• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas Film Disturbance Characteristics Analysis of High-Speedand High-Pressure Dry Gas Seal

    2016-12-09 06:12:45CHENYuanJIANGJinboandPENGXudong

    CHEN Yuan, JIANG Jinbo, and PENG Xudong

    ?

    Gas Film Disturbance Characteristics Analysis of High-Speedand High-Pressure Dry Gas Seal

    CHEN Yuan, JIANG Jinbo, and PENG Xudong*

    The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS’s failure. So the DGS’s ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what’s more, the effects of many key factors on gas film thickness disturbance aresystematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.

    high-speed and high-pressure; dry gas seal; gas film thickness disturbance; dynamic tracking property

    1 Introduction

    With the rapid development of modern industry, mechanical seals are more and more widely used at the operational conditions of high-speed, high-pressure and high-temperature[1]. At the same time, because of the superior sealing performances, such as zero wear, low power consumption, long life, and high stability of DGS[2], other forms of seals have been gradually replaced by DGS which is becoming the mainstream of high parameters centrifugal compressor which used in petrochemical, metallurgical and other industries. But the DGS’s balance and stability are often damaged during its running process because of the influence of many factors such as external excitation and installation deviation. So in order to ensure the DGS’s running stability and reliability at the extreme conditions, it is necessary for us to take a good knowledge of its dynamics rules.

    Because of the nonlinear nature of the gas fluid film, some scholars research the DGS dynamic behavior by using direct numerical simulation method[3], this method can obtain the most reliable calculation results, but its computations are generally very time consuming and it is not conducive to an extensive parameter study[4]. Several linear analytical methods are usually used in the research of DGS dynamics, such as perturbation method, step jump method, and direct numerical frequency response method. Now the perturbation method is widely used in dynamics research by scholars like MALANOSKI, et al[5], PENG, et al[6],ZIRKELBACK, et al[7]and so on[8–10], and it is proved that the perturbation method can effectively predict the DGS dynamic behavior and obtain reliable calculation results. In this paper, the gas film dynamic characteristic coefficients, which used to solve motion equations, are calculated by the perturbation method.

    A lot of research work of which about DGS dynamic tracking have been done. GREEN, et al[11], detailed the transient responses of flexibly mounted stator by solving the gas film lubrication and dynamics equations simultaneously. LIU, et al[12], proposed the occurring mechanism of angular wobble self-excited vibration of DGS, and then XU, et al[13], gave a mechanical analysis to explain the phenomenon of DGS’s angular wobble self-excited vibration. LEE, et al[14], considered the influence of external shock interferences when the possibility of face contact, the detectable central clearance between stator and rotor, and the leakage under unsteady operation were studied. There are many others related research achievements[15–22], but little of them at extreme operating conditions. Considering the need of development of DGS, this paper first research the influence of gas film thickness disturbance on sealing performance, what’s more, the effects of some key factors on gas film thickness disturbance are systematically investigated at the operational conditions of high-speed and high-pressure, and it would provide a theoretical guide for understanding DGS’s working rules and advancing DGS’s design method.

    2 Models

    2.1 Physical models

    Fig. 1 shows a schematic cross section of a S-DGS with a flexibly mounted stator, and this model refers to Ref. [8] which published in 2002, it considers axial vibration of shaft and installation deviation of rotor. when the shaft spins, the installation deviation of rotor will provide an angular excitation motion to stator.

    Fig. 1. Schematic cross sectionof a S-DGS

    The spiral groove geometry is shown in Fig. 2(a), when the rotor revolves at a high speed, there is a large hydrodynamic pressure will be generated by the spiral grooves, which will help to separate the two seal faces and maintain a steady gas film thickness. But in most of the practical seals, the gas film thickness has a disturbance because of the rotor’s axial runout and misalignment.

    Fig. 2. Structure of the flexibly mounted ring

    Fig. 3(a) shows the relative position between stator and rotor, Fig. 3(b) shows the model of seal face kinematics, and in the seal dynamic tracking property analysis, the gas film, which have a certain stiffness and damping properties, is usually treated as a spring and damper system, and the stator can be thought of as being supported by it[3]. Stator tracks rotor’s excitation motions under the function of spring, o-ring and gas film, and a good dynamic tracking property can help the seal to continuously operate with no face contact or no excessive leakage.

    Fig. 3. Model of gas film thickness disturbance analysis

    2.2 Mathematical models

    Assuming the ideal gas and isothermal conditions, and without considering the impact of seal faces deformation in high-pressure. The transient-state compressible Reynolds equation, which governing the pressure distribution of the gas film, expressedin the polar coordinates is given by

    whereis transient-state pressure distribution,is transient-state gas film thickness distribution in seal face,is time; the steady-state compressible Reynolds equation expressed in the polar coordinates is given by

    (2)

    the perturbation compressible Reynolds equations are obtained based on Eqs. (1) and (2) by using perturbation method(the theoretical derivation refers to Ref. [8]). To introduce dimensionless variable as follows:

