕一区二区三区有码在线看 | 麻豆av在线久日| 色av中文字幕| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 19禁男女啪啪无遮挡网站| 丝袜人妻中文字幕| 十分钟在线观看高清视频www| 一级毛片精品| 亚洲一区二区三区色噜噜| 亚洲av成人av| 91国产中文字幕| 黄色丝袜av网址大全| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 国产一区二区三区在线臀色熟女| 日韩一卡2卡3卡4卡2021年| 日本成人三级电影网站| 最近最新中文字幕大全免费视频| 午夜日韩欧美国产| 在线视频色国产色| 欧美日韩亚洲综合一区二区三区_| 午夜老司机福利片| 国产激情偷乱视频一区二区| 中文亚洲av片在线观看爽| 久热这里只有精品99| 久久亚洲真实| 欧美一级毛片孕妇| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香六月欧美| 久久婷婷人人爽人人干人人爱| av在线播放免费不卡| 久久午夜亚洲精品久久| 在线观看66精品国产| av在线天堂中文字幕| 人人澡人人妻人| 男人舔女人下体高潮全视频| 免费在线观看成人毛片| 亚洲成人久久性| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 丝袜美腿诱惑在线| 久久国产亚洲av麻豆专区| 亚洲美女黄片视频| 精品一区二区三区四区五区乱码| 国产高清视频在线播放一区| 成年人黄色毛片网站| 曰老女人黄片| 十八禁网站免费在线| 欧美色视频一区免费| 久久午夜综合久久蜜桃| 手机成人av网站| 亚洲欧美日韩无卡精品| 中文字幕最新亚洲高清| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区三| 免费人成视频x8x8入口观看| 亚洲成a人片在线一区二区| 一本大道久久a久久精品| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| 久久午夜综合久久蜜桃| 老熟妇仑乱视频hdxx| 丝袜人妻中文字幕| 亚洲专区国产一区二区| 一个人观看的视频www高清免费观看 | 亚洲狠狠婷婷综合久久图片| 久久 成人 亚洲| 黄片小视频在线播放| 熟女少妇亚洲综合色aaa.| 午夜福利在线在线| 免费在线观看黄色视频的| 亚洲三区欧美一区| 日韩大码丰满熟妇| 女性被躁到高潮视频| 嫩草影院精品99| 国产激情欧美一区二区| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 91成人精品电影| 中文字幕人妻熟女乱码| 在线观看免费视频日本深夜| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 人妻丰满熟妇av一区二区三区| 他把我摸到了高潮在线观看| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| 免费看日本二区| 久久久久久免费高清国产稀缺| 免费在线观看完整版高清| 精品熟女少妇八av免费久了| av电影中文网址| 国产又爽黄色视频| 精品欧美国产一区二区三| 久久精品国产综合久久久| 中文字幕人成人乱码亚洲影| 一个人观看的视频www高清免费观看 | 成人18禁在线播放| 中文亚洲av片在线观看爽| 久久香蕉国产精品| 精品久久蜜臀av无| 免费无遮挡裸体视频| 欧美黑人精品巨大| 1024手机看黄色片| 亚洲中文字幕一区二区三区有码在线看 | 超碰成人久久| 国产又色又爽无遮挡免费看| 99riav亚洲国产免费| 久久久久免费精品人妻一区二区 | 日韩大码丰满熟妇| 看黄色毛片网站| 日韩欧美一区视频在线观看| 日韩有码中文字幕| 老司机深夜福利视频在线观看| 国产在线观看jvid| 国产精品久久视频播放| 脱女人内裤的视频| 国产精品影院久久| 99国产综合亚洲精品| 成熟少妇高潮喷水视频| 午夜两性在线视频| 久久久国产精品麻豆| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 成在线人永久免费视频| 男女那种视频在线观看| 亚洲精品美女久久久久99蜜臀| 级片在线观看| 久久天堂一区二区三区四区| 国产亚洲欧美精品永久| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 欧美午夜高清在线| 男女那种视频在线观看| 天堂√8在线中文| 人人澡人人妻人| 88av欧美| 成人欧美大片| 嫩草影院精品99| 亚洲国产日韩欧美精品在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 欧美激情高清一区二区三区| 国产精品乱码一区二三区的特点| 亚洲黑人精品在线| 黄色成人免费大全| 精品久久久久久久末码| 黑人巨大精品欧美一区二区mp4| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 久久久国产成人免费| 少妇粗大呻吟视频| 很黄的视频免费| 男女午夜视频在线观看| 色综合欧美亚洲国产小说| 国产不卡一卡二| 欧美中文综合在线视频| 久久中文看片网| 观看免费一级毛片| 长腿黑丝高跟| 精品卡一卡二卡四卡免费| 90打野战视频偷拍视频| 韩国av一区二区三区四区| 极品教师在线免费播放| 不卡av一区二区三区| 国产高清有码在线观看视频 | 日本黄色视频三级网站网址| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美国产一区二区入口| 首页视频小说图片口味搜索| 巨乳人妻的诱惑在线观看| 人妻久久中文字幕网| 亚洲国产看品久久| 精品久久久久久久久久久久久 | 色av中文字幕| 他把我摸到了高潮在线观看| 怎么达到女性高潮| videosex国产| 欧美性长视频在线观看| 麻豆av在线久日| 动漫黄色视频在线观看| 久久九九热精品免费| 悠悠久久av| 午夜老司机福利片| 97人妻精品一区二区三区麻豆 | 波多野结衣高清无吗| 国产区一区二久久| av在线播放免费不卡| 搡老熟女国产l中国老女人| 欧美黄色淫秽网站| 国产精华一区二区三区| 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 日本一本二区三区精品| 精品不卡国产一区二区三区| 国产精品,欧美在线| 亚洲五月婷婷丁香| 最近最新中文字幕大全电影3 | 国产1区2区3区精品| 国产高清视频在线播放一区| 国产精品爽爽va在线观看网站 | 日韩一卡2卡3卡4卡2021年| 精品高清国产在线一区| 成人特级黄色片久久久久久久| avwww免费| 满18在线观看网站| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 国产高清激情床上av| av超薄肉色丝袜交足视频| 成人18禁在线播放| 一区二区三区激情视频| 国产精品免费一区二区三区在线| 久久九九热精品免费| 久久国产亚洲av麻豆专区| 国产av在哪里看| 国产私拍福利视频在线观看| 午夜视频精品福利| 香蕉av资源在线| 一本一本综合久久| 国产免费男女视频| 亚洲精品国产精品久久久不卡| 欧美日韩亚洲国产一区二区在线观看| 亚洲 国产 在线| 国产亚洲av嫩草精品影院| 免费无遮挡裸体视频| 51午夜福利影视在线观看| 亚洲av片天天在线观看| 日韩三级视频一区二区三区| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 久久久久久久久中文| 91av网站免费观看| 亚洲五月色婷婷综合| 香蕉国产在线看| 欧美+亚洲+日韩+国产| www国产在线视频色| 婷婷六月久久综合丁香| 欧美一级a爱片免费观看看 | 成人午夜高清在线视频 | 国产麻豆成人av免费视频| 久久国产乱子伦精品免费另类| 国产极品粉嫩免费观看在线| 999久久久精品免费观看国产| 午夜亚洲福利在线播放| 亚洲av片天天在线观看| 国产一区二区在线av高清观看| 久久草成人影院| www.自偷自拍.com| 制服诱惑二区| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 欧美黑人巨大hd| 欧洲精品卡2卡3卡4卡5卡区| 国产单亲对白刺激| 亚洲中文日韩欧美视频| 90打野战视频偷拍视频| 国产99久久九九免费精品| 深夜精品福利| 亚洲在线自拍视频| 日韩欧美三级三区| 啦啦啦观看免费观看视频高清| 男女床上黄色一级片免费看| 国产在线精品亚洲第一网站| 一进一出好大好爽视频| 高清在线国产一区| 男女下面进入的视频免费午夜 | 午夜久久久在线观看| 国产精品久久久av美女十八| 成人亚洲精品av一区二区| 日本 av在线| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月| www.精华液| 午夜a级毛片| 在线播放国产精品三级| 日韩欧美一区视频在线观看| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 真人一进一出gif抽搐免费| 亚洲熟女毛片儿| 高清毛片免费观看视频网站| 麻豆成人av在线观看| 男女视频在线观看网站免费 | 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 亚洲av熟女| 日本熟妇午夜| 色播亚洲综合网| 亚洲av五月六月丁香网| 免费人成视频x8x8入口观看| 久久香蕉精品热| 老司机午夜十八禁免费视频| 久久天堂一区二区三区四区| 黑人操中国人逼视频| 1024视频免费在线观看| 国产成人影院久久av| 嫩草影视91久久| 欧美国产日韩亚洲一区| 久久久久久久午夜电影| 国产精品99久久99久久久不卡| 亚洲人成电影免费在线| 精品国产一区二区三区四区第35| 欧美最黄视频在线播放免费| 69av精品久久久久久| 久久久久久九九精品二区国产 | 久久精品国产亚洲av高清一级| 不卡av一区二区三区| 69av精品久久久久久| 亚洲一区二区三区不卡视频| 久久中文字幕一级| 老司机深夜福利视频在线观看| 国产高清有码在线观看视频 | 久久草成人影院| 波多野结衣av一区二区av| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| 热99re8久久精品国产| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 久久久久亚洲av毛片大全| 国产区一区二久久| 99国产极品粉嫩在线观看| 国产成人一区二区三区免费视频网站| 人人妻,人人澡人人爽秒播| 欧美丝袜亚洲另类 | 黄频高清免费视频| 丝袜在线中文字幕| 精品久久久久久成人av| 亚洲无线在线观看| 熟女电影av网| av片东京热男人的天堂| 宅男免费午夜| 成人永久免费在线观看视频| 后天国语完整版免费观看| 国产不卡一卡二| 波多野结衣巨乳人妻| 18美女黄网站色大片免费观看| 99国产极品粉嫩在线观看| 久久热在线av| 日韩欧美免费精品| 亚洲精品中文字幕在线视频| 校园春色视频在线观看| 淫秽高清视频在线观看| 夜夜看夜夜爽夜夜摸| 最新在线观看一区二区三区| 国产精品一区二区三区四区久久 | 日韩视频一区二区在线观看| 亚洲熟女毛片儿| 久久草成人影院| 亚洲精品美女久久久久99蜜臀| 亚洲av片天天在线观看| 亚洲欧美一区二区三区黑人| 中文字幕精品免费在线观看视频| a级毛片在线看网站| 亚洲精品在线美女| x7x7x7水蜜桃| 日韩 欧美 亚洲 中文字幕| 观看免费一级毛片| 久久久久久久午夜电影| 天天一区二区日本电影三级| 18美女黄网站色大片免费观看| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 婷婷六月久久综合丁香| 国产99久久九九免费精品| 欧美激情高清一区二区三区| 亚洲专区国产一区二区| 亚洲人成电影免费在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久伊人香网站| 天堂√8在线中文|