    Where0is steady-state pressure distribution;z,α,βare, respectively, perturbation pressure distribution aboutaxis,axis andaxis;pis pressure at inner radius of seal ring;bis equilibrium film thickness in non-groove;0is equilibrium film thickness distribution in seal face;is the gas’s dynamic viscosity;is angular velocity of shaft;1and2are, respectively, axial and angular excitation motion angular frequency;ris stator inner radius. The expressions of dimensionless steady-state compressible Reynolds equation and dimensionless perturbation compressible Reynolds equations are shown in Eqs. (3) and (4a)–(4f):

    (3)

    (4b)

    (4c)

    The pressure boundary conditions are specified at the outer and inner radius:

    And the pressure periodic boundary conditions are specified as

    Combining and solving Eqs. (3) and (4a)–(4c) to obtain dimensionless perturbation gas film pressure distribution, and according to Eq. (5) to obtain dimensionless gas film dynamic coefficients:

    And the dimensional gas film dynamic coefficients are

    (6)

    wherekandc(,=,) are gas film dynamic stiffness coefficients and damping coefficients respectively. Under the influence of support spring and secondary seal and gas film, stator will track the rotor’s motions which consist of the axial pulsation and angular wobbling. The equations of motion for both the axial mode and angular modes are expressed as follows:

    (8)

    (9)

    In Eqs. (7)–(9),and,are, respectively, stator’s axial response motion and angular response motion;randr,rare, respectively, rotor’s axial excitation motion and angular excitation motion;is the mass of the stator;IandIare, respectively, the stator’s transverse moment of inertia aboutaxis andaxis;sis the axial stiffness of the spring,sis the axial damping of the secondary seal;sxandsyare, respectively, the angular stiffness of spring aboutaxis andaxis;sxandsyare, respectively, the angular damping of secondary seal aboutaxis andaxis.

    s1ands2are, respectively, the radial position of spring and secondary seal; ands1=0.5(o+b),s2=b,ois stator outer radius,bis stator balance radius. The following excitation motions are assumed for the rotor:

    (10)

    The initial conditions for the stator are

    It is easy and inerrable to solve Eq. (7) by using analytical method as the Eq. (7) is the linear homogeneous second-order differential equation with constant coefficients, but Eqs. (8) and (9) are coupled equations which solved much easier by using finite difference method. The seal face gas film thickness disturbance distribution Δat any time will be obtained by Eqs. (11) and (12) after the motion equations have been solved:

    (11)

    The transient-state gas film thickness distributionin seal face and pressure distributionare expressed as follows:

    (13)

    can be calculated by substituting theinto the expression of Eq. (1). Steady-state open force0and transient-state open forcearecalculated from the obtained0orby

    (15)

    where Δis a variation ofcaused by gas film thickness disturbance. Steady-state volume leakage rate0and transient-state volume leakage rateat inner radius pressureiarecalculated by

    where Δis a variation ofcaused by gas film thickness disturbance. The disturbance ratesof gas film thickness distribution, open forceand volume leakage rateat any given time are defined by the expressions as following:

    (17)

    3 Results and Discussion

    The basic calculation parameters are given in Table 1, and the choice of stator’s seal face geometry and structure parameters refers to Ref. [23]. Generally, it prescribes that the sealing medium pressure of high pressure DGS is between 3MPa and 15MPa, and the mean linear velocity of seal face of high speed DGS is between 25 m/s and 100 m/s. So this paper assigns 10.1 MPa tooand assigns 700 towhich is the equal of assigning 107.3 m/s to the mean linear velocity of seal face that is very proper to represent an operational conditions of high-speed and high-pressure. And the selection of other basic calculation parameters meets the engineering practice.The parameters will remain unchanged during the following analysis unless otherwise stated.

    Table 1. Parameters for dynamic analysis of the S-DGS

    3.1 Gas film thickness and pressure disturbance transient distribution

    Fig. 4 and Fig. 5 present, respectively, the gas film thickness disturbance distributions and gas film pressure disturbance distributions at four different moments during the cycle+1, where cycle timeis period of rotation of shaft. From the Fig. 4, the positive values represent increment of gas film thickness and the negative values represent decrement of gas film thickness, and there is a maximum gas film disturbance |Δ(,)|maxon seal face at every moment. Fig. 4 shows that |Δ(,)|maxchanges with time, and too much increment or decrement of gas film thickness all will lead to too much |Δ(,)|max, this is not benefit to stable operation of S-DGS, and serious it will lead to ultimately premature seal failure because of excessive leakage or face wear, so the |Δ(,)|maxis an important parameter to represent whether S-DGS will work effectively.

    The presence of gas film thickness disturbance will cause the disturbance of gas film pressure. A comparative analysis of Fig. 4 and Fig. 5 indicates that the more decrease of film thickness will lead to the more increase of film pressure, in other words, the more increase of film thickness will also lead to the more decrease of film pressure, and the Fig. 5 shows that gas film thickness disturbance have a bigger impact on film pressure disturbance in non-groove.

    3.2 Influence of gas film thickness disturbance on sealing performance

    Fig. 6 shows that the disturbance ratesη,ηandηchange with time, theηrepresents the biggest degree of gas film thickness change in the seal face. From the Fig. 6, it can be deduced that the Δand the opposite number of Δhave the same change rule with gas film thickness disturbance. When the maximum ofηis 3.8%, the maximum ofηandηare, respectively, 2.2% and 19.7%, so the gas film thickness disturbance have a significant effect on leakage rate, but have relatively litter effect on open force.

    Fig. 4. Gas film thickness disturbance distribution Δ(,) (is integer,≥1,rz=50 μm)/μm

    Fig. 5. Gas film pressure disturbance distribution Δ(,) (is integer,≥1,rz=50μm)/MPa

    3.3 Influence of operation parameters on gas film thickness disturbance

    Δ()max

    Fig. 7 shows that the |Δ(,)|maxchanges with time under the different axial excitation amplitudesrz. From the Fig. 7 it can be seen that the |Δ(,)|maxfirst changes sharply in a very short time and then the change of |Δ(,)|maxgradually becomes slowly, at last, the |Δ(,)|maxpresents a cyclical change rule. We defined the cyclical change period of |Δ(,)|maxas stable phase and defined the period before the stable phase as adaptive phase. The reason of presenting the adaptive phase is that the stator will not respond quickly under the function of inertial force when it suddenly suffers the axial excitation motion of rotor, and then gradually adapts itself to the excitation. In the stable phase, the difference between the peak and the trough of |Δ(,)|maxincreases linearly with therz, and the troughs of |Δ(,)|maxare equal under the differentrz.

    Fig. 6.changes with time (rz=50μm)

    Fig. 7. |Δ(,)|maxchanges with time under the differentrz

    Fig. 8 shows that the |Δ(,)|maxchanges with time under the different angular excitation amplitudesr. It is evident from Fig. 8 that the |Δ(,)|maxalso experiences the adaptive phase and the stable phase, in the stable phase, the difference between the peak and the trough of |Δ(,)|maxremains unchanged, and the troughs of |Δ(,)|maxincrease linearly with ther.

    A comparative analysis of Fig. 7 and Fig. 8 indicates that, when other parameters remain the same, the troughs of |Δ(,)|maxin stable phase are all about therand the difference between the peak and the trough is all about therz. From the two figures we can conclude that the increase ofrzorraggravates the gas film thickness disturbance and deteriorates the DGS’s stability.It is hard for the DGS designers to controlrz, but easy to controlr. So in order to increase dynamic stability of DGS, designers can try to decrease installation deviation of rotor from the source, it demands that designers should not only ensure a strict geometrical tolerance range for rotor’s seal face but also for the rotor's back.

    Fig. 8. |Δh(r,θ)|max changes with time under the different Ar

    Δ()max

    Fig. 9 illustrates the influence of dimensionless axial excitation frequency1on |Δ(,)|max. In this article, the angular excitation angular frequency2always equals angular velocityof shaft (dimensionless angular excitation frequency2=1) because the angular excitation is only caused by rotor misalignment. As shown in Fig. 9, the peak of |Δ(,)|maxincreases with the1in the adaptive phase, this is because the higher excitation frequency will lead to greater excitation displacement in a certain time, meanwhile, stator can’t track the excitation motion quickly under the function of inertial force in a very short time. Moreover, the peak of |Δ(,)|maxin adaptive phase will be greater than the peak of |Δ(,)|maxin stable phase when the1goes up to some extent, therefore, by this time the S-DGS will be more likely to happen failure of face wear or crack when it suddenly suffers the axial excitation.

    Fig. 9. |Δ(,)|maxchanges with time under the different1

    In the stable phase, the peak of |Δ(,)|maxincreases and then decreases with the increase of1, this is because the increase of1can lead to the increase of axial gas film stiffness[8]which is good for DGS’s stable operation, but on the other hand, the increase of1also can intensify the gas film disturbance if the axial gas film stiffness remain unchanged. When the1increases from 1 to 2, the axial gas film stiffness plays a more important role in gas film thickness disturbance than excitation frequency, but when the1increases from 2 to 5 and to 10, the excitation frequency plays a leading role instead. It is concluded that when1is more than 2, the1is higher, the gas film thickness disturbance will become stronger, and the stability of the DGS will be worse.

    3.4 Influence of structure parameters on gas film thickness disturbance

    Δ()max

    Fig. 10 shows that |Δ(,)|maxchanges with time under four different stator densities. It can be observed from Fig. 10 that the peak of |Δ(,)|maxincreases within the adaptive phase, this is because the inertial force increases with, and the bigger inertial force will make the stator harder respond quickly to a sudden axial excitation motion of rotor. In the stable phase, the peak of |Δ(,)|maxdecreases with the increase of, it is indicated that the inertial force is benefit to decrease the gas film thickness disturbance and improve the dynamic tracking property of stator. What’s more, it is obvious from Fig. 10 that the peak of |Δ(,)|maxin the adaptive phase will be bigger than which in the stable phase whenis big enough, thus, the seal face will be easy to be worn or be crashed when the axial excitation motion just happened. However, to choose a density of stator material which is between 3.1 g/cm3to 8.4 g/cm3can guarantee a smaller gas film thickness disturbance.

    Fig. 10. |Δ(,)|maxchanges with time under the different

    Δ()max

    Figs. 11 and 12 show that, respectively, the |Δ(,)|maxchanges with time under the different support axial stiffnesssand dampings. From the Figs. 11 and 12 we can see that the peak of |Δ(,)|maxincreases withsors, this means that thesorsis bigger, the dynamic tracking property of stator will be worse, and the probability of DGS failure also will be greater.

    Fig. 11. |Δ(,)|maxchanges with time under the differents

    Fig. 12. |Δ(,)|maxchanges with time under the differents

    When the engineers want to design a DGS with good dynamic stability, they can choose to use the springs with smaller stiffness, but they have to design a bigger spring compression to offset the close force. On the other way, designers can also use a kind of auxiliary seals material, which not only can adapt to the conditions of high-pressure and high-speed but also havea low damping, to make sure DGS run stable.

    4 Conclusions

    (1) The gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force.

    (2) The dynamic tracking property of stator will be bad and the gas film thickness disturbance will be drastic when the excitation amplitude is very big or the excitation frequency is very high, and at this very moment the DGS is more likely to fail because of excessive leakage or face wear.

    (3) No matter theis too big or too small, it will result in increase of the peak of gas film disturbance, especially when theis very big, the stator is easier to be crashed because it is hard to respond quickly to the sudden axial excitation motion, so it is better to choose a kind of stator material which theis between 3.1 g/cm3to 8.4 g/cm3; Moreover, the peak of gas film thickness disturbance almost increases linearly withsors, thus, in order to ensure a good operation stability for DGS we should try to decreasesandswhile guaranteeing sealing performance.

    [1] PENG Xudong, WANG Yuming, HUANG Xing, et al. State-of- the-art and future development of sealing technology[J]., 2009(4): 4–11. (in Chinese)

    [2] ZHOU Jianfeng, GU Boqin. Characteristcs of fluid film in optimized spiral groove mechanical seal[J]., 2007, 20(6): 54–61.

    [3] GREEN I, BAMSBY R M. A parametric analysis of the transient forced response of noncontacting coned-face gas seals[J]., 2002, 124(1): 151–157.

    [4] LIU Xiangfeng, XU Chen, HUANG Weifeng. Analysis and parametric design of the dynamics of a dry gas seal for extreme operating conditions using a semi-analytical method[J]., 2014(2): 223–228. (in Chinese)

    [5] MALANOSKI S B, PAN C H T. The static and dynamic characteristics of the spiral-grooved thrust bearing[J]., 1965, 87(3): 547–555.

    [6] PENG J P, CARPINO M. Calculation of stiffness and damping coefficients for elastically supported gas foil bearings[J]., 1993, 115(1): 20–27.

    [7] ZIRKELBACK N, SAN A L. Effect of frequency excitation on force coefficients of spiral groove gas seals[J]., 1999, 121(4): 853–861.

    [8] RUAN B. A semi-analytical solution to the dynamic tracking of non-contacting gas face seals[J]., 2002, 124(1): 196–202.

    [9] FARIA M T C. Finite element analysis of the misalignment effects on the dynamic force coefficients of spiral groove gas face seals[J]., 2004, 47(1): 289–296.

    [10] BAI Shaoxian, PENG Xudong, MENG Xiangkai. Stability of laser textured gas-lubricated non-contact mechanical seal[J]., 2010, 30(6): 521–526. (in Chinese)

    [11] GREEN I, BAMSBY R M. A simultaneous numerical solution for the lubrication and dynamic stability of noncontacting gas face seals[J]., 2001, 123(2): 388–394.

    [12] LIU Yuchuan, XU Wangfu, WANG Zhili, et al. Stability of angular wobble self-excited vibrations for gas film face seal[J]., 2002, 38(4): 1–6. (in Chinese)

    [13] XU Wangfu, LIU Yuchuan, WANG Zhili, et al. Reason of angular wobble self-excited vibration and half frequency characteristic for gas film face seal[J]., 2002, 38(9): 43–46. (in Chinese)

    [14] LEE S C, ZHENG X L. Analyses of both steady behavior and dynamic tracking of non-contacting spiral-grooved gas face seals[J]., 2013, 88: 326–333.

    [15] MILLER B A, GREEN I. Numerical formulation for the dynamic analysis of spiral-grooved gas face seals[J]., 2001, 123(2): 395–403.

    [16] MILLER B A, GREEN I. Numerical techniques for computing rotordynamic properties of mechanical gas face seals[J]., 2002, 124(4): 755–761.

    [17] RUAN B. Numerical modeling of dynamic sealing behaviors of spiral groove gas face seals[J]., 2002, 124(1): 186–195.

    [18] MILLER B A, GREEN I. Semi-analytical dynamic analysis of spiral-grooved mechanical gas face seals[J]., 2003, 125(2): 403–413.

    [19] YELMA S S, MILLER B A, LANDERS R G. Clearance regulation of mechanical gas face seals: part I—modeling[J]., 2006, 49(3): 361–372.

    [20] ZHANG H, MILLER B A, LANDERS R G. Nonlinear modeling of mechanical gas face seal systems using proper orthogonal decomposition[J]., 2006, 128(4): 817–827.

    [21] ZHANG H, LANDERS R G, MILLER B A. Adaptive control of mechanical gas face seals with rotor runout and static stator misalignment[J]., 2010, 132(4): 041009.

    [22] BLASIAK S, ZAHORULKO A V. A parametric and dynamic analysis of non-contacting gas face seals with modified surfaces[J]., 2016, 94: 126–137.

    [23] PENG Xudong, JIANG Jinbo, BAI Shaoxian, et al. Correlational research of bionics design of dry gas face seal groove[J]., 2014, 50(3): 151–157. (in Chinese)

    Biographical notes

    CHEN Yuan, born in 1990, is currently a PhD candidate at. His research interest is the modern fluid sealing technology.

    E-mail: chenyuan_1221@163.com

    JIANG Jinbo, born in 1989, is currently a PhD candidate at. His research interest is the modern fluid sealing technology.

    E-mail:jinbo_110@163.com

    PENG Xudong, born in 1964, is currently a professor at. His research interests include the modern fluid sealing technology and tribological design of mechanical equipment.

    Tel: +86-571-88320212; E-mail:xdpeng@zjut.edu.cn

    Received December 9, 2015; revised May 9, 2016; accepted June 17, 2016

    Supported by National Natural Science Foundation of China(Grant No. 51575490), National Key Basic Research Program of China(973 Program, Grant No. 2014CB046404), and Natural Science Key Foundation of Zhejiang Province, China (Grant No. LZ15E050002)

    ? Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2016

    10.3901/CJME.2016.0617.074, available online at www.springerlink.com; www.cjmenet.com

    E-mail: xdpeng@zjut.edu.cn

    性色av乱码一区二区三区2| 国产高清视频在线播放一区| 亚洲无线观看免费| 国模一区二区三区四区视频| 国产精品香港三级国产av潘金莲| 亚洲人成网站高清观看| 国产淫片久久久久久久久 | 精品人妻一区二区三区麻豆 | 在线观看一区二区三区| 伊人久久大香线蕉亚洲五| 国产视频一区二区在线看| 免费av不卡在线播放| 99热精品在线国产| 欧美成人免费av一区二区三区| 亚洲成人久久爱视频| 久久久久九九精品影院| 嫩草影院入口| 免费看美女性在线毛片视频| 国产三级黄色录像| 免费电影在线观看免费观看| 男人舔奶头视频| 国产精品亚洲一级av第二区| 久久国产精品影院| 在线十欧美十亚洲十日本专区| 亚洲最大成人中文| 美女被艹到高潮喷水动态| 午夜免费激情av| 久久精品91无色码中文字幕| 免费观看人在逋| 久久久久久久午夜电影| 99热只有精品国产| 长腿黑丝高跟| 亚洲国产欧洲综合997久久,| 少妇人妻一区二区三区视频| 婷婷精品国产亚洲av| 99国产精品一区二区三区| 亚洲无线观看免费| 真实男女啪啪啪动态图| x7x7x7水蜜桃| 成人鲁丝片一二三区免费| 中文字幕精品亚洲无线码一区| 桃红色精品国产亚洲av| 欧美zozozo另类| or卡值多少钱| 久久精品综合一区二区三区| 99热只有精品国产| 亚洲熟妇中文字幕五十中出| 中文字幕人妻丝袜一区二区| 中文字幕人妻丝袜一区二区| 久久中文看片网| 高清日韩中文字幕在线| 午夜福利18| 亚洲专区中文字幕在线| 亚洲 欧美 日韩 在线 免费| 欧美日韩综合久久久久久 | 午夜福利在线在线| 国产成+人综合+亚洲专区| 欧美+日韩+精品| 国产精品野战在线观看| 国产亚洲精品综合一区在线观看| 精品国内亚洲2022精品成人| 91麻豆av在线| 亚洲av不卡在线观看| x7x7x7水蜜桃| 国产成人欧美在线观看| 成人鲁丝片一二三区免费| 最近在线观看免费完整版| 岛国在线免费视频观看| 欧美性猛交╳xxx乱大交人| 欧美日韩中文字幕国产精品一区二区三区| av欧美777| 少妇丰满av| 亚洲国产精品sss在线观看| 男女午夜视频在线观看| www日本黄色视频网| 成人av一区二区三区在线看| 国产精品99久久99久久久不卡| 国产老妇女一区| 国产高清视频在线播放一区| av天堂在线播放| 日本五十路高清| 久久人人精品亚洲av| 2021天堂中文幕一二区在线观| 97碰自拍视频| 色综合亚洲欧美另类图片| 日本 av在线| 十八禁网站免费在线| 国产精品久久视频播放| 少妇裸体淫交视频免费看高清| 露出奶头的视频| 欧美一区二区亚洲| 欧美激情在线99| 国产成年人精品一区二区| 国产精品爽爽va在线观看网站| 亚洲国产欧洲综合997久久,| 国产精品影院久久| 日韩中文字幕欧美一区二区| 欧美区成人在线视频| 精品福利观看| 三级国产精品欧美在线观看| 精品一区二区三区人妻视频| 中文字幕av成人在线电影| 国产精品影院久久| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品电影| 此物有八面人人有两片| 亚洲精品在线观看二区| 最新中文字幕久久久久| 午夜福利在线在线| 亚洲片人在线观看| 久久精品国产清高在天天线| 深夜精品福利| 九色成人免费人妻av| 精品免费久久久久久久清纯| 色精品久久人妻99蜜桃| 麻豆国产av国片精品| 日韩亚洲欧美综合| 亚洲av熟女| 桃红色精品国产亚洲av| 少妇人妻精品综合一区二区 | 成人欧美大片| www国产在线视频色| 午夜福利成人在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 2021天堂中文幕一二区在线观| 不卡一级毛片| 日韩欧美国产一区二区入口| 久久久久亚洲av毛片大全| 3wmmmm亚洲av在线观看| 久久精品国产自在天天线| 久久99热这里只有精品18| 欧美午夜高清在线| 亚洲av美国av| 精品久久久久久久毛片微露脸| 18禁在线播放成人免费| 亚洲精品美女久久久久99蜜臀| 国产一区二区亚洲精品在线观看| 亚洲av成人av| 香蕉丝袜av| 十八禁人妻一区二区| 无人区码免费观看不卡| 成熟少妇高潮喷水视频| 日本一本二区三区精品| 中文在线观看免费www的网站| 看免费av毛片| 国产精品一区二区三区四区免费观看 | 久久天躁狠狠躁夜夜2o2o| 国产成人aa在线观看| 国产69精品久久久久777片| 亚洲avbb在线观看| 丁香六月欧美| 黄色成人免费大全| 精品一区二区三区视频在线观看免费| 亚洲精品一区av在线观看| 日本 av在线| 久久久久久久午夜电影| 18美女黄网站色大片免费观看| 亚洲人成电影免费在线| 亚洲国产精品久久男人天堂| 9191精品国产免费久久| 国产午夜精品论理片| 天天一区二区日本电影三级| 99视频精品全部免费 在线| 亚洲一区二区三区色噜噜| 欧美+亚洲+日韩+国产| 国产免费av片在线观看野外av| 天堂动漫精品| 国产精品精品国产色婷婷| 老鸭窝网址在线观看| 桃红色精品国产亚洲av| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久人妻蜜臀av| 啦啦啦观看免费观看视频高清| 国产欧美日韩精品一区二区| 国产色婷婷99| 国产精品一区二区三区四区免费观看 | 婷婷精品国产亚洲av在线| 国产高潮美女av| 成人特级黄色片久久久久久久| 成人av一区二区三区在线看| 最新中文字幕久久久久| 一进一出抽搐gif免费好疼| 一进一出抽搐gif免费好疼| 国产三级中文精品| 一区二区三区激情视频| 亚洲乱码一区二区免费版| 好男人电影高清在线观看| 久久国产乱子伦精品免费另类| 亚洲一区二区三区色噜噜| 亚洲美女视频黄频| 成人av一区二区三区在线看| 亚洲精品一区av在线观看| 亚洲精品日韩av片在线观看 | eeuss影院久久| 国产激情欧美一区二区| 国产成+人综合+亚洲专区| 久久国产精品影院| 啦啦啦免费观看视频1| 国产成人福利小说| 国产午夜精品久久久久久一区二区三区 | 国产成人欧美在线观看| 午夜久久久久精精品| 国产伦在线观看视频一区| 欧美日韩瑟瑟在线播放| 日本五十路高清| 搡女人真爽免费视频火全软件 | 在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| 久久精品综合一区二区三区| 一边摸一边抽搐一进一小说| 黄色片一级片一级黄色片| 欧美色欧美亚洲另类二区| 男插女下体视频免费在线播放| 美女cb高潮喷水在线观看| a在线观看视频网站| 可以在线观看的亚洲视频| 国产精品一区二区免费欧美| 国产黄片美女视频| 国产精品亚洲一级av第二区| 国产成人系列免费观看| 九九热线精品视视频播放| 欧美激情在线99| 欧美色视频一区免费| 日本在线视频免费播放| 亚洲欧美日韩东京热| 日本熟妇午夜| 国产三级在线视频| 九九热线精品视视频播放| 色播亚洲综合网| 欧美中文日本在线观看视频| 真人做人爱边吃奶动态| 亚洲一区二区三区色噜噜| 中文字幕人妻丝袜一区二区| 夜夜爽天天搞| 校园春色视频在线观看| 亚洲成av人片在线播放无| 18+在线观看网站| 国产毛片a区久久久久| 老熟妇仑乱视频hdxx| 欧美黑人欧美精品刺激| 亚洲欧美日韩卡通动漫| 午夜精品在线福利| 亚洲不卡免费看| 国产熟女xx| 人人妻,人人澡人人爽秒播| 露出奶头的视频| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品av在线| 好男人电影高清在线观看| 老汉色av国产亚洲站长工具| 国产精品久久视频播放| 欧美极品一区二区三区四区| 欧美一级a爱片免费观看看| 757午夜福利合集在线观看| 亚洲自拍偷在线| 国产精品女同一区二区软件 | 人人妻,人人澡人人爽秒播| 国产成年人精品一区二区| 嫩草影院入口| 在线免费观看不下载黄p国产 | 久久久国产精品麻豆| 日韩亚洲欧美综合| 日本三级黄在线观看| 黄色成人免费大全| 99久久精品热视频| 一夜夜www| 国产成人欧美在线观看| 国产欧美日韩精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 日本免费一区二区三区高清不卡| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 美女高潮的动态| 亚洲人成网站高清观看| 国产视频一区二区在线看| 高清日韩中文字幕在线| 欧美黑人巨大hd| 国产69精品久久久久777片| 免费观看精品视频网站| 国产免费一级a男人的天堂| 午夜福利18| 99国产综合亚洲精品| www国产在线视频色| 在线十欧美十亚洲十日本专区| eeuss影院久久| 俄罗斯特黄特色一大片| 精品一区二区三区视频在线 | 国产av不卡久久| 欧美zozozo另类| 午夜福利成人在线免费观看| h日本视频在线播放| 97人妻精品一区二区三区麻豆| 51午夜福利影视在线观看| www国产在线视频色| 国产精品国产高清国产av| 无遮挡黄片免费观看| 黑人欧美特级aaaaaa片| 在线国产一区二区在线| 91久久精品电影网| 在线免费观看的www视频| 1024手机看黄色片| 九色国产91popny在线| 在线天堂最新版资源| 97超视频在线观看视频| 免费电影在线观看免费观看| 97人妻精品一区二区三区麻豆| 18禁黄网站禁片免费观看直播| 久久久久久久久久黄片| 免费在线观看影片大全网站| av中文乱码字幕在线| 色综合站精品国产| 午夜激情福利司机影院| 在线播放无遮挡| 97人妻精品一区二区三区麻豆| 中国美女看黄片| www.熟女人妻精品国产| 国产精品综合久久久久久久免费| 露出奶头的视频| 最近最新免费中文字幕在线| 九色国产91popny在线| 国产乱人视频| 久久香蕉国产精品| 国产欧美日韩一区二区精品| 欧美成人免费av一区二区三区| 久久国产精品影院| 99久久精品热视频| 亚洲av熟女| 精品日产1卡2卡| 女同久久另类99精品国产91| 琪琪午夜伦伦电影理论片6080| 免费看十八禁软件| 免费人成在线观看视频色| 国产高清视频在线播放一区| xxxwww97欧美| 高潮久久久久久久久久久不卡| 日韩精品青青久久久久久| 听说在线观看完整版免费高清| 99久久综合精品五月天人人| 麻豆成人av在线观看| 久久99热这里只有精品18| 久久久久九九精品影院| 窝窝影院91人妻| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 久久精品91蜜桃| 九九热线精品视视频播放| 99久久综合精品五月天人人| 亚洲成人免费电影在线观看| 九九热线精品视视频播放| 亚洲一区高清亚洲精品| 亚洲专区国产一区二区| 亚洲18禁久久av| 一本一本综合久久| 国产亚洲精品综合一区在线观看| 色在线成人网| 日韩欧美精品免费久久 | 欧美一级a爱片免费观看看| 亚洲专区中文字幕在线| 亚洲七黄色美女视频| 亚洲天堂国产精品一区在线| 欧美又色又爽又黄视频| av在线天堂中文字幕| 亚洲不卡免费看| 日本黄大片高清| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 国产乱人视频| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片| 婷婷精品国产亚洲av| 久久人人精品亚洲av| 日本 av在线| 一级作爱视频免费观看| 亚洲午夜理论影院| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 国产欧美日韩精品一区二区| 国产三级在线视频| 男女视频在线观看网站免费| 亚洲第一电影网av| 精品电影一区二区在线| 亚洲欧美一区二区三区黑人| 99热这里只有精品一区| 精品国产超薄肉色丝袜足j| 少妇裸体淫交视频免费看高清| 日本在线视频免费播放| 身体一侧抽搐| 免费看美女性在线毛片视频| 最新美女视频免费是黄的| 一级a爱片免费观看的视频| 亚洲欧美日韩高清专用| 国产亚洲精品一区二区www| 国产精品一及| 99精品久久久久人妻精品| 欧美乱色亚洲激情| 国产精品一区二区三区四区久久| 欧美日韩一级在线毛片| 老司机深夜福利视频在线观看| 欧美黑人欧美精品刺激| 久久草成人影院| 老熟妇仑乱视频hdxx| 亚洲aⅴ乱码一区二区在线播放| 观看免费一级毛片| 欧美又色又爽又黄视频| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| 日本与韩国留学比较| 69av精品久久久久久| 国产伦精品一区二区三区四那| 男女午夜视频在线观看| 午夜福利在线观看吧| 亚洲一区二区三区不卡视频| 宅男免费午夜| 首页视频小说图片口味搜索| 精品一区二区三区人妻视频| 噜噜噜噜噜久久久久久91| 久久伊人香网站| 欧美+亚洲+日韩+国产| 国产精品 国内视频| 韩国av一区二区三区四区| 精品乱码久久久久久99久播| 美女高潮的动态| 性色av乱码一区二区三区2| 国产高清videossex| 午夜福利18| 欧美乱妇无乱码| 又黄又粗又硬又大视频| 亚洲内射少妇av| 狂野欧美激情性xxxx| 色哟哟哟哟哟哟| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 中文字幕久久专区| 99国产精品一区二区三区| 天堂√8在线中文| 蜜桃久久精品国产亚洲av| 久久久久久九九精品二区国产| 日韩av在线大香蕉| 免费av观看视频| 国产高清激情床上av| 在线看三级毛片| 波野结衣二区三区在线 | 在线免费观看不下载黄p国产 | 99热6这里只有精品| 老司机在亚洲福利影院| 最近视频中文字幕2019在线8| 最新美女视频免费是黄的| eeuss影院久久| 欧美日韩福利视频一区二区| 三级男女做爰猛烈吃奶摸视频| 国产黄a三级三级三级人| 成人18禁在线播放| 亚洲欧美日韩无卡精品| 一进一出抽搐动态| 动漫黄色视频在线观看| 丝袜美腿在线中文| 麻豆一二三区av精品| 国产伦精品一区二区三区视频9 | 中文字幕av在线有码专区| 久久精品国产自在天天线| 熟女人妻精品中文字幕| 国产精品99久久99久久久不卡| 亚洲av一区综合| 99热精品在线国产| 一区福利在线观看| 国产单亲对白刺激| 日本免费一区二区三区高清不卡| 欧美黑人巨大hd| 欧美高清成人免费视频www| 热99在线观看视频| 亚洲成a人片在线一区二区| 欧美最新免费一区二区三区 | 国产精品av视频在线免费观看| 欧美日韩福利视频一区二区| 夜夜看夜夜爽夜夜摸| 啪啪无遮挡十八禁网站| 搡老熟女国产l中国老女人| 久久精品综合一区二区三区| 内地一区二区视频在线| 精品一区二区三区人妻视频| 成人午夜高清在线视频| 看黄色毛片网站| 一二三四社区在线视频社区8| 国产高清videossex| 一a级毛片在线观看| 美女高潮的动态| 12—13女人毛片做爰片一| 午夜老司机福利剧场| 在线播放无遮挡| 国产精品一区二区三区四区久久| 欧美中文综合在线视频| 丁香欧美五月| 国产视频内射| 我的老师免费观看完整版| 成人午夜高清在线视频| 欧美日本视频| 欧美性猛交黑人性爽| 精品一区二区三区av网在线观看| 国产真人三级小视频在线观看| 夜夜夜夜夜久久久久| 97碰自拍视频| bbb黄色大片| 国产高清视频在线播放一区| 亚洲最大成人手机在线| 亚洲色图av天堂| 欧美zozozo另类| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 天堂av国产一区二区熟女人妻| 黄片小视频在线播放| 精品人妻一区二区三区麻豆 | 嫩草影视91久久| 99精品久久久久人妻精品| 亚洲中文字幕一区二区三区有码在线看| 男女视频在线观看网站免费| 欧美+日韩+精品| 久久久久久大精品| 免费一级毛片在线播放高清视频| 99热只有精品国产| 国产高清videossex| 国产欧美日韩一区二区三| 成人18禁在线播放| 婷婷六月久久综合丁香| 色尼玛亚洲综合影院| 久久99热这里只有精品18| 中出人妻视频一区二区| 搡老岳熟女国产| av片东京热男人的天堂| 女人高潮潮喷娇喘18禁视频| 很黄的视频免费| 男人舔奶头视频| av女优亚洲男人天堂| 国产极品精品免费视频能看的| 在线观看午夜福利视频| 国产视频一区二区在线看| 一本久久中文字幕| 亚洲 欧美 日韩 在线 免费| 给我免费播放毛片高清在线观看| 999久久久精品免费观看国产| 午夜福利视频1000在线观看| 婷婷精品国产亚洲av| 亚洲av熟女| 网址你懂的国产日韩在线| 91在线精品国自产拍蜜月 | 香蕉丝袜av| 99国产精品一区二区三区| 欧美zozozo另类| 少妇熟女aⅴ在线视频| 夜夜爽天天搞| 全区人妻精品视频| 免费看十八禁软件| 精品不卡国产一区二区三区| 黄片大片在线免费观看| 动漫黄色视频在线观看| 99在线视频只有这里精品首页| 一进一出抽搐gif免费好疼| 国产美女午夜福利| ponron亚洲| 老司机午夜十八禁免费视频| 国产99白浆流出| 中国美女看黄片| 熟女电影av网| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 国产淫片久久久久久久久 | 亚洲成av人片在线播放无| 淫秽高清视频在线观看| 国产亚洲精品av在线| 超碰av人人做人人爽久久 | 国产精品久久久人人做人人爽| svipshipincom国产片| 97超视频在线观看视频| 观看免费一级毛片| 国产91精品成人一区二区三区| 国产成人av激情在线播放| 国产一区二区在线av高清观看| a级一级毛片免费在线观看| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区| 中文字幕熟女人妻在线| 免费av观看视频| 99国产综合亚洲精品| 欧美激情久久久久久爽电影| а√天堂www在线а√下载| 亚洲色图av天堂| 给我免费播放毛片高清在线观看| 久久久久久人人人人人| 免费在线观看成人毛片| 日韩精品青青久久久久久| 狂野欧美激情性xxxx| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 男女那种视频在线观看| 亚洲精品色激情综合| 怎么达到女性高潮| 乱人视频在线观看| 国产免费男女视频| 嫩草影院入口| 欧美日韩综合久久久久久 | 欧美日韩精品网址| 男插女下体视频免费在线播放| 国产极品精品免费视频能看的| 亚洲欧美日韩高清专用| 精品一区二区三区人妻视频| 在线观看日韩欧美| 2021天堂中文幕一二区在线观| 欧美中文日本在线观看视频